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Abstract—We present an effective semi-supervised learning
algorithm for single image dehazing. The proposed algorithm
applies a deep Convolutional Neural Network (CNN) containing
a supervised learning branch and an unsupervised learning
branch. In the supervised branch, the deep neural network is
constrained by the supervised loss functions, which are mean
squared, perceptual, and adversarial losses. In the unsupervised
branch, we exploit the properties of clean images via sparsity of
dark channel and gradient priors to constrain the network. We
train the proposed network on both the synthetic data and real-
world images in an end-to-end manner. Our analysis shows that
the proposed semi-supervised learning algorithm is not limited
to synthetic training datasets and can be generalized well to real-
world images. Extensive experimental results demonstrate that
the proposed algorithm performs favorably against the state-of-
the-art single image dehazing algorithms on both benchmark
datasets and real-world images.

Index Terms—Image dehazing, Deep learning, Semi-supervised
learning.

I. INTRODUCTION

INGLE image dehazing aims to recover the clean image

from a hazy one. It has been an active research effort in
the vision and graphics community due to the challenges in
problem formulation, regularization, and optimization. Math-
ematically, the hazing process [7] can be formulated as

I(z) = J(2)t(x) + A(1 — t(z)), (1)

where I(z), J(z), A, and t(z) denote a hazy image, clean
image, global atmospheric light, and a transmission map,
respectively. When the haze is homogeneous, the transmission
map t(z) can be expressed as t(z) = e~ #%*), where d(z) is
the scene depth and [ is the medium extinction coefficient. As
only the hazy image I(z) is available, the problem is ill-posed.

To make the problem well posed, existing algorithms usu-
ally make assumptions on the clean images [7], [6], e.g., the
dark channel prior [7] and color-line priors [6]. As image
priors often involve non-convex and non-linear terms, such
approaches entail high computational loads.

To overcome this problem, deep convolutional neural net-
works (CNNs) have been used for image dehazing [2], [28],
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Fig. 1. Dehazed results on a real-world hazy image. Our semi-supervised
method generates cleaner images with fewer artifacts and color distortion.

[43], [15], [29], [18], [30]. Typically, deep CNNs are used
either to estimate transmission maps [2], [28], [43] or predict
clean images directly [15], [29], [18]. These methods are
efficient and outperform the hand-crafted prior based algo-
rithms with significant performance gains. However, deep
learning based approaches usually require a large number of
ground-truth images for training. Most of them are trained
on synthetic hazy datasets (e.g., NYU Depth dataset [37] and
Make3D dataset [33], [35], [34]). As these synthetic hazy
datasets contain limited image categories and image depths,
the performance of existing deep learning based algorithms
is usually limited to synthetic training datasets and cannot be
well generalized to real-world hazy images.

To this end, we propose a semi-supervised learning network
for image dehazing using both synthetic and real-world hazy
images. Specifically, we design a deep network consisted of a
supervised branch and an unsupervised branch, both of which
share the weights during the training process. The supervised
branch is trained on synthetic hazy images while the unsuper-
vised one is trained on real hazy images. In the supervised
branch, we apply labeled losses such as mean squared loss,
perceptual loss, and adversarial loss to train the network with
the difference between estimated results and ground-truths. To
avoid the supervised branch over-fitting the training dataset,
we exploit the properties of clear images via the dark channel
(DC) [7] and image gradients such as total variation (TV) [32]
to constrain the unsupervised branch. The whole network
is trained on both the synthetic data and real-world images
in an end-to-end manner. With the semi-supervised learning
approach, our network performs favorably against the state-of-
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the-art dehazing approaches. Figure 1 shows an example on a
real-world hazy image, where the proposed method generates
a cleaner image.

The contributions of this work are as follows:

« We propose a semi-supervised algorithm to learn the re-
lationship between synthetic and real-world hazy images.
The proposed network consists of a supervised branch
and an unsupervised branch.

« We exploit conventional image priors as unlabeled losses
to train the unsupervised branch with real training data.

« We conduct extensive experiments and demonstrate that
the proposed semi-supervised dehazing method performs
favorably against the state-of-the-art dehazing approaches
both on the synthetic datasets as well as real hazy images.

II. RELATED WORK

In this section, we discuss the prior based and learning
based single image dehazing algorithms, and semi-supervised
learning methods for low-level vision tasks.

A. Prior-based Single Image Dehazing

Prior based methods focus on exploiting statistical prop-
erties of images to estimate transmission maps and atmo-
spheric light. Tan [38] proposes a contrast-maximization image
restoration method based on the observations that images with
enhanced visibility (or clear-day images) have more contrast
than images plagued by bad weather, and air light whose
variation mainly depends on the distance of objects to the
viewer, tends to be smooth. He et al. [7] develop an image
restoration method by enforcing the sparsity on the dark
channel of a recovered image based on the observations that
the dark channel of the clean image is sparser than that of the
hazy image. Several approaches have since been developed
to improve efficiency and performance of image restoration
based on the dark channel prior [40], [21], [19], [23], [41].
In addition, Zhu et al. [45] estimate the scene depth of the
hazy images and remove the haze based on a color attenuation
prior. Fattal [6] develops a color-line prior based on the
observation that small image patches typically exhibit a one-
dimensional distribution in the RGB color space. Similarly,
Berman et al. [1] approximate the colors of a clean image
by distinct chromatic properties and use them as the prior on
haze-free images.

However, prior based image restoration methods usually
entail solving non-convex optimization problems with com-
putationally expensive steps. Furthermore, it may not perform
well when the assumed priors do not hold for some specific
scenes [7].

B. Learning-based Single Image Dehazing

Numerous deep CNN models have been proposed for low-
level vision problems such as super-resolution [9], [12], de-
noising [20], [27], and image deblurring [17], [36], [39].
A number of methods [2], [28], [43] apply deep CNNs to
estimate the transmission maps and atmospheric light first,
and then recover the clean image by an element-wise division

based on the degradation model in (1). Ren et al. [28]
learn the mapping from hazy inputs to transmission maps
using a coarse-to-fine strategy. On the other hand, Zhang
and Patel [43] propose to estimate transmission maps by
a densely connected pyramid network while estimating the
atmospheric light via a U-Net [31]. However, these approaches
may introduce artifacts and color distortion when the estimated
transmission maps and atmospheric light are not accurate.
To remedy this, some end-to-end methods [15], [29], [18]
do not estimate the transmission map or atmospheric light,
and learn to recover the clean image directly. Ren et al. [29]
present a gated fusion network by fusing three images derived
from the original hazy input (e.g., white balanced, contrast
enhanced, and gamma corrected), which may suffer from
color distortion due to pre-processing. Li et al. [18] develop
a method to restore clean images by training conditional
Generative Adversarial Networks (GANS).

The aforementioned learning methods use synthetic images
and may not perform well on real images due to the domain
gap. On the other hand, a number of algorithms apply unpaired
data to train the network based on the physics model [42]
or cycle GAN [4]. However, only applying the unlabeled or
unpaired data is less effective than using the labeled or paired
data to train the network. Different from the existing CNN
based approaches, our network is trained on both synthetic and
real data in a semi-supervised manner, and adapts to different
image domains.

C. Semi-supervised Learning.

A few semi-supervised learning methods [11], [13] have
been recently proposed to solve the low-level vision tasks.
Kuznietsov et al. [11] train a deep network to predict depth
maps by adding the image alignment error and regularization
cost to enforce smoothness of the estimated depth maps.
Without any prior assumptions in optical flow estimation,
Lai et al. [13] propose a discriminator to distinguish the
flow warp error between labeled and unlabeled data. In these
approaches, the design of reconstruction errors in the unsu-
pervised branches is based on the domain-specific knowledge,
which cannot be directly applied to image dehazing. Thus, we
propose to train the unsupervised branch with conventional
dark channel and total variation loss functions.

III. PROPOSED ALGORITHM

Existing deep CNN-based image dehazing algorithms are
usually developed within the supervised learning framework,
which is limited to the specific synthetic training data. In this
work, we address this problem with a semi-supervised learning
approach. Specifically, we train a deep CNN for image dehaz-
ing using a labeled dataset {I;, J;} ', and an unlabeled dataset
{Ii}f\i‘l, where N; and N,, denote the numbers of the labeled
and unlabeled training images, respectively. In addition, I; and
J; denote the i-th hazy image and the corresponding ground-
truth clean image. We train a network to learn haze-free images
J from hazy inputs I:

J=6(), 2
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Fig. 2. Proposed semi-supervised learning framework for single image dehazing. The proposed method consists of two branches sharing the same weights.
The supervised branch is trained using labeled synthetic data and loss functions based on mean squared, perceptual, and adversarial errors. The unsupervised
branch is trained using unlabeled real data and loss functions based on dark channel loss and total variation.

TABLE I
CONFIGURATIONS OF THE PROPOSED NETWORK. “CONV” DENOTES THE CONVOLUTION LAYER, “RES” DENOTES THE RESIDUAL BLOCK, “UPCONV”
DENOTES THE UP-SAMPLE LAYER BY TRANSPOSED CONVOLUTION OPERATOR, “TANH” DENOTES THE NON-LINEAR TANH LAYER, AND “SUM” DENOTES
THE SUMMATION OPERATION. WE APPLY THE SUMMATION OPERATION AS THE SKIP CONNECTION METHOD.

Layer | Convl | Res2-4 | Conv5 | Res6-8 | Conv9 | Resl0-15 | Upconvl6 | Res17-19 | Upconv20 | Res21-23 | Conv24 | Tanh
In_channels 3 64 64 128 128 256 256 128 128 64 64 3
Out_channels 64 64 128 128 256 256 128 128 64 64 3 3

Kernel size 7 - 5 - 3 - 4 - 4 - 7

Stride 1 - 2 - 2 - 2 - 2 - 1 -
Pad 3 - 1 - 1 - 1 - 1 - 3 -

Sum | - | - | - | - | - - | Res8 | - | Res4 | - | - | Input

TABLE II TABLE III

CONFIGURATIONS OF THE RESIDUAL BLOCKS. FOR EACH BLOCK, THE
NUMBERS OF INPUT CHANNELS AND OUTPUT CHANNELS ARE THE SAME
AS THOSE IN TABLE I.

ARCHITECTURE AND CONFIGURATIONS OF THE DISCRIMINATOR. FOR
EACH CONVOLUTION LAYER, THERE FOLLOWS A NON-LINEAR RELU
LAYER EXCEPT FOR CONVS5. WE APPLY THE INSTANCE NORMALIZATION
(IN) LAYER TO NORMALIZE THE FEATURE MAPS.

Layer | Convl | ReLU2 | Conv3
Kernel size 3 R 3 Layer | Convl | Conv2 | Conv3 | Conv4 | Conv5

Stride ! - ! In_channels 3 64 128 | 25 | 512

Pad ! B 1 Out_channels 64 128 256 512 1

Sum ‘ - ‘ _ ‘ Input Kerne} size 4 4 4 4 4

Stride 2 2 2 1 1

Pad 2 2 2 2 2

Norm ‘ - ‘ IN ‘ IN ‘ IN ‘ -

where G(-) denotes the proposed network consisting of a
supervised branch Gs and an unsupervised branch G,. Both
branches share the same weights during the training. We
summarize the proposed network in Figure 2 and present the
detailed network architecture in the following section.

contains three scales and each consists of three stacked resid-
ual blocks. Similar to the work by Nah et al. [22], we do
not use any normalization layer in the residual blocks. The
configurations of the residual blocks are shown in Table II.
The numbers of the input and output channels of the residual
blocks are the same as those in Table I.

A. Network Architecture

We use an encoder-decoder architecture with skip connec-

tions which has been shown effective for low-level tasks [36],
[13], [39]. We show the architecture and configurations of
the proposed network in Figure 2 and Table 1. The encoder

We use the Stride-Conv layer to down-sample the
feature maps from the previous scale by 1/2. The decoder
contains three scales and each is also stacked by three residual
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blocks. We use the Transposed-Conv layer to up-sample
the features by the factor of 2. Each convolution layer is
followed by a non-linear ReLLU layer except for Conv24. We
skip-connect the feature maps by the summation operation. In
addition, we use the residual learning to learn the difference
between hazy and clean images. We analyze the effect of each
component of the network in Section V-D.

For adversarial learning, we construct a discriminator by
a conventional classifier, stacked by a branch of convolution,
non-linear ReLLU, and instance normalization layers. The de-
tails of the discriminator are shown in Table III.

B. Training Losses

We use supervised and unsupervised losses to train the
corresponding branches.

1) Supervised Losses: We use the mean squared loss to
ensure the predicted image J is close to the ground-truth J:

1 .
LC:E; Ji =i, 3)

where N; denotes the number of labeled data in a mini-
batch. In addition, J and j represent the vector forms of
the predicted image J and the corresponding ground-truth
image J, respectively. To generate photo-realistic images, we
also use the perceptual loss based on the pre-trained VGG-19
network [8]:

; “4)

‘F‘]i B FJ‘ 2

where F;, and F; denote the vector forms of the feature
maps w.r.t. the predicted image J and its corresponding
ground-truth J, respectively. The feature maps are from the
conv3-3 layer of the VGG-19 network that is pre-trained on
the ImageNet [3].

To generate sharp and visually pleasing images, we follow
the GAN model [14] and build a discriminator D;, to dis-
tinguish whether an image is produced by the generator G
(i.e., J) or from the ground-truth of labeled data (i.e., J ). The
adversarial loss can be expressed as:

Lo=E; {1ogDis(j)] +Ey[log(1—Dis(J))].  (5)

2) Unsupervised Losses: We use the total variation and
dark channel losses to enforce the unsupervised branch to
generate images that have the same statistical properties as
clean images. The total variation loss, an /;-regularization
gradient prior on the predicted images by the unsupervised
branch, is applied to preserve structures and details:

N,
1 u

Lt:FE VRl + 1V, ©
Uoi=1

where Vj, and V,, represent the horizontal and vertical differ-
ential operation matrices, respectively.

41313|2|5
114|5[3]3
124 . forward
41312|3|2
3 0|54
image dark channel

(a) forward of D(-)

0|0 |0|26|0

060|000

. backward

0|0|0)|0(01

0104(07| 0|0

image dark channel

(b) backward of D(-)

Fig. 3. A toy example of implementing the forward and backward steps
for the dark channel operation [24]. In the forward pass, the numbers in
the matrix represent pixels values in the image. We compute the dark channel
by finding the minimum at each overlapped patch and replacing the central
pixel with the minimum. In the backward pass, the numbers denote the
propagated gradient values. We collect the gradients from the corresponding
pixels. We mark the pixels sharing the same dark pixel value with the same
color for illustration purpose.

The dark channel of clean images [7], [24] has been shown
to be sparser than that of the hazy ones. It can be expressed
by:

D(I) =

min [°¢ , 7
ce{r,g,b} (y)]

where = and y are pixel coordinates, /¢ denotes c-th color
channel, and N(x) is an image patch centered at x. Motivated
by this, we apply an ¢;-regularization to constrain the sparsity

of the dark channel of the predicted images:

1 Qe
Ly = — D
d Nu;\l Ji

where D, denotes the vector form of the dark channel of the
predicted image J;.

Although the dark channel has been shown effective to
remove the haze by adding the constraint on the clean im-
age [7], it is challenging to embed into the learning network
due to the highly non-convex and non-linear term. We apply
the look-up table scheme [24] to implement the forward
and backward step of the dark channel operation. Figure 3
shows a toy example on how the operations are carried out
using the look-up table scheme.

We apply a matrix of 5 X 5 to represent a single channel
image. Based on (7), in the forward stage, the dark channel
of the image is computed as:

D) = min (). ©

min {
yEN (x)

1 ®)

where the size of the patch N(y) is set as 3 x 3. As shown
in Figure 3(a), the dark pixels of each patch are marked by
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Algorithm 1 Training details at each iteration.

Input: Initialized generator G = {Gs, G, }, Synthetic training
data N, Real training data from N,
Output: Updated generator G.
1: while ¢ < iter,,,, do
2: randomly choose hazy/clean image pair I,/J from N,
3 randomly choose hazy image I, from N,
4 obtain Jg by J, = G(I;)
5: obtain J,. by J, = G(I,)
6:  obtain L. by (3) from {J,,.J}
7 obtain L,, by (4) from {J,, J}
§:  obtain L, by (5) from {.J,, J}
9: obtain Lg4 by (8) from J,.
10: obtain L, by (6) from J,
11: back propagate G; by L.+ L, + L,
12: back propagate G, by Lg+ L;
13: 1 1+1
14: end while

different colors. We pad the image repeatedly to handle the
boundary issues. In the backward stage, the dark pixels of
the image collect the propagating gradients of the correspond-
ing pixels by summation.

3) Overall Loss Function: We combine supervised losses,
unsupervised losses, and the adversarial loss to train the
proposed network:

L=1Lc+ AL, +~L;+ pLg+nLa, (10)

where A, v, u, and 7 are the positive weights of each loss
function.

C. Semi-Supervised Training Details

As the supervised branch and unsupervised branch share the
same architecture as well as weights, we update weights iter-
atively during the training process. We first randomly choose
a batch of NV; labeled samples and compute the difference
between dehazed images and ground-truths by labeled losses.
Meanwhile, we randomly choose a batch of NV, unlabeled
samples and compute the unlabeled losses. We then use the
labeled/unlabeled losses to update the parameters of the super-
vised/unsupervised branch by back propagation, respectively.
We present the training details when updating the generator in
Algorithm 1.

1V. EXPERIMENTAL RESULTS
A. Implementation Details

We alternatively update the generator and discriminator by
updating one while fixing the other. More specifically, we
update the discriminator once after updating the generator
five times. When updating the generator, we optimize the
network parameters in a semi-supervised way. We use the
Pytorch toolbox [25] and Adam [10] solver to optimize both
the generator and discriminator. We set 51 = 0.9, 82 = 0.99,
and the weight decay as 10~%. The network is trained for 300
epochs. The learning rate is set to be 10™% at the first 150

5

TABLE IV
QUANTITATIVE EVALUATIONS (PSNR/SSIM) ON THREE BENCHMARK
DATASETS [16]. OUR METHOD PERFORMS FAVORABLY AGAINST THE
STATE-OF-THE-ART DEHAZING ALGORITHMS.

(PSNR/SSIM)  RESIDE-C HazeRD SOTS

Haze 14.00/0.59  14.01/0.39  13.95/0.64
DCP [7] 14.60/0.75  14.01/0.39  15.49/0.64
MSCNN [28] 17.54/0.81  15.57/0.42  17.57/0.81
DehazeNet [2]  20.06/0.83  15.54/0.41  21.14/0.85
AOD-Net [15] 18.33/0.82  15.63/0.45  19.06/0.85
DCPDN [43] 19.19/0.82  16.12/0.34  19.39/0.65
GFN [29] 19.85/0.80  13.98/0.37  22.30/0.88
PDN [41] 18.93/0.84  15.21/0.43  19.69/0.82
CycleGAN [4]  17.33/0.57  15.64/0.43  17.78/0.72
baseline 23.54/0.90  15.48/0.42  24.33/0.88
Ours 23.15/0.91  16.55/0.47  24.44/0.89

epochs, and decreased linearly to 10~ within the following
150 epochs by I, = 1074 — L1002 (F _ 150), where E
denotes the number of the training epoch.

We train the network by randomly choosing both labeled
and unlabeled samples from the RESIDE dataset [16], which
contains the ITS (Indoor Training Set), OTS (Outdoor Training
Set), SOTS (Synthetic Object Testing Set), URHI (Unlabeled
real Hazy Images), and RTTS (real Task-driven Testing Set).
For labeled data, we select 4000 synthetic hazy images, 2000
from the ITS set and 2000 from the OTS set. For unlabeled
data, we randomly choose 2000 real hazy images from the
URHI dataset. We set the batch size to 4, and apply the
following strategies to randomly augment the training data:
1) flipping horizontally and vertically, 2) rotating for —90° or
90°, and 3) adding Gaussian noise with the sigma of 0.01.
Then we randomly crop the images to the size of 256 x 256
and normalize the pixel values to [—1,1].

We set the patch size as 35 x 35 when computing the DC
loss. The loss weights are set as: A = 1072, v = 1072,
p = 107>, and n = 1073, We train our network on an
Nvidia GTX 1080 GPU and it takes three days to converge.
The source code and pre-trained model will be made publicly
available on the project website: https:/sites.google.com/view/
lerenhanli/homepage/semi_su_dehazing.

B. Evaluation Settings

We evaluate the performance of the proposed method
against the state-of-the-art dehazing approaches including
DCP [7], MSCNN [28], DehazeNet [2], AOD-Net [15],
DCPDN [43], GFN [29], CycleGAN [4], and PDN [41]. To
better understand the proposed semi-supervised method, we
retrain a network which only contains the supervised branch as
the baseline model. For fair comparisons in the loss function,
we apply all the proposed loss function (10) on the labeled
data including supervised and unsupervised losses.

C. Evaluations on Synthetic Datasets

We use three benchmark datasets [16], [44] to evaluate the
proposed method, including RESIDE-C, HazeRD, and SOTS
datasets. The RESIDE-C dataset contains 100 indoor and 100
outdoor synthetic hazy images randomly chosen from the ITS

1057-7149 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://sites.google.com/view/lerenhanli/homepage/semi_su_dehazing
https://sites.google.com/view/lerenhanli/homepage/semi_su_dehazing

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2952690, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING

(a) Hazy image
(PSNR/SSIM)
N

(b) DCP [7]
(17.00/0.73)

i

(c) MSCNN [28]
(19.78/0.79)
3 N e id

(g) GFN [29]
(21.25/0.76)

(h) PDN [41]
(21.60/0.65)

(a) Hazy image (b) DCP [7] (c) MSCNN [28]

(PSNR/SSIM) (11.01/0.58) (18.41/0.74)
ey o~ 4 e o e

(g) GEN [29]
(15.12/0.70)

(h) PDN [41]
(12.77/0.64)

(i) CycleGAN [4]
(20.58/0.74)

(f) DCPDN [43]
(16.42/0.66)
s

(d) DehazeNet [2]
(24.87/0.73)
o~

() AOD-Net [15]
(22.45/0.76)
o

(j) baseline
(21.42/0.80)

(k) Ours
(25.49/0.93)

(1) Ground-truth
(oo/1)

'
-

(d) DehazeNet [2]
(17.87/0.73)

(e) AOD-Net [15]
(17.97/0.80)

(f) DCPDN [43]
(28.12/0.78)

(j) baseline
(28.51/0.89)

(k) Ours
(28.69/0.91)

(1) Ground-truth
(o0o/1)

Fig. 4. Dehazed results on the RESIDE-C [16] dataset. Our method generates cleaner results with less artifacts and color distortion.

(a) Hazy image (b) DCPDN [43] (c) GFN [29]

(d) PDN [41] (f) Ours

(e) baseline

Fig. 5. A challenging dehazing example from the HazeRD [44] dataset. Our result looks more pleasing and cleaner than the others. (In the dataset, “Sky” is

masked before generating the hazy images.)

and OTS databases. We note the selected images do not appear
in our training data. As shown in Figure 4 and Table IV, the
proposed method generates results with cleaner structures and
details.

We then evaluate our method on the HazeRD [44] and
SOTS [16] datasets. As shown in Figure 5-6 and Table 1V,
our algorithm performs favorably against the state-of-the-art
dehazing methods.

We note that the network trained only with unpaired
data [4] does not perform well due to the limited learning
capability on the unlabeled data. Furthermore, the baseline
model (i.e., purely supervised) performs slightly better than

the proposed semi-supervised model in terms of PSNR on the
RESIDE-C dataset. However, the baseline does not perform as
robustly as the proposed algorithm on each synthetic dataset.
The proposed semi-supervised method can be well generalized
to the images where the image categories and scenes are
different from the training dataset.

D. Evaluations on Real Images

We evaluate the proposed method against the state-of-the-
art approaches on real hazy images. Figure 7 shows that our
method recovers cleaner and visually more pleasing images
than the state-of-the-art approaches. To better understand the
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(a) Hazy image (b) DCP [7]

(f) DCPDN [43]

(&) GEN [29]

(¢) MSCNN [

(h) PDN [1]

(d) DehazeNet [2]

|

(i) CycleGAN [4]

(i) CycleGAN [4]

Fig. 6. Dehazed results on the SOTS [16] dataset. Our results are cleaner and have less color distortion.

performance of our method on real images, we apply a task-
driven evaluation presented by Li et al. [16]. We test our
method on the RTTS [16] dataset, which contains 4322 real-
world images annotated with object categories and bounding
boxes. After restoring the clean images, we apply a pre-trained
Faster R-CNN [26] to detect objects of interests, and compute
the mean Average Precision (mAP) of each method. Table V
shows the proposed method performs favorably against the
other approaches for object detection on the RTTS dataset.

The proposed method outperforms the baseline (i.e., purely
supervised) model in both visual and task-driven evaluations.
This shows that the proposed semi-supervised method is ef-
fective in learning the domain gap between synthetic data and

real-world images, thus alleviating the over-fitting problems.

E. Run Time

We evaluate the run time of the proposed algorithm with
comparisons to the other approaches. We randomly sample
100 hazy images of 512 x 512 pixels and compute the average
processing time of each method. All the methods are carried
out on a desktop computer with an Intel(R) Xeon(R) CPU
E5-2670 v3@2.30GHz, 32 GB RAM, and an Nvidia GTX
1080 GPU. As DCP is based on a conventional optimization
method, we evaluate the execution time on the CPU without
any GPU acceleration. As shown in Table VI, our method
performs competitively with state-of-the-art approaches.
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(a) Hazy image (b) DCP [7] (c) AOD-Net [15] (d) MSCNN [28] (e) DehazeNet [2]

(f) PDN [41] (2) GFN [29] ’ (i) baseline

(a) Hazy image (b) DCP [7] (c) AOD-Net [15] (d) MSCNN [28] (e) DehazeNet [2]

(f) PDN [41] (g) GFN [29] } (h) CycleGAN [4]

(b) DCP [7]
===

(g) GFN (h) CycleGAN [4]

—— ———
N

(a) Hazy image (b) DCP [7]

(f) PDN [41] (2) GFN [29] (h) CycleGAN [4] ' @) baseline

Fig. 7. Dehazed results on real hazy images. Our results are cleaner and look more pleasing.
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(a) Hazy image (b) Ours w/o unlabeled data

(c) Ours w/ 500 unlabeled data

(d) Ours w/ 1000 unlabeled data (e) Ours w/ 2000 unlabeled data

Fig. 8. Sensitivity to the amount of unlabeled data. With the increasing of the unlabeled data, the result looks more pleasing.

(a) Hazy image

(b) L. only

(c) Ly, only

(d) Le + Ly () Lp+ Lc+ La

Fig. 9. Visual comparisons on different labeled losses. The combination of all labeled losses leads to a better result.

(a) Hazy image (b) w/o Lg nor Ly

(c) Lg only

(d) Ly only © La+ Ly

Fig. 10. Visual comparisons on different unlabeled loss functions. The combination of DC and TV losses leads to a better result.

TABLE V
OBJECT DETECTION RESULTS ON THE RTTS [16] DATASET. WE APPLY
FASTER R-CNN TO DETECT OBJECTS OF INTERESTS ON DEHAZED
IMAGES. FASTER R-CNN IS TRAINED ON THE VOC2007 [5] DATASET.
THE DETECTION TASK FAVORS THE PROPOSED METHOD MOST AMONG
THE OTHER ALGORITHMS.

mAP (%)
Hazy 37.58
DCP [7] 40.58
MSCNN [28] 41.34
DehazeNet [2] 40.54
AOD-Net [15] 37.47
GFN [29] 58.11
DCPDN [43] 61.28
PDN [41] 62.30
CycleGAN [4] 42.53
baseline 55.27
Ours 62.61

V. ANALYSIS AND DISCUSSIONS

We analyze the proposed method with ablation studies in
this section.

A. Semi-Supervised Learning

As our network architecture includes a supervised branch
as the baseline, it is of great interest to understand how the
semi-supervised learning formulation facilitates dehazing the
images. As shown in Section IV, the proposed semi-supervised
learning method helps to remove haze from real-world images

while the baseline method with purely supervised learning is
less effective (Table V and Figure 7). We note that the method
with supervised learning can generate clean images on the
synthetic test dataset which is generated in the same way as
the training dataset. However, this method does not effectively
remove haze from real images. This confirms our analysis
that the method with supervised learning is usually limited
to specific synthetic training datasets. To better understand
the effectiveness of semi-supervised learning, we train the
proposed network on different number of the labeled samples
and evaluate it against the baseline model. Specifically, when
training the supervised branch network, we use 4000, 2000,
and 1000 labeled samples and use the same number (i.e., 2000)
of unlabeled samples to train the unsupervised branch. For
fair comparisons, we use 2000 labeled samples to train an
unsupervised branch in the baseline model. For evaluation
on dehazing real images, we use the RTTS [16] dataset to
compute the mAP (%) on the dehazed results of each model.
As shown in Table VII, the proposed semi-supervised method
performs more robustly to the number of the labeled samples
than the baseline model. These results also show the effect of
using unlabeled samples in the proposed algorithm.

Furthermore, we evaluate the sensitivity to the amount of
unlabeled data. Specifically, when training the unsupervised
branch, we apply 0, 500, 1000, and 2000 unlabeled samples
and use the same amount (i.e., 4000) of labeled samples to
train the supervised branch. We note that the proposed method
training without unlabeled data degrades to a supervised
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TABLE VI
AVERAGE RUNTIME (SECONDS) FOR AN IMAGE WITH THE SIZE OF
512 x 512 PIXELS. WE APPLY THE PUBLICLY SOURCE CODE OF ALL THE
METHODS. ALL THE METHODS ARE CARRIED OUT ON A DESKTOP
COMPUTER WITH AN INTEL(R) XEON(R) CPU E5-2670 v3@2.30GHz,
32 GB RAM, AND AN NVIDIA GTX 1080 GPU.

Platform Run time
DCP [7] Matlab (CPU) 1.30
MSCNN [28] MatConvnet (GPU) 3.21
DehazeNet [2] Matlab (GPU) 1.85
AOD-Net [15] Caffe (GPU) 0.40
DCPDN [43] Pytorch (GPU) 1.53
GFN [29] Matlab (GPU) 5.67
PDN [41] Matlab (GPU) 7.32
CycleGAN [4] TensorFlow (GPU) 2.51
Ours Pytorch (GPU) 1.12

TABLE VII
TASK-DRIVEN EVALUATIONS (MAP, %) ON THE RTTS DATASET WITH
DIFFERENT AMOUNT OF LABELED DATA. THE PROPOSED
SEMI-SUPERVISED METHOD PERFORMS MORE ROBUSTLY THAN THE
baseline MODEL.

Amount of . . .
the labeled data Purely supervised  Semi-supervised
4000 58.60 62.61
2000 50.12 60.31
1000 45.36 60.26

learning approach. We quantitatively evaluate the proposed
method on the synthetic dataset (i.e., SOTS) and the real-
world image dataset (i.e., RTTS). As shown in Table VIII, the
proposed model performs similarly on the synthetic dataset
while the performance on the real dataset becomes better with
the amount of unlabeled data increasing. Figure 8 shows the
visual results with the different amount of unlabeled training
data. The proposed network performs less effectively when
training with fewer unlabeled samples.

B. Supervised Losses

We analyze the effect of each supervised loss on the SOTS
dataset. We fix the unlabeled losses (i.e., TV loss and DC
loss) in the unsupervised branch and evaluate the proposed
method using three labeled losses. As shown in Table IX
and Figure 9, the method using the combination of MSE,
perceptual, and adversarial losses performs well against the
other alternatives. Solely using L. or L, in the proposed model
introduces over-smooth results (Figure 9(b)) and checkerboard
artifacts (Figure 9(c)), respectively. Using L, in the proposed
method facilitates generating the results visually more pleasing
and closer to real images.

C. Unsupervised Losses

As the performance of the unsupervised learning branch is
constrained by the loss functions, we analyze the effect of
each component. For fair comparisons, we fix the labeled loss
functions in the supervised branch and evaluate the effect of
each unlabeled loss by removing one while keeping the other
one. We retrain the network with the same training dataset as

10

TABLE VIII
QUANTITATIVE EVALUATIONS WITH DIFFERENT AMOUNT OF LABELED
DATA. THE PERFORMANCE ON THE SYNTHETIC DATASET ARE ROBUST
WHILE THE PERFORMANCE ON THE REAL DATASET ARE SENSITIVE TO
THE UNLABELED DATA.

Amount of
the unlabeled data SOTS (PSNR/SSIM)  RTTS (mAP, %)
0 23.65/0.86 53.48
500 24.37/0.88 58.97
1000 24.41/0.89 60.79
2000 24.44/0.89 62.61
TABLE IX

QUANTITATIVE RESULTS ON DIFFERENT LABELED LOSS FUNCTIONS. THE
COMBINATION OF ALL THE LABELED LOSSES PERFORMS WELL AGAINST
THE OTHER ALTERNATIVES.

PSNR  SSIM
L. only 23.99 0.79
L, only 21.56 0.67
L,+ L. 24.43 0.81
Ly+Lc+ La 24.44 0.89

presented in Algorithm 1 and quantitatively evaluate the per-
formance on the SOTS and RTTS dataset. Table X shows that
the combination of L; and L; generates better results. Solely
using Ly or L; tends to introduce undesirable artifacts in the
dehazed images as shown in Figure 10. More specifically,
only using L, does not generate clean images since simply
constraining the sparsity on the dark channel tends to generate
artifacts with dark pixels as shown in Figure 10(b). On the
other hand, the scheme of only using L; is less effective as this
constraint smooths image details. Although the quantitative
results decrease, they are still comparable with state-of-the-art
dehazing approaches. We note that the model without using
any loss function in the unsupervised branch is degraded to a
supervised model, which is the same as the one in Table VIII
of Section V-A. Our baseline model performs slightly lower
than the full model in terms of PSNR and SSIM. The main
reason is that we apply the proposed unlabeled losses on the
supervised branch, which also demonstrates the effectiveness
of the proposed unlabeled loss functions.

D. Hyper-Parameters

There are four hyper-parameters in the proposed method
(A, v, p, and 7 in the loss function (10)). For sensitivity
analysis, we evaluate the proposed model by varying one
hyper-parameter while fixing the others. We retrain the pro-
posed network with the same training data as mentioned in
Section IV-A and compute the PSNR values on the RESIDE-C
dataset. The results in Figure 11 demonstrate that the proposed
method is insensitive to changes in these parameters within a
sensible range.

E. Network Architecture

To better understand the effect of each component in
the proposed network, we conduct several ablation studies
to analyze several design choices. Specifically, we compare
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Sensitivity analysis on the four positive weights, X\, «, u, and 7 in the loss function. The proposed method is insensitive to changes in these

(c) DCPD [43]

(d) Ours

Fig. 12. Visual results on a noisy hazy image (noise level: 10%). The proposed method can remove the haze as well as image noise.

TABLE X
QUANTITATIVE RESULTS ON DIFFERENT UNLABELED LOSS FUNCTIONS.
WE EVALUATE THE PSNR AND SSIM ON THE SOTS DATASET AND MAP
ON THE RTTS DATASET. THE COMBINATION OF L4y AND L; LEADS TO THE
BETTER RESULTS.

PSNR SSIM  mAP (%)
w/o Lg nor Ly  23.65 0.86 53.48
baseline model 24.33 0.88 55.27
Lg only 20.65 0.71 62.34
L only 21.30 0.75 61.23
Lg+ Lyt 24.44 0.89 62.61
TABLE XI

ANALYSIS ON DIFFERENT TRAINING STRATEGIES. THE PROPOSED MODEL
PERFORMS WELL AGAINST THE OTHER ALTERNATIVES.

v
=4
7
A 16+ ,
) 145 -6~ Ours w/ adding noise ||
g =9—Ours w/o adding noise
> 12F -GFN H
< 10+ -#-DCPDN I
Hazy
8 ,
6 1 | 1 1 1 L 1 L L A
051 2 3 4 5 6 7 8 9 10

Noise level (%)

Fig. 13. Quantitative evaluations in terms of PSNR on different noise levels.

PSNR  SSIM
w/o skip connection 21.17 0.83
w/o residual learning 22.32 0.87
skip conn. via concat.  23.01 0.88
our full model 23.15 0.91

Our method consistently performs better than the other algorithms [29], [43]
at each noise level.

connection.

the proposed network with the following models: i) with-
out skip connections between the encoder and decoder, ii)
without residual learning, iii) using concatenation instead of
summation to skip connect the encoder and the decoder.
Table XI shows that all these network designs are crucial
to the performance of the proposed model. The model with
skip connections reuses the features from the encoder, which
facilitates the training on deep networks. The residual learning
ensures the network focuses on predicting the details instead
of the pixel values. Finally, the proposed model performs
slightly better than the scheme using concatenation as the
skip connection, so we choose the summation as the skip
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F. Additive Noise

We use the RESIDE-C dataset to evaluate the proposed
method against noise by adding random Gaussian noise of
0.5% to 10% to all the test images. We note that DCPDN [43]
does not apply noise for data augmentation during the training
process. In order to compare our method with DCPDN fairly,
we retrain the proposed model without adding noise in the
training data. As shown in Figure 13, the proposed method
consistently performs well even when the noise level is high.
Furthermore, adding noise to the training data can improve the
performance of handling the image noise. Figure 12 shows that
our method can remove the image haze and noise while state-
of-the-art deahzing algorithms [29], [43] are less effective.
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Fig. 14. Limitations on a severe hazy image. The propose method cannot
effectively recover the structures and details when the image suffers from the
severe haze.
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Fig. 15. Performance analysis on different haze concentration. Our method
becomes less effective when the images suffer from severe haze.

G. Limitations

Figure 14 shows that our approach performs less effective
when the image suffers from severe haze. In order to system-
atically understand the performance of the proposed method
under different concentrations of image haze, we randomly
select 10 clean images from the SOTS dataset and generate
synthetic hazy images by the atmospheric model (1). We
generate different haze concentrations by using different
(from 0.05 to 0.5 with an interval of 0.05). Then, we evaluate
the performance of the proposed method and compare it with
the state-of-the-art approaches (DCP [7] and GFN [29]) on
100 synthesized hazy images in terms of PSNR. As shown
in Figure 15, although all the methods do not perform ro-
bustly with the increasing of hazy concentration, the proposed
semi-supervised method obtains higher PSNR values than the
competitors. Our future work will focus on removing severe
haze by transferring sharp scenes into hazy images from clean
pictures.

12

VI. CONCLUSIONS

In this work, we propose a novel semi-supervised learning
algorithm for single image dehazing as the feature domains
of the synthetic and real-world images are different. On the
one hand, we use labeled loss functions to train the supervised
branch on the synthetic data with ground-truth labels. On the
other hand, we train the unsupervised branch with real data
and unlabeled loss functions based on commonly used image
priors including dark channel and total variation. Extensive
experimental results demonstrate that the proposed algorithm
performs favorably against the state-of-the-art dehazing meth-
ods both on synthetic and real hazy images.
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