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Abstract. In many settings in digital pathology or radiology, it is of
predominant importance to train classifiers that can segment disease-
associated regions in medical images. While numerous deep learning ap-
proaches, most notably U-Nets, exist to learn segmentations, these ap-
proaches typically require reference segmentations as training data. As a
consequence, obtaining pixel level annotations of histopathological sam-
ples has become a major bottleneck to establish segmentation learning
approaches. Our contribution introduces a neural network approach to
avoid the annotation bottleneck in the first place: our approach requires
two-class labels such as cancer vs. healthy at the sample level only. Using
these sample-labels, a meta-network is trained that infers a segmenting
neural network which will segment the disease-associated region (e.g. tu-
mor) that is present in the cancer samples, but not in the healthy sam-
ples. This process results in a network, e.g. a U-Net, that can segment
tumor regions in arbitrary further samples of the same type.
We establish and validate our approach in the context of digital label-free
pathology, where hyperspectral infrared microscopy is used to segment
and characterize the disease status of histopathological samples. Trained
on a data set comprising infrared microscopic images of 100 tissue mi-
croarray spots labelled as either cancerous or cancer-free, the approach
yields a U-Net that reliably identifies tumor regions or the absence of
tumor in an independent test set involving 40 samples.
While our present work is focused on training a U-Net for infrared micro-
scopic images, the approach is generic in the sense that it can be adapted
to other image modalities and essentially arbitrary segmenting network
topologies.

Keywords: Image Segmentation, Deep Learning, Segmentation-free train-
ing

1 Introduction

The annotation of disease-related regions is a major bottleneck for adapting
machine learning in biomedical imaging. Annotations are crucially important to
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Fig. 1. Principle of label-free digital pathology. The infrared microscopic image is ac-
quired from an unstained sample. Although the differences between different pixel
spectra are barely visible by eye, it is well-established that they are highly representa-
tive for and can thus differentiate different tissue components or disease status [1, 5, 7,
11]. The spectral image can thus be used to segment disease-associated regions as illus-
trated, or resolve even further details of the tissue architecture [1, 11]. Our contribution
deals with obtaining classifiers that can identify one disease-associated component such
as tumor. In the context of label-free digital pathology, hematoxylin and eosin (H&E)
stained images (right) are displayed mainly for visual reference and control.

train segmenting classifiers, whose relevance for medical imaging has been well
realized since the introduction of U-Nets [17] and SegNets [3], not least due to
the visual interpretability of segmentations by humans. However, training such
segmenting classifiers requires large amounts of precise reference segmentations.
Correspondingly, enormouse efforts have been made to obtain reference annota-
tions, making annotation a labor-intensive and costly bottleneck.

As a recent and prominent example, the Gland Segmentation in Colon His-
tology Images challenge [19] provided a significant number of high-quality ref-
erence segmentations performed by a pathologist as ground truth and training
data. More recently, the authors of [9] and [2] introduced crowd-based bioimage
annotation systems, while the authors in [1] use an image annotation tool to
obtain ground truth annotations for different components of lung tissue in 388
sample spots.

Overcoming the annotation bottleneck is particularly challenging in the con-
text of infrared microscopic images. Infrared microscopy provides hyperspectral
images of tissue samples at high spatial resolution, making it an ideal tool for re-
solving the tissue structure of histopathological samples and characterizing their
disease status (Fig. 1). Infrared microscopy requires no staining prior to spec-
tral image acquisition, and has been applied succesfully as a label-free digital
pathology approach in increasingly large clinical studies which tackled diverse
pathology related questions such as identifying tumors [13], grading colon carci-
noma [11, 12] or identifying subtypes of lung carcinoma [5, 7, 1].

Our contribution aims to overcome the annotation bottleneck through an ap-
proach which trains an arbitrary segmenting neural network using annotations
at the sample level only. More specifically, we assume that each sample is anno-
tated as either a disease class such as cancer or a healthy class such as cancer
free. Furthermore, we assume that each disease image contains a disease-specific
region that is not contained in the healthy control samples – for example, cancer
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samples contain a certain fraction of tumor, while cancer free spots do not con-
tain tumor. The goal of our newly proposed CompSegNet approach is to train a
segmenting classifier that will segment this disease-specific region.

In medical image analysis, a major advantage of segmenting networks over
merely classifying networks such as plain convolutional neural networks (CNNs)
is that they explicitely locate disease-specific regions, so that their output is
interpretable by humans, while merely classifying CNNs are black boxes which
do not provide information about the grounds on which an image was assigned
to a particular class [15]. As surveyed in [8], the problem of interpreting CNN
models has attracted major attention, but has been adressed in a rather post-
mortem manner: A CNN is first being trained, and seeking interpretable evidence
is performed only after training the network. This has been investigated using
a plethora of approaches. Saliency maps [18], for example, are applicable if the
images to be classified can be aligned into a unique coordinate system, as applied
recently for Alzheimer’s diease related whole-brain PET scans [6]. In the majority
of medical image analysis tasks in radiology or pathology, where images are not
alignable, techniques such as class activation maps (CAMs) [21] can be applied,
which have been utilized recently in medical image analysis [20].

Viewed from the perspective of model interpretation, our approach shifts the
interpretation problem from post-mortem to the level of training: Rather than
seeking interpretable location-specific evidence in a readily trained model, we
hard-wire interpretability into the target function, and the process of training
optimizes interpretability of the segmentations obtained from the classifier.

2 Infrared Imaging Data

We use an infrared image dataset of three tissue microarray (TMA) slides in-
volving colon carcinoma related samples. The TMA slides CO1002b, CO722 and
BC051111 were purchased from US Biomax Inc., MD, USA, each comprising
100–200 circular spots of tissue samples obtained from more than 50 different
patients. Each spot has a diameter of roughly 1 mm. Infrared pixel spectra
were preprocessed using resonant Mie correction following the approach from
[4], yielding the spectrum in the range between 1800–948 cm−1 represented as a
450 dimensional vector. Each spot is represented as a 256×256 spectral image.
Spectra at pixel positions not covered by sample were masked as background
following commonly established procedures [11]. Spot labels were obtained from
the annotations accompanying the data sets 3, which classify each spot into ei-
ther Malignant tumor (T), Malignant tumor (stage I–III) (TI–III), Metastasis
(M), Adjacent normal colon tissue (NAT), or Normal tissue (N). Following the
terminology of [16], we divided the data set into three parts: 100 of the spots
were selected as training set, seven spots as validation set and further fourty
spots as an independent test set. Training and validation data were selected
from arrays CO1002b and CO722, while the independent test set was selected

3 https://www.biomax.us/tissue-arrays/Colon
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Fig. 2. The CompSegNet is a simple extension of a segmenting neural network by a
pooling neuron p, as described in Section 3.1.

from BC051111. The latter array contains 180 cancer spots and 20 healthy con-
trol spots. To obtain a largest possible balanced independent test test, 20 cancer
spots were chosen arbitrarily to match the 20 healthy controls, yielding our 40
spots as independent test set. In all three arrays, spots labelled as T, TI–III
or M were used as cancer spots; cancer-free spots were selected only from those
labelled as N.

3 Approach

3.1 Network Topology

The basic idea of our approach is to extend a segmenting neural network by
accumulating the pixel activations in the output layer in a pooling neuron p as
displayed in Figure 2. We will refer to this extended network as a comparative
segmentation network or CompSegNet for short. The specific CompSegNet used
throughout the paper is based on the original U-Net topology, except the number
of input channels has been extended to 450 to accomodate infrared images as
input. The goal of the CompSegNet is to train the underlying U-Net in a weakly
supervised manner. To this end, we assume that each pixel of the activation map
is bounded within the interval [0, 1], e.g. by a sigmoid transfer function, so that
the pooling neuron p will “count” the number of active pixels. With p counting
active pixels, we can specify the target function: If an input image I− is labeled
as cancer-free, there should be zero pixels recognized as tumor, in other words,
the output o(I−) of the CompSegNet should be zero. Conversely, if an input
image I+ is labeled as cancer, there should be a significantly large number of
pixels in the activation map whose activation is close to one. In other words,
o(I+) should be as large as possible.

3.2 Loss Function

To achieve the desired effect of training the CompSegNet, we design a loss func-
tion for the pooling neuron p that maximizes the pooled activation from the
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cancer images while minimizing the pooled activation from the cancer-free im-
ages. We assume our training data consist of spectral images I1, . . . , IM along
with labels `(1), . . . , `(M), where `(j) = 1 if Ij is a cancer image and `(j) = 0
if Ij is a cancer-free image. Furthermore, we assume the transfer function σp of
the pooling neuron p is a sigmoid-like function with an upper bound of α, i.e.,
σp(z) ≤ α for all z, as well as σp(0) = 0. After applying this transfer function,
the output o(Ij) of applying the CompSegNet output to image j should satisfy
the following properties:

(L1) If `(j) = 1, then o(Ij) → α, i.e., in a cancer image, a significantly large
number of tumor pixels should be identified.

(L2) If `(j) = 0, then o(Ij) → 0, i.e., in a cancer-free image, no tumor pixels
should be identified.

Thus, defining the loss function g as the root-mean-squared error

g(I, `) =
∑

j
|o(Ij)− α`(j)|,

will optimize towards properties (L1) and (L2) being satisfied.
The transfer function σp for the pooling neuron p needs some attention. In

terms of the tumor regions to be identified, a plain sigmoid function translates to
the unrealistic assumption that an “ideal” tumor sample consists of 100% tumor.
In reality, it may be more realistic to assume that cancerous samples contain
more than 10% tumor tissue – a value at which the sigmoid function has a steep
gradient, so that a plain sigmoid target function may cause poor convergence
when training the CompSegNet. We thus introduce a modified transfer function

σα,β,γ(x) = α ·
(
2 · (1 + exp(−βx/α))−1 − 1

)
+ γx

involving three parameters α, β and γ. Parameter α specifies the minimum
percentage of tumor in the cancer samples, β is a scaling paramter, and γ specifies
a typically small asymptotic linear gain whose purpose is to avoid the vanishing
gradient problem and introduce an incentive to detect more tumor in cancer
samples where more significantly more than 10% of the tissue is tumor. All our
experiments were conducted using fixed parameters α = .1, β = 5 and γ = .001.

With the transfer and loss functions introduced above, training the CompSeg-
Net will train the underlying U-Net to identify as much cancer as possible in
the tumor-samples, while identifying as little tumor as possible in the tumor-free
control samples. Put into even simpler terms, the CompSegNet is designed in a
way such that training the CompSegNet forces the underlying U-Net to learn
to identify the tumor regions. After convergence of the CompSegNet training on
a sufficiently large number of images using backpropagation, the CompSegNet
itself is no longer needed, and only the underlying U-Net is extracted and can
serve as a readily trained segmenting network that can identify tumor regions.
Implementation. We trained the network described above using RMSprop with
a mini-batch size of k = 7 and a learning rate of .001. Pooling neurons p+ and
p− use the modified sigmoid activation function σα,β,γ ; activation map neurons
a+ and a− use a standard sigmoid activation. All other neurons use the SoftPlus
activation function. All neural networks were implemented in tensorflow.
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4 Results

We evaluated our approach on the data set described in Section 2 using the
network topology described in Section 3.1 using a mini-batch size of k = 7 and
starting from random initialization. We ran 400 epochs on the test data set
comprising 100 samples and selected the model with minimal loss on the seven
samples from validation data set (epoch 385), requiring roughly three days of
wall clock computation time using four NVidia GeForce 1080Ti graphics cards
with a total of 44 GB of GPU memory. In the activation maps of the validation
samples, a threshold was visually identified to seperate tumor from non-tumor.
One and the same threshold (.35 · 255) was applied to activation maps of 20
cancer and 20 cancer-free spots in the independent test set from TMA from
slide BC051111. By varying a percentage threshold for relative tumor content to
classify spots as cancer or cancer-free, we obtained a ROC curve with an AUC of
93.25%. The agreement between the activation maps and tumor is displayed in
Fig. 3 and as Supplementary Material4 in Sup. Fig. 2. The agreement is further
supported by an average Dice score of µ = .42 (σ = .19) between the thresholded
activation maps and manual ground truth annotation by an independent expert
for the 20 cancer spots underlying the ROC curve.
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Fig. 3. Segmentations of six spots of the independent test data set obtained using the
CompSegNet. Tumor regions in the three cancer spots agree well with the conventional
staining images. Among the three cancer-free spots, only small amounts of false positive
tumor are being detected. The complete balanced independent test set is displayed in
Supplementary Figure 2.

4 http://www.bioinf.rub.de/suppl/compay2019.pdf



A Generic Neural Network Approach to Infer Segmenting Classifiers 7

5 Discussion

Our results provide proof-of-concept that segmenting classifiers can be trained
on a relatively small infrared imaging data set using sample labels only, and
we could demonstrate that the resulting classifier generally works on indepen-
dent validation samples, despite the tissue microarray data set which certainly
exhibits a higher level of heterogeneity than a typical clinical study.

Due to the generic nature of the remarkably simple CompSegNet approach,
it suggests itself to validate the CompSegNet on other imaging modalities in
pathology or radiology as well as on other network topologies. The approach is
particularly attractive for hyperspectral modalities including variants of Raman
microscocopy [14] where multidimensional imaging data inherently defy visual
inspectability. For infrared microscopy driven label-free digital pathology, this
immediately relieves established workflows [1, 10] from their reliance on segmen-
tation annotations, which predominantely rely on conventional histopathological
staining. It may thus infer regions that are causally linked to phenotype status
that can only be determined at the whole-sample or even patient level such as
responder vs. non-responder, or when contrasting differences in mutation type.
It will also be relevant to investigate convergence of the CompSegNet, which may
be improved using other target functions and other segmenting networks. Fur-
thermore, investigating the properties of the CompSegNet with respect to model
interpretation will be of high relevance, as well as systematically assessing how
far the trained models generalize beyond the given training and validation data.
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