
Under review as a conference paper at ICLR 2020

LEARNING BY SHAKING: COMPUTING POLICY GRADI-
ENTS BY PHYSICAL FORWARD-PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-free and model-based reinforcement learning are two ends of a spectrum.
Learning a good policy without a dynamic model can be prohibitively expensive.
Learning the dynamic model of a system can reduce the cost of learning the pol-
icy, but it can also introduce bias if it is not accurate. We propose a middle ground
where instead of the transition model, the sensitivity of the trajectories with re-
spect to the perturbation (shaking) of the parameters is learned. This allows us
to predict the local behavior of the physical system around a set of nominal poli-
cies without knowing the actual model. We assay our method on a custom-built
physical robot in extensive experiments and show the feasibility of the approach
in practice. We investigate potential challenges when applying our method to
physical systems and propose solutions to each of them.

(a) (b) (c) (d)

Figure 1: Physical finger platform in action with different policies.

1 INTRODUCTION

Traditional reinforcement learning crucially relies on reward(Sutton & Barto, 2018). However, re-
ward binds the agent to a certain task for which the reward represents success. Aligned with the
recent surge of interest in unsupervised methods in reinforcement learning (Baranes & Oudeyer,
2013; Bellemare et al., 2016; Gregor et al., 2016; Hausman et al., 2018; Houthooft et al., 2016) and
previously proposed ideas (Schmidhuber, 1991a; 2010), we argue that there exist properties of a dy-
namical system which are not tied to any particular task, yet highly useful, and their knowledge can
help solve other tasks more efficiently. This work focuses on the sensitivity of the produced trajecto-
ries of the system with respect to the policy so called Physical Derivatives. The term physical comes
from the fact that it uses the physics of the system rather than any idealized model. We learn a map
from the directions in which policy parameters change to the directions in which every state of the
trajectory changes. In general, our algorithm learns the Jacobian matrix of the system at every time
step through the trajectory. The training phase consists of physically calculating directional deriva-
tives by the finite difference after applying perturbed versions of a nominal policy (a.k.a. controller).
Perturbing the parameters of the controller is the reason for naming our method shaking. The test
phase uses these directional derivatives to compute derivatives along unseen directions. Due to the
difficulty of computing the Jacobian matrix by the finite difference in higher dimensions, we use
random controllers joint with probabilistic learning methods to obtain a robust estimate of the Jaco-
bian matrix at each instant of time along a trajectory. We are capable of this generalization to unseen
perturbations because the trajectories of physical systems live on an intrinsic low-dimensional man-
ifold and change slowly with the small changes in the parameters of the system (Koopman, 1931).
This assumption holds as long as the system is not chaotic or close to a bifurcation condition (Khalil,
2002).

1

Under review as a conference paper at ICLR 2020

1.1 PRELIMINARIES

A reward function describes how close the agent is to the solution of the target task. In the absence of
the reward, the agent will be given no means to �nd its way towards the solution. Letx 2 X � Rd

be ad-dimensional state vector that fully describes the environment with which the agent interacts.
At each state, the agent is allowed to take actionu 2 U � Rq from aq-dimensional action space via
a parameterised policy functionu = � (x ; �). The agent will be rewardedr (x; u) by the function
r : X � U ! R when it takes actionu at statex. The goal of learning is to update� such that
some desired target is achieved. The target can be anything as long as a concrete reward function
is associated with it. In stochastic cases,return R : �(�) ! R is de�ned as a cumulative future
discounted reward whose expectation is often of main interest. For parametric policies, the space
of feasible parameters� has a one-to-one correspondence to the policy space� . The agent who
takes on the policy� from statex0 produces the trajectoryT 2 T whereT is the space of possible
trajectories. For a return functionR : T ! R, the expected return becomes a function of the policy
asJ (� �) = ET f R(T)g where the expectation is taken with respect to the probability distribution
P(T j� �). There exist two major classes of approaches in reinforcement learning: value-based
methods and value-free methods. In the �rst class, a surrogate function is de�ned to approximate
the value of either a stateV (x) or a state-action pairQ(x; u). The policy is updated such that the
agent tends towards states with higher values. The value-free methods update the policy directly
without any need for an auxiliary function such asV or Q. This paper mainly concerns the second
class. The policy parameters are updated as

� t +1 = � t + �
@J(� �)

@�

�
�
�
�
� = � t

(1)

and the gradient@J(� �)=@� is written as

@J(� �)
@�

=
Z

T

@p(T j� �)
@�

R(T) dT (2)

which is normally dif�cult to compute in practice. As can be seen in eq. (2), the integrand of the
r.h.s. consists of two terms. The second termR(T) is the return which is de�ned according to
the target task. Hence, this term is task-dependent. The �rst term@p(T j� �)=@� though shows
how the trajectories change with respect to a change in the policy. Notice that there is no notion
of reward or any task-dependent quantities in this term. For an empirical distributionpe(T j�) =
1

M

P M
i =1 � (T � T (i)), the dependence of partial derivative of the distribtion ofT on the partial

derivative ofT can be explicitely derived as

@pe(T j� �)
@�

=
1

M

MX

i =1

u1(T � T (i))
@T
@�

(3)

whereu1 is the unit doublet function (derivative of the Dirac delta function). This examplary dis-
tribution makes it clear that the change in the distribution of trajetories relates to the change of the
trajectories themselves. As an unsupervised object,@T =@� is of main interest in this paper.

1.2 PHYSICAL DERIVATIVE

In this paper, we investigate the feasibility of learning a less explored unsupervised quantity, the
so calledPhysical Derivativewhich is computed directly from the physical system. In abstract
terms, we perturb the policy and learn the effect of its perturbation on the resulting trajectory. The
difference from traditional RL whose algorithms are based on eq. (1) is the absence of a speci�ed
reward function. Instead, we generate samples from@p(T j� �)=@� of eq. (2) that makes it possible
to compute@J(� �)=@� for an arbitrary return functionR. If the exact model of the system is
known, control theory has a full set of tools to intervene in the system with stability and performance
guarantees. When the system is unknown, one could identify the system as a preliminary step
followed by a normal control synthesis process from control theory (Ljung, 2001). Otherwise, the
model and the policy can be learned together in a model-based RL (Sutton, 1996) or in some cases
adaptive control (Sastry & Bodson, 2011). We argue that learning physical derivatives is a middle
ground. It is not model-based in the sense that it does not assume knowing the exact model of the
system. Rather, it knows how the trajectories of the system change as a result of perturbing the policy

2

Under review as a conference paper at ICLR 2020

parameters. This differential information of the system has applications in many downstream tasks.
This work focuses on the concept and introduction of physical derivatives and direct applications
would go signi�cantly beyond the scope of this work. Few potential applications are discussed with
more details in appendix C.

Our contributions—In summary, the key contributions of the current paper are as follows:

� A method to generate training pairs to learn the map from the policy perturbations to the
resulting changes in the trajectories.

� Learning the above map as a probabilistic function and showing that it generalizes to unseen
perturbations in the policy.

� Use the inverse of the above map to perturb the policy in the desired direction to achieve
certain goals without conventional RL methods.

� Use a physical custom-built robotic platform to test the method and propose solutions to
deal with the inherent issues of the physical system to ensure the practicality of the method
(see �g. 1 for images of the platform and and appendix A for technical details).

� The supplementary materials for the paper, including code and the videos of
the robot in action can be found inhttps://sites.google.com/view/
physicalderivatives/

2 METHOD

In this section, we describe our pipeline to estimate the physical derivatives and our proposed solu-
tions to the inevitable challenges that are likely to occur while working with a real physical robot.
We are interested in@T =@� which denotes how a small change in the parameters� of the con-
troller results in a different trajectory produced by the system. We normally consider a �nite period
of time [0; T] and the trajectory is an ordered list of statesT = [x0; x1; : : : ; xT] where the sub-
script shows the time step. Therefore, having@T =@� is equivalent with having@x t =@� for every
t 2 f 1; : : : ; Tg. Notice that the initial statex0 is chosen by us. Hence we can see it either as a
constant or as a changeable parameter in� . We kept it �xed in our experiments.

Assumex t 2 Rd and� 2 Rm . Hence,r � x t = @x t =@� 2 Rd� m where thet th row of this matrix is
r � x it = (@xit =@�)T 2 Rm showing how thei th dimension of the state vector changes in response
to a perturbation in� . The directional derivative ofx it in the direction� � is de�ned as

r � �
� x it = hr � x it ;

� �
j� � j

i : (4)

If (4) is available form linearly independent and orthonormal directions,f � � (1) ; � � (2) ; : : : ; � � (m) g,
the directional derivative along an arbitrary� � can be approximated by

r � �
� x it =

mX

j =1

cj hr � x it ; � � (j) i (5)

wherecj = h� � ; � � (j) i is the coordinates of the desired direction in the coordinate system formed
by the orthonormal bases.

In practice,m directions� � (j) can be randomly chosen or can be along some pre-de�ned axes of
the coordinate system. To computehr � x it ; � � (j) i , the nominal policy parameters� are perturbed
by � � (j) as� (j) � + � � (j) and the derivative is computed as

hr � x it ; � � (j) i = lim
h! 0

x it (� + h� � (j)) � x it (�)
h

: (6)

This quantity is often approximated by �nite difference whereh takes a small nonzero value. By
perturbing the parameters� alongm orthonormal directions� � (j) and computing the approximate
directional derivative by (6),r � �

� x it can be computed along every arbitrary direction� � , meaning
that, we can computer � x it by evaluating it along any direction which is the aim of this paper.

3

Under review as a conference paper at ICLR 2020

Figure 2: Gaussian (left) and uniform
(right) shaking examples.

In the matrix form forx 2 Rd, we can compute
r � � (j)

� x = [r � � (j)

� x1; r � � (j)

� x1; : : : ; r � � (j)

� xd]T in a
single run by computing (6) for alld dimensions of the
states. Let's de�ne

� � x , [r � � (1)

� x; r � � (2)

� x; : : : ; r � � (m)

� x] (7)

where � � x 2 Rd� m and let � =
[� � (1) ; � � (2) ; : : : ; � � (m)]. Therefore, if � � �

� x
shows the directional derivative ofx along� � , we can
write it as:

r � �
� x = � � x(� T � �) (8)

which is only a vectoral representation of eq. (4). Even though the linear formula of eq. (8) requires
only m directional derivatives, it has two major downsides. First, it does not give a clear way to
incorporate more thanm training directional physical derivatives. Second, the linear approximation
remains valid only for very small� � . We propose Gaussian Process (GP) as a nonlinear probabilistic
function approximator (Rasmussen, 2003) to capture the mapsĝt de�ned as

ĝt : � ! X (9)
ĝt (� �) = � x (10)

where subscriptt shows the function that maps� � to the change of the states� x t at time stept. We
considered distinct functions for every time step. Taking into account the commonality among the
function approximators corresponding to different time steps is deferred to future research. Learn-
ing this map requires training data that comes from an initial data collection phase calledshaking.
Shaking refers to perturbing parameters of the controller to obtain the set of trajectories produced
by the perturbed controllers.

The perturbation can be either regular or stochastic. Stochastic perturbations have the advantage over
regular perturbations that the agent does not need to be worried about perturbing the parameters in
a particular direction. Besides, in some cases, perturbing the parameters of the policy in certain
directions is infeasible. We propose two methods of shaking calledGaussianandUniform shaking.

Gaussian shaking—Likely values of� create nominal policies encoded byf � (1) ; � (2) ; : : : ; � (m) g.
We put Gaussian distributions centered at each of the nominal values resulting in a mixture of Gaus-
sians. To reduce the hyper-parameters, we assume the variances of the Gaussians are themselves
sampled from an exponential distribution making sure they all take positive values (See �g. 2 left).
Here, we manually choose a reasonable value for the rate parameter of the exponential distribu-
tion. Doing inference on the hyper-parameters of the sampling distributions can be a topic for future
research especially in active learning for a more clever less costly sampling stratgey.

Uniform shaking—In this setting, the state space of the changeable parameters of the policy is dis-
cretized and a uniform distribution is assumed around each value of this grid with some overlapping
with the neighboring cells (See �g. 2 right).

We show the effect of each of these sampling methods later in section 4. We observed that the
results are less sensitive to the hyper-parameters of the uniform sampling than Gaussian sampling.
A carelessly chosen rate for the exponential distribution that generates the variances of the Gaussians
in Gaussian sampling can result in too local or global sampling that gives rise to a large variance or
bias in the estimated gradients.

3 REAL WORLD CHALLENGES

In this section, we present two major low-level challenges that are common when dealing with
physical systems. There exist inherent noise and imperfection in the system that results in a change
in the produced trajectories while the policy parameters are kept �xed. In our �nger platform, we
observed two different major sources of noise which are likely to occur in other physical systems
too. We call themtemporalandspatialnoise for the reasons that come in the following.

4

Under review as a conference paper at ICLR 2020

Temporal noise. The temporal noise represented byn affects trajectories by shifting them in time

x t x t + n for t = 0 ; 1; : : : ; T: (11)

Notice that the absence of subscriptt in n shows that this noise is not time-dependent, i.e., the time
shift does not change along the trajectory as time proceeds.

Spatial noise. The trajectories affected by spatial noise cannot be aligned with each other by
shifting forward or backward in time. We can model this noise as a state-dependent in�uence on the
state of the system at every time step.

x t x t + nx t (12)

The following de�nition makes the distinction more concrete.

De�nition 1. Consider two trajectoriesT (1) (t) andT (2) (t) as two temporal signals. AssumeSt �

is the shift-in-time operator de�ned as

St � T (t) = T (t + t �) (13)

for an arbitrary function of timeT (t). We sayT (2) (t) is temporally noisy version ofT (1) (t) if

9t � 2 R s:t: kT (2) � St � T (1) k1 � � (14)

where� is a hyper-parameter threshold that re�ects our prior con�dence about the accuracy of the
motors, joints, physical and electrical elements (in general construction process) of the robot. On
the other hand,T (2) is called a spatially noisy version ofT (1) if

@t � 2 R s:t: kT (2) � St � T (1) k1 � � (15)

3.0.1 SOLUTION TO TEMPORAL NOISE

Fortunately, this type of noise is not state-dependent by de�nition. If we �nd out how much a
trajectory is shifted in time with respect to another trajectory, we can simply shift the trajectory
for those many time steps and compensate for the delay. Hence, the problem becomes detecting the
lagged trajectories with respect to a reference trajectory and also estimate the amount of the required
time shift to compensate for the delay. We can either use physical landmarks in the trajectories to
align them or use the correlation between them as a measure of alignment. The later gave better
results, hence, we postpone the description of the former to the appendix D.1.

Correlation-based delay estimation In this method, we use the correlation between zero-meaned
trajectoriesT (i) andT (j) to check if one is the lagged version of the other one. The delay� is found
by

� � = argmax
�

T � �X

t =0

hS� x (i)
t ; x (j)

t i (16)

where S� is a shift-operator by� 2 Z time steps. In practice, we take one trajectory of
fT (1) ; T (2) ; : : : ; T (M) g, e.g. T (r) as the reference and synchronize other trajectories with respect
to it using eq. (16). The trajectories must be initially normalized to avoid trivial solutions where ev-
ery trajectory is pushed towards the larger parts of the reference trajectory. For illustrative purposes,
the plots of �g. 14 show a sample of the lagged trajectory from the �nger platform and its correction
by the above method.

3.1 SOLUTION TO SPATIAL NOISE

The spatial noise can be a stochastic function of the actuator, environmental change, and electronic
drivers. In a perfect model of the transition dynamicsx t +1 = f (x t ; u t), applying the same control
sequencef u0; u1; : : : ; uT � 1g always results in the same sequence of statesf x1; x2; : : : ; xT g when
it starts from the same initial statex0. This assumption is often violated in physical systems as
different runs of the same policy may result in different trajectories as can be seen in �g. 10 in the
Appendix. The noise in the dynamics can be any function of states, input, and time. Therefore, it
is dif�cult to model this noise since it requires a prohibitively large number of random experiments.
The good news is that if the physical system is built properly, the effect of this noise is expectedly
low. Based on our observations from the �nger platform, we can assume the following.

5

Under review as a conference paper at ICLR 2020

(a) Small voxels (
 =
0:01)

(b) Medium voxels(
 =
0:04)

(c) Large voxels(
 =
0:16)

(d) Large voxels(
 = 0 :2)

Figure 3: The effect of voxels on supressing spatial noise of the physical system. The trajectories
are produced by linear open-loop controllers as those in section 4.1 for the purpose of illustrating
the effect of voxelization.

Assumption 2. Limit on the physical noise: Let's the control sequenceU = f u0; u1; : : : ; uT � 1g be
applied to the systemM times resulting in multiple sequence of statesT (1) ; T (2) ; : : : ; T (M) . There
exists a relatively small� such that

kT (i) � T (j) k1 � � for every i; j 2 f 1; 2; : : : ; mg: (17)

The wordrelativelyhere means that the change of the trajectory due to the inherent physical noise
of the system must be small compared to the change of the trajectories when the parameters of the
policy are perturbed.

To reduce the sensitivity of the estimated gradient to this unwanted spatial noise, we divide the state
space of the physical system into regularly located adjacent cells calledvoxels. Each voxelvox(c)
is represented by its centerc and is de�ned as

vox(c) = f x 2 X j k x � ck1 �
 g (18)

where
 is the parameter of the voxelization. The concept of the voxel is roughly used as asuper-
state. Every state that ends up withinvox(c) gives rise to the same superstate. After recording the
trajectories form the robot, every state is mapped to the center of the voxel it belongs to as

c x for x 2 vox(c) (19)

After voxelization, we work withc instead ofx. For example, all the gradients of (7) are computed
asr � c rather thanr � x. To illustrate the positive effect of voxelization of the state space, it can be
seen in �g. 3 that increasing the voxel size improves the overlapping between two trajectories that
deviate from each other due to the inherent spatial noise of the system not because of perturbing
the parameters of the policy, but because of the inherent imperfection of the mechanical and elec-
trical components of the system. This bene�t comes with a cost which is the error introduced by
voxelization. Fortunately, this error is bounded due to the following lemma

Lemma 3. The error caused by voxelization is bounded and inversely proportional to the size of
each voxel (see appendix F.1 for a brief proof).

After dealing with the challenge of inherent noise, we pursue the main goal of this paper which is
estimating@T =@� directly from the physical system. In the following, we investigate the use of the
different type of controllers to emphasize the extent of applicability of the proposed method.

4 EXPERIMENTS

In this section, we show how physical derivatives can be estimated in practice through several ex-
periments. Notice that our work is different from computing gradients around the working point of
a system by �nite-difference. We aim to collect samples from such gradients by perturbing a grid
of nominal values of the policy parameters and then generalize to unseen perturbations by Gaussian
process as a probabilistic regression method. The experiments are designed to show each challenge
separately and the ef�cacy of our proposed solution to it. Due to space constraints, details to the
physical platform can be found in section A in the Appendix. See1 for videos of the robot while
collecting data for different experiments and more backup materials.

1https://sites.google.com/view/physicalderivatives/

6

	Introduction
	Preliminaries
	Physical derivative

	Method
	Real world challenges
	Solution to temporal noise
	Solution to spatial noise

	Experiments
	Linear open-loop controller
	Nonlinear open-loop controller
	Feedback controller
	Zero-shot planning task
	Related works

	Conclusion
	Physical Platform
	Additional Plots illustrating Real World Challenges (section 3)
	Applications of physical derivatives
	Extended set of solutions to the real world challenges
	Detecting zero crossing

	Experimental details
	Linear
	Gaussian Sampling

	PD Controller
	Gaussian Sampling
	Uniform Sampling

	Sine 1 joint
	Gaussian Sampling
	Uniform Sampling
	Sine 2 joints
	Gaussian Sampling
	Uniform Sampling

	GP Score:
	Zero-shot planning task:

	Detailed literature review
	Proofs

	More results

