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ABSTRACT

Generating coherent and cohesive long-form texts is a challenging problem in
natural language generation. Previous works relied on a large amount of human-
generated texts to train neural language models, however, few attempted to ex-
plicitly model the desired linguistic properties of natural language text, such as
coherence and cohesion using neural networks. In this work, we train two ex-
pert discriminators for coherence and cohesion to provide hierarchical feedback
for text generation. We also propose a simple variant of policy gradient, called
negative-critical sequence training in which the reward baseline is constructed
from randomly generated negative samples. We demonstrate the effectiveness of
our approach through empirical studies, showing improvements over the strong
baseline – attention-based bidirectional MLE-trained neural language model – in
a number of automated metrics. The proposed model can serve as baseline archi-
tectures to promote further research in modeling additional linguistic properties
for downstream NLP tasks.

1 INTRODUCTION

The terms coherence and cohesion in linguistics are commonly defined as follows (Williams &
Colomb, 1995).

Cohesion: sentence pairs fitting together the way two pieces of a jigsaw puzzle do.
Coherence: what all the sentences in a piece of writing add up to, the way all the pieces in a
puzzle add up to the picture on the box.

In layman’s terms, cohesion indicates that two consecutive sentences are locally well-connected,
and coherence indicates that multiple sentences globally hold together.

Generating cohesive and coherent natural language texts that span multiple sentences is a challeng-
ing task mainly due to two reasons. First, there is no formal specification of cross-sentence linguistic
properties, such as coherence and cohesion of a text. Second, there is no widely accepted surrogate
neural model to evaluate the two properties.

Most state-of-the-art neural approaches to natural language generation (NLG) relied on a large
amount of human-generated texts to train language models (Cho et al., 2014; Graves, 2013;
Sutskever et al., 2014). Although these models can generate sentences that, if judged individually,
are similar to human-generated ones, they often fail to capture the local and global dependencies
among sentences, resulting in a neither coherent nor cohesive text. For example, neural language
models based on Recurrent Neural Networks (RNNs) are widely applied to response generation for
dialogue (Vinyals & Le, 2015; Shang et al., 2015; Sordoni et al., 2015; Li et al., 2015). Although the
responses by themselves look reasonable, they are either bland such as “I don’t know”, or incoherent
with the whole dialogue session. See Gao et al. (2018) for a comprehensive survey.

In this paper, we strive to address the challenge in a principled manner. We propose a pair of
discriminators to score whether and to what extent a text is coherent or cohesive. The coherence dis-
criminator measures the compatibility among all sentences in a text using sentence-level features,
thus providing a macro-level view on the multi-sentence text. The cohesion discriminator, on the
other hand, measures the compatibility of each pair of consecutive sentences using only word-level
features, thus providing a micro-level view on neighboring sentences. These models, given a condi-
tional input text and multiple candidate output texts, are learned to score the candidates with respect
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to the criterion by optimizing pairwise ranking losses. These scores are then used as reward signals
to train an RNN-based language model to generate (more) coherent and cohesive texts.

Our main contributions are three-fold: (1) we propose two linguistic discriminators for modeling
coherence and cohesion of a text; (2) we present a simple yet effective training mechanism to encode
these linguistic properties; and (3) we propose negative-critical sequence training, a variant of policy
gradient method, which uses negative samples to construct its reward baseline.

This paper proposes a neural approach to explicitly model cross-sentence linguistic properties, i.e.,
coherence and cohesion, for long text generation. Despite the encouraging initial results, we only
scratched the surface of the problem. The proposed method is yet to be significantly improved to
meet the ultimate goal of generating meaningful and logical long-form texts. We cast the text gen-
eration as an RL problem and review recent work in Section 2, and detail our approach in Section 3.

2 RELATED WORK

Coherence and cohesion. Coherence and cohesion have been extensively studied in the compu-
tational linguistics community, particularly in the ‘pre-deep-learning’ era. Lack of formal specifi-
cations for coherence and cohesion (Mani et al., 1998), resulted in many different formalism, such
as Rhetorical Structure Theory (Mann & Thompson, 1988), and other forms of coherence and co-
hesion relations and their quantification (Mani et al., 1998; Hobbs, 1985; Hovy, 1988; McKeown,
1985; Cohen & Levesque, 1985; Hovy, 1991; Cristea et al., 1998; Halliday & Hasan, 1996; Liddy,
1991; Van Dijk, 2013; Edmundson, 1969; Barzilay & Lapata, 2008). In fact, the list is not exhaus-
tive. However, modeling coherence and cohesion of a text using models parametrized by neural
networks have not been previously explored.

Word sequence generation in a reinforcement learning framework. A word sequence generation
task can be framed as a reinforcement learning (RL) problem, in which the generatorG is acting as a
policy π, with parameters θπ , and each generated word at time t, wt, can be viewed as an action to be
chosen by the policy from a large discrete space, or vocabulary, conditioned on state st−1 = w≤t−1,
which encodes the previously generated text sequence.

Let rt be the reward for a partially generated text sequence w≤t. We define the long-term expected
reward J (π) = Es0∼q,π[

∑∞
t=1 γ

t−1rt], where q is the initial distribution of conditional input texts.
Following Sutton et al. (1999), the gradient of J with respect to θπ is

∇θπJ = Es∼ρπ,a∼π(·|s)[Qπ(s, a)∇θπ log πθπ (a|s)]

where ρπ is the stationary distribution and Qπ(s, a) is the expected return from state s and taking
action a, both following policy π. For brevity, we omit the derivation. In our work, we formulate
text generation as an episodic RL problem with episode length L, rewards rL being available only
at the end of episode and γ = 1.

There are many works on training neural language models using reward signals, such as Ranzato
et al. (2015) and Paulus et al. (2017). These works directly optimize for specific metrics, such as
BLEU (Papineni et al., 2002) or ROUGE (Lin & Hovy, 2003), using REINFORCE (Williams, 1992;
Sutton et al., 1999). However, it is well-known that these metrics do not give a complete picture on
the quality of the generated text. Only recently have there been efforts to provide more relevant
quality objectives for which to optimize (Li et al., 2015; 2016a; Holtzman et al., 2018) the quality of
interest such as consistency, repetition of text. But these works use the objective function to re-rank
candidate outputs, not to reward or penalize outputs when they are generated in the first place. Li
et al. (2016b) constructed a set of reward models, such as information flow and semantic coherence,
to tune the generator, yet they do not provide an ablation study to elaborate the relative contribution
of these reward models individually.

GANs for text generation. Another line of research is to use Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) to incorporate feedback signals for text generation (Yu et al.,
2017; Lin et al., 2017; Zhang et al., 2017c; Guo et al., 2017; Fedus et al., 2018; Zhang et al., 2018).
However, the discriminator in these works are trained to distinguish real texts from the generated
ones, operating as a black-box rather than providing fine-grained feedback on particular linguistic
aspects of the texts. In fact, Yang et al. (2018) has partially addressed this issue by using a trained
language model as the discriminator. Although the discriminator provides a fine-grained feedback at
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the word-level, it does not critique on many important linguistic properties of generated texts, such
as cohesion and coherence.

These text generators, when facing a long-form text generation task that span multiple sentences, are
by no means perfect and often exhibit some critical errors, such as a breakdown of local connections
between consecutive sentences (cohesion), let alone globally solid intention (coherence). As a result,
readers can easily take these cues and discriminate such generated texts against real texts. In this
paper, we argue that the primary reason is the lack of an effective mechanism of measuring and
controlling the text quality in the generation process. The method we propose in the next section is
intended to address the problem.

3 MODEL

We assume that global coherence of a text depends to a large degree upon how its individual sen-
tences with different meanings are organized. So we focus our evaluation of coherence solely on the
sentence-level. If the sentences are not organized properly, the intention of the paragraph as a whole
is obscure, regardless of seamless local connectivity between consecutive sentences.

This is not to say that local connections between any two neighboring sentences should be over-
looked. One can easily distinguish a model-generated sentence from a real one, simply by looking
at whether the sentence followed by another sentence relates, besides grammar.

We instill these two different yet important concepts in two discriminators, each operating on the
sentence level and word level. Our models closely resemble successful models for computer vision,
such as StackGAN (Zhang et al., 2017a;b) and PatchGAN (Isola et al., 2017) in that they all provide
hierarchical signals to their corresponding generators, where the signals are derived from raw low-
level data. We call the sentence-level discriminator the coherence discriminator Dcoherence, and the
word-level discriminator the cohesion discriminator Dcohesion.

3.1 COHERENCE DISCRIMINATOR: DCOHERENCE

This discriminator measures how likely two text chunks form a coherent paragraph. Let S :=
[s1, s2, ..., sn] be the source text chunk that consists of n sentences, T := [t1, t2, ..., tm] be the real
target text chunk that consists of m sentences, and T̃ :=

[
t̃1, t̃2, ..., t̃m̃

]
be the model-generated

target text chunk that consists of m̃ sentences. Dcoherence is designed to distinguish a real pair (S, T )

from a synthetic pair (S, T̃ ) by assigning them with different scores, i.e., Scorecoherence(S, T ) >

Scorecoherence(S, T̃ ).

Figure 1: Illustration of coherence and cohesion discriminators. Dcoherence takes in bag-of-words
sentence embeddings as inputs, and Dcohesion takes in the raw word embeddings of consecutive
sentences as inputs.
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Design. Our design ofDcoherence is inspired by the Deep Structured Semantic Model (DSSM) (Huang
et al., 2013; Gao et al., 2014; Xu et al., 2017). Given source text chunk S and target text chunk
T , Dcoherence computes their coherence score in two steps, as illustrated in Figure 1. First, a pair
of convolutional networks (CNNs)1 or RNNs are applied to encode both S and T into two low-
dimensional continuous vectors. Second, the coherence score is computed as the cosine similarity
of the two vectors. The score is a real value between −1 and 1, where 1 indicates the maximal
coherence score, and −1 the minimal coherence score.

Dcoherence measures how likely S and T add up to a single coherent passage. The score depends
on the parameters of the two CNNs/RNNs, or in other words, how S and T are encoded. Since
we focus solely on the sentence-level features, we view a text chunk as a sequence of sentences,
and view each sentence as a bag-of-words. Therefore, we represent each word using its pre-trained
word embedding vector (Pennington et al., 2014) and represent each sentence using a vector which
takes the average of its word embedding vectors. A text chunk is then represented as a sequence of
sentence vectors which are fed to the CNN/RNN (either f(·) or g(·) in Figure 1). Notice that f(·)
and g(·) do not share parameters. The parameters of f(·) and g(·) are optimized in such a way that
a real pair scores higher than a synthetic pair:

∆(θf , θg) := Dcoherence(fθf (S), gθg (T ))−Dcoherence(fθf (S), gθg (T̃ )) > 0

Formally, the task of optimizingDcoherence can be stated as follows. Given a set of training samples of
the form ((S, T ), (S, T̃ ))(i), i = 1...M , we optimize parameters (θf , θg) by minimizing the pairwise
rank loss on training data defined as

1

M

M∑
i=1

L(∆(θf , θg)
(i))

where L(·) is a loss function, differentiable w.r.t. (θf , θg).

In the following subsection, we will describe in turn how we construct the pairwise training samples
and the form of the loss function. Since Dcoherence is used as a pairwise ranker, we employ the
metrics commonly used in information retrieval for evaluation, such as recall at K (R@K), which is
defined as the fraction of correctly identifying an item in the TOP-K retrieved list (Baeza-Yates &
Ribeiro-Neto, 1999). We present the retrieval results on test data in Table 2.

Training mechanism. How do we construct these list of candidate target sentences T , given the
source sentences S? We assume the T that follows an S in the data is a positive target sample, or
the correct item to retrieve. Negative samples are constructed using three different methods within
a batch while iterating through the training data, motivated by Wieting et al. (2016):

• Rotate T with S fixed (mismatch S and T ) across a batch. For a single S, this method
yields B − 1 negative samples, where B is the batch size.

• Shuffle the sentence order once, different from its original order, known as a derangement,
in each T to break coherence, and this yields one negative sample.

• Combine the previous two methods: rotate T across a batch and shuffle sentences within
T , yielding B − 1 negative samples.

These 2B − 1 negative samples and a single positive sample, in sum, pose a significant challenge in
learning. To fit this training task into a ranking framework, we optimize over

Dcoherence(fθf (S), gθg (T ))− AMλ
i∈{1,...,2B−1}

[
Dcoherence(fθf (S), gθg (T̃i))

]
where the arithmetic mean parametrized by λ: AMλ(x) =

N∑
i

wixi and wi = eλxi/
∑
j e
λxj .

In our experiments, we fix λ = 2 and this assigns more weight to a more challenging negative
sample2. Notice that AMλ is the mean if λ = 0, and approaches the max as λ → ∞. Empirically,
training the models using the weighted mean resulted in faster convergence, as opposed to using the
single most challenging negative sample score (max) or the mean of all negative sample batch.

1We explored with deeper networks. However, the performance difference was marginal. For simplicity,
we decided to use a 1-layer convolutional network architecture (Kim, 2014; Collobert et al., 2011).

2We performed a coarse grid search over the values of λ and setting λ = 2 resulted in fast convergence to
high recall scores on the dev dataset.
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3.2 COHESION DISCRIMINATOR: DCOHESION

Our second discriminator pays attention only to low-level features to capture a local connection
between arbitrary two consecutive sentences because the pairwise connectivity influence readability.

For simplicity,Dcohesion is similar toDcoherence, except that its architecture, input, and negative sample
construction are modified to encode cohesion between any pair of sentences on the word-level.
A single input sample to Dcohesion is a pair of two consecutive sentences: [si,1, si,2, ..., si,n] and
[si+1,1, si+1,2, ..., si+1,m], where si,k denotes the k-th word in sentence i. We construct the negative
samples using the three methods for training Dcoherence, where shuffling occurs on the word level
within each sentence, rather than shuffling multiple sentences on the sentence level.

3.3 GENERATOR: G

The two pre-trained discriminators, Dcoherence and Dcohesion, are used to modify the text generation
behavior of G. G is an attention-based bidirectional sequence-to-sequence model. It is initially pre-
trained via maximizing the word-level likelihood given the training data, and we denote as GMLE.

However, the model-generated texts from GMLE often do not hold to the standards of two discrimi-
nators. Therefore, we need to change the text generation behavior of G with respect to the criteria.
To this end, the scores from the discriminators that model the criteria are used as direct reward or
penalty signals to modify the parameters of G. Given these signals, we use our proposed variant of
the policy gradient, negative-critical sequence training, to apply parameter updates inG. We discuss
the details in the next section.

4 NEGATIVE-CRITICAL SEQUENCE TRAINING

Actor-critic methods (Barto et al., 1983; Witten, 1977) parameterized by neural networks typically
require learning a separate critic network to estimate the expected future reward as a baseline, which
in many cases is a difficult task by itself. In NLP, we have observed similar practices and challenges
by Ranzato et al. (2015), Bahdanau et al. (2016), and Nguyen et al. (2017). However, recently Ren-
nie et al. (2017) proposed an effective self-critical sequence training that avoids learning a separate
critic network. Similarly, our method does not require learning a separate critic network, instead we
directly use the scores of negative samples assigned by the discriminators as the baseline.

For an arbitrary pair of S and Tgen, which is the generator’s output conditioned on S, we compute
the coherence and cohesion scores by calling Dcoherence and Dcohesion. Since each review consists of
multiple sentences, the overall cohesion score is computed as the average of scores of all consecutive
sentence pairs. These scalar scores, however, have no interpretation since the discriminators are
trained by optimizing a margin ranking loss. Instead, the differences between positive sample scores
and the maximal or average negative sample scores provide insight of how well the models can
distinguish between the positives and the negatives. Therefore, these margins can be considered as
rewards with baselines, and thus we define the reward functions as:

Rcoherence(S, T ) := Dcoherence(fθf (S), gθg (T ))− ET̃ [Dcoherence(fθf (S), gθg (T̃i))]

Rcohesion(si, si+1) := Dcohesion(hθh(si), jθj (si+1))− Es̃i+1
[Dcohesion(hθh(si), jθj (s̃i+1))]

where ·̃ denotes a negative sample for a given source condition, and ET̃ ( and Es̃i+1
) are computed

by averaging over an ensemble of negative samples. Notice that this reward resembles the ranking
loss we use to train our discriminators, except that our baseline is an average score (instead of
the weighted arithmetic mean) over negative samples. The rational for this difference is that: the
maximal or the weighted arithmetic mean score baseline is in fact noisy to be used as rewards,
because the best randomly constructed negative samples may be a formidably good sample. To
alleviate such noise, we use the average discriminator scores of negative samples as the baseline, and
this turns out to be an empirically better alternative. Finally, we use policy gradient (Williams, 1992;
Sutton et al., 1999) to maximize a weighted combination of the coherence and cohesion rewards.
For illustrative purposes, we equally weigh them for updating our policy, i.e., the generator G.
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source sentences
the hotel inglaterra delivered as promised . the staff was welcoming and spoke good english . the cleaning staff did a
very good job every day . the rooms were spotless and very modern . the bathroom was large and had a very nice shower
, and there were two generously sized bath towels that were twice the size of normal towels .

GMLE

the breakfast in the morning was delicious and very good . it was the only hotel where i slept very well . the staff was
very helpful in late afternoon or late times . the breakfast was adequate , with a decent range of cereals , fruit , and
fruits . there is also free use of the coffee in the reception area .

GMLE+RL(coherence, cohesion)

the breakfast was plentiful including fresh breads and cooked to order . the location was fantastic . it is in the north
of the marina and in a very short distance . the marina has a small swimming pool with sitting area and a small gym .
they are very popular and guests have an evening reception which is very nice .

Table 1: Sample generations from our MLE-trained baseline model, GMLE, and our discriminator-
guided model GMLE+RL(coherence, cohesion). The red texts highlight a common problem in GMLE - it
exhibits a repetition, and an inconsistent opinion as a review. In contrast, our discriminator-guided
model is able to generate a more interesting, and sentiment-consistent continuation.

5 EXPERIMENTS

In this section, we show results of training both Dcoherence and Dcohesion, and compare our RL-tuned
generatorsGMLE+RL(cohesion),GMLE+RL(coherence), andGMLE+RL(coherence, cohesion) with the baseline model
GMLE. We argue that through the use of feedback from our simple discriminators to GMLE, we
improve the quality of generated texts. See Table 1 for a sample comparison.

5.1 DATASET AND EVALUATION METRICS

We use the publicly available TripAdvisor’s hotel reviews dataset collected by Wang et al. (2010)
and the Yelp review dataset3. We consider only subsets of the two review datasets satisfying the
following two conditions: a review must have (1) at least 10 sentences, and (2) each sentence should
have more than 5 and less than 30 words. This yields roughly 60,000 TripAdvisor reviews and
220,000 Yelp reviews, split into [0.8, 0.1, 0.1] ratio for train/dev/test. We merge the source and
target vocabularies, and limit it to the top 50,000 frequent words, excluding special tokens. For each
of these reviews, as in Holtzman et al. (2018), we consider the first five sentences as the source input
S to G, and the following five sentences as the target output T from G.

It is widely known that there is no accurate metric to evaluate the generator. Nevertheless, we report
scores of standard metrics, such as negative log-likelihood (NLL), perplexity (PPL), BLEU and
proportion of unique n-grams within a single generation (intra-unique-n), and across generations
(inter-unique-n), as in Gu et al. (2018).

5.2 IMPLEMENTATION DETAILS

G takes individual words as inputs and embeds into a pre-trained 300-dimensional word vectors
from GloVe (Pennington et al., 2014). This embedding layer is fixed throughout training. G uses
a gated recurrent unit with two layers and a hidden size of 1024 for both bidirectional encoder and
attention-based decoder. During optimization using Adam (Kingma & Ba, 2014), we set the learning
rate to 2e-4 and clip the gradient’s L2-norm to 1.0. We initially trainGMLE by maximizing the word-
level likelihood estimation (MLE) from data that consist of positive samples for 60 epochs on the
TripAdvisor data and 30 epochs on the Yelp dataset, separately. These are our baseline models
against which to empirically prove value of our hierarchical discriminators.

Dcoherence also uses the pre-trained GloVe word vectors4, which are fixed. The source processing
network and the target processing network have the same structure, but different parameters. If the
encoder type is a CNN, the convolutional layer has filters of sizes 2, 3, 4, and 5, each with 512
filters. Each convolution filter is followed by a tanh activation. Then we max-pool in time over the
features and append a fully connected layer into a feature embedding of dimension 512, followed by
a batch normalization layer and a tanh activation. If the encoder type is a RNN, we use a 1-layered
bi-directional GRU, concatenate final hidden states from both ends, and append the same network
layers as used in the CNN-encoded counterpart. We use an Adam optimizer with a learning rate of

3https://www.yelp.com/dataset
4The vector dimension can be different from that of G. The differences were marginal for sizes 50, 100,

and 300. For results shown in this paper, we used the same dimension of size 300.
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TripAdvisor Target Sentences Retrieval Yelp Target Sentences Retrieval
Discriminators Encoding R@1 R@5 R@10 Discriminators Encoding R@1 R@5 R@10

Dcoherence
Conv5122,3,4,5 0.18 0.43 0.60

Dcoherence
Conv512

2,3,4,5 0.33 0.61 0.74

GRU1024
1-layer, bi-dir. 0.26 0.50 0.65 GRU1024

1-layer, bi-dir. 0.39 0.68 0.81

Dcohesion
Conv5123,4,5,6 0.12 0.28 0.43

Dcohesion
Conv512

3,4,5,6 0.14 0.33 0.47

GRU1024
1-layer, bi-dir. 0.11 0.21 0.33 GRU1024

1-layer, bi-dir. 0.11 0.26 0.39

Table 2: Retrieval ratios for coherence and cohesion discriminators from a collection of 100 neg-
ative candidates. The reported numbers are averages over 20 evaluations. Notations: Conv5122,3,4,5
is a convolutional input encoder with filter sizes 2, 3, 4, and 5, and there are 512 filters for each
filter size. GRU1024

1-layer, bi-dir. is a 1-layered bi-directional GRU input encoder with hidden size 1024.
We experimented different configurations for both encoder types, and selected the best performing
configurations.

1e-5. Dcohesion is the same as Dcoherence, except the CNN-encoded Dcohesion has convolutional filters
of sizes 3, 4, 5, and 6. We train both discriminators for 50 epochs and choose models with the best
R@1 validation scores. Retrieval results are shown in Table 2.

In the tuning stage, we use the negative-critical sequence training as explained in Section 4 up to
5 epochs, with a learning rate of 1e-5. We also continue with supervised learning to G to limit
the policy search within a grammatically correct space, similar to Paulus et al. (2017); Wu et al.
(2016); Lewis et al. (2017). In practice, sequence-level rewards are only available upon a completed
generation, so they are sparse signals for the generator. Typically, sparse end-of-sequence rewards
entail a noisy training, yet would want the learning generalize to the testing data. We observed that,
for our particular task, most noises were caused by exploration, and the learning generalized to the
testing data. Thus, reward shaping was unnecessary, unlike previous works (Li et al., 2017; Yang
et al., 2018) that further provided signals for partially generated sequences. For all generations, we
used greedy decoding since we did not see a significant difference using beam search. Results are
shown in Table 3.

TripAdvisor

Model NLL PPL BLEU-3 BLEU-4 BLEU-5 intra-
unique-1

intra-
unique-2

inter-
unique-2

inter-
unique-3

length
ratio

GMLE (baseline) 0.86 2.36 0.38 0.19 0.08 0.66 0.93 0.40 0.72 1.08
GMLE +RL(cohesion) 0.77 2.18 0.46 0.27 0.14 0.64 0.94 0.38 0.71 0.97
GMLE+RL(coherence) 0.80 2.24 0.44 0.25 0.12 0.64 0.94 0.39 0.72 1.06
GMLE+RL(coherence, cohesion) 0.80 2.25 0.44 0.24 0.12 0.65 0.94 0.40 0.72 1.02

Yelp

Model NLL PPL BLEU-3 BLEU-4 BLEU-5 intra-
unique-1

intra-
unique-2

inter-
unique-2

inter-
unique-3

length
ratio

GMLE (baseline) 1.32 3.84 0.37 0.17 0.07 0.68 0.95 0.54 0.86 1.07
GMLE+RL(cohesion) 1.26 3.65 0.45 0.23 0.11 0.68 0.95 0.53 0.85 1.05
GMLE+RL(coherence) 1.24 3.56 0.45 0.23 0.11 0.69 0.95 0.55 0.87 1.00
GMLE+RL(coherence, cohesion) 1.25 3.59 0.43 0.22 0.11 0.69 0.95 0.56 0.88 1.05

Table 3: An ablation study with automated evaluation metric scores: NLL, PPL, BLEU-n,
intra/inter-unique-n, along with the length ratio with the length of corresponding true target sen-
tences as 1. Results show that our proposed discriminators helped improve notably in BLEU scores,
NLL and PPL, with marginal difference in diversity. We used equally weighted rewards, and signif-
icant numbers are highlighted in bold before rounding.

5.3 DISCUSSION

In Table 2, notice that for RNNs outperform CNNs for coherence models, and CNNs outperform
RNNs for cohesion models. One explanation is that RNNs are effective in encoding a sequential
input yet exhibit drawbacks when encoding into hidden states at both ends of a long input, otherwise
well-known as a long-range dependency problem.

To aid understanding of the roles ofDcoherence andDcohesion, we show randomly selected positive and
negative samples and corresponding rewards in Table 4.

While reinforcing coherence and cohesion properties in text generation through surrogate models
is an important research direction, we consider our results to be preliminary, and our experiment
results allude to room for improvement, such as recall scores. This is because our methods to
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source cohesion coherence
this hotel was unbelievably overpriced . 0.0002
we were looking for something cheaper but thought we would at least
be staying in a decent hotel having paid that much when booking . 0.0411

it wasn t clear when booking that we would have to share a bathroom . 0.0084
there was one shower for the whole floor which was tiny and unclean . 0.0054
the room was old and lacking in facilities .

target
the beds were very uncomfortable and the linen was very old . 0.0768
breakfast was ok , but the staff were incompetent . 0.0591
on our last day they were too lazy to clean our table and never bothered taking our order . -0.0097
we had to leave having had no breakfast , as we ran out of time . 0.0457
they saw us get up and leave and didn t even apologise for the appalling lack of service .

+0.3735

negative target
the staff recommended great restaurants with very reasonable prices within walking distance . 0.0514
the paris hop on bus stops nearby . 0.0798
the gare l est is within 3 blocks . -0.0156
we paid 75 euro per nite excluding breakfast but paid for breakfast one day and found it very
good and reasonably priced . 0.0082

the rooms are clean and bathrooms ensuite .

-0.2001

more examples of cohesion
once you get there you are greeted by the staff .
they explain everything to you , and in english , not the best , but good enough . 0.1004

the coffee was even good for a coffee snob like myself .
the hotel is much smaller than i thought and only has six floors . -0.1103

the only negative was the curtain in the bathroom .
it was very shear and we felt that people in the building across the street could look
right in at night .

0.0787

the beer at the lobby bar was stale .
there are many friendly cats on the grounds . -0.0830

Table 4: Coherence and cohesion margin scores on test data. The cohesion score at the end of
each line is computed with its next sentence. This is an example of contradiction and inconsistent
sentiment, suggestive of incoherence. We append more examples with extreme cohesion margin
scores.

construct negative samples from an unlabelled dataset are not thorough. For example, a randomly
mismatched sentence that follows a given sentence may actually be a valid continuation. In this
work, we overlook this problem since our proposed schemes are shown to be effective in modeling
coherence and cohesion.

6 CONCLUSION

In this paper, we propose to model coherence and cohesion through simple training mechanisms via
models parametrized by neural networks, and quantify coherence and cohesion into negative-critical
margin scores. The coherence discriminator Dcoherence provides a macro-level view on structuring
a multi-sentence text. It assesses how likely two text chunks form a coherent paragraph, using
sentence-level features. On the other hand, the cohesion discriminator Dcohesion provides a micro-
level view on local connectivity between sentence pairs. It assesses how cohesive two consecutive
sentences are, using word-level features.

The margin scores computed by these discriminators are used as reward signals for training neural
language models via policy gradient. Empirical results on two long-form text generation tasks show
that our surrogate coherence and cohesion models, trained through simple yet effective methods,
help improve over the strong baseline, an attention-based bidirectional MLE-trained sequence-to-
sequence model in a number of automatic metrics.

Future work will focus on casting the long-form text generation task using the GANs framework.
In this framework, the coherence and cohesion discriminators are modified against model-generated
texts, and in turn, provide signals to learn neural language models.
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