
Under review as a conference paper at ICLR 2019

ADAPTING AUXILIARY LOSSES USING GRADIENT
SIMILARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

One approach to deal with the statistical inefficiency of neural networks is to
rely on auxiliary losses that help to build useful representations. However, it is
not always trivial to know if an auxiliary task will be helpful for the main task
and when it could start hurting. We propose to use the cosine similarity between
gradients of tasks as an adaptive weight to detect when an auxiliary loss is helpful
to the main loss. We show that our approach is guaranteed to converge to critical
points of the main task and demonstrate the practical usefulness of the proposed
algorithm in a few domains: multi-task supervised learning on subsets of ImageNet,
reinforcement learning on gridworld, and reinforcement learning on Atari games.

1 INTRODUCTION

Neural networks are extremely powerful function approximators that have excelled on a wide range
of tasks (Simonyan and Zisserman, 2015; Mnih et al., 2015; He et al., 2016a; Silver et al., 2016;
Vaswani et al., 2017). Despite the state of the art results across domains, they remain data-inefficient
and expensive to train. In supervised learning (e.g., image classification), large deep learning (DL)
benchmarks with millions of examples are needed for training (Russakovsky et al., 2015) and the
additional implication of requiring human intervention to label a large dataset can be prohibitively
expensive. In reinforcement learning (RL), agents typically consume millions of frames of experiences
before learning to act in complex environments (Silver et al., 2016; Espeholt et al., 2018), which not
only puts pressure on compute power but also makes particular domains (e.g., robotics) impractical.

Different techniques have been studied for improving data efficiency, from data augmentation
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; Hauberg et al., 2016) to transfer learning
(Taylor and Stone, 2009; Pan et al., 2010). In this work, we focus on a particular setup for transfer
learning. We assume that besides the main task, one has access to one or more auxiliary tasks that
share some unknown structure with the main task. To improve data efficiency, these additional tasks
can be used as auxiliary losses. However, only the performance on the main task is of interest, even
though the model is trained simultaneously on all these tasks. Any improvement on the auxiliary
losses is useful only to the extent that it helps learning features or behaviors for the main task.

Auxiliary tasks have been shown to work well in practice (e.g., Zhang et al., 2016; Jaderberg et al.,
2017; Mirowski et al., 2017; Papoudakis et al., 2018). However, their success depends on how well
aligned the auxiliary losses are with the main task. Knowing this apriori is typically non-trivial and
the usefulness of an auxiliary task can change through the course of training. In this work, we explore
a simple yet effective approach for measuring the similarity between an auxiliary task and the main
task of interest, given the value of their parameters. We show that this measure can be used to decide
which auxiliary losses are helpful and for how long.

1.1 NOTATION AND PROBLEM DESCRIPTION

Assume we have a main task Tmain and an auxiliary task Taux that induce two lossesLmain andLaux.
We care about only about maximizing performance on Tmain; Taux is an auxiliary task which is not
of direct interest. The goal is to devise an algorithm that can automatically (i) leverage Taux when it
is helpful (e.g. learn faster) and (ii) block negative transfer when Taux is not helpful (i.e. recover
the performance of training only on Tmain). Note that this setup is different from multi-objective
optimization in which both the tasks are of interest. We propose to parameterize the solution for

1

Under review as a conference paper at ICLR 2019

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 89

Conv time: 58

Conv time: 90

Conv time: 99

Conv time: 54

∇L1

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

∇L2

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

∇L1 +∇L2

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 92

Conv time: 69

Conv time: 70

Conv time: 91

Conv time: 65

∇L1 + 0. 1∇L2

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 84

Conv time: 58

Conv time: 24

Conv time: 80

Conv time: 54

∇L1 +∇L2max(0, cos(∇L1,∇L2))

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 81

Conv time: 58

Conv time: 24

Conv time: 76

Conv time: 54

∇L1 +∇L20. 5(sign(cos(∇L1,∇L2)) + 1)

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

V

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

∇L1 + V

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 89

Conv time: 58

Conv time: 90

Conv time: 99

Conv time: 54

∇L1 + Vmax(0, cos(∇L1, V))

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 89

Conv time: 58

Conv time: 90

Conv time: 99

Conv time: 54

∇L1 + V0. 5(sign(cos(∇L1, V)) + 1)

Figure 1: Positive example optimization for L1(θ1, θ2) = θ21 +θ22 , L2(θ1, θ2) = (θ1−1)2+(θ2−1)2

and V (θ1, θ2) = [− θ2
θ21+θ

2
2
− 2θ1,

θ1
θ21+θ

2
2
− 2θ2] where the proposed method speeds up the process

(compared on all runs). Each colored trajectory represents one optimization run with random initial
position. Star represents the convergence point. All experiments use steepest descent method and
run 600 iterations with a constant step size of 0.01. Convergence time is defined as number of steps
needed to get below 0.1 loss of L1 (gray region). Color of each point represents its alignment with
∇L1 (green—positive alignment, red—negative alignment, white—directions are perpendicular).
In this example L2 is helpful for L1 as it reinforces good descent directions in most of the space.
However, simple mixing is actually slowing optimization down (or makes it fail completely, see the
second row), while the proposed methods (weighted and unweighted variants) converge faster (see
the third row). When using non-conservative vector field V one obtains lack of convergence (cyclic
behaviour, see the fourth row), while the proposed merging still works well (see the last row).

2

Under review as a conference paper at ICLR 2019

Tmain and Taux by two neural networks, f(·,θ,φmain) and g(·,θ,φaux), such that they share a
subset of parameters denoted here by θ. Generally, the auxiliary loss literature proposes to minimize

arg min
θ,φmain,φaux

Lmain(θ,φmain) + λLaux(θ,φaux) (1)

under the intuition that modifying θ to minimize Laux will improve Lmain if the two tasks are
sufficiently related. We propose to modulate the weight λ at each learning iteration t by how useful
Taux is for Tmain given θ(t),φ

(t)
main,φ

(t)
aux. That is, at each optimization iteration, we want to

efficiently approximate the solution to

arg min
λ(t)

Lmain
(
θ(t) − α∇θ(Lmain + λ(t)Laux),φ

(t)
main − α∇φmain

Lmain
)
. (2)

Note that the input space of Tmain and Taux do not have to match. In particular, Taux does not
need to be defined for an input of Tmain or the other way around.1 Solving equation 2 is expensive.
Instead, we look for a cheap heuristic to approximate λ(t) which is better than keeping λ(t) constant
and does not require hyper-tuning.

2 COSINE SIMILARITY BETWEEN GRADIENTS OF TASKS

We propose to use the cosine similarity of gradients between tasks as a measure of task similarity
and hence for approximating λ(t). Consider an example where the main function to minimize is
Lmain = (θ−10)2 and the auxiliary function isLaux = θ2, their gradients are∇θLmain = 2(θ−10)
and ∇θLaux = 2θ respectively. When θ is initialized at θ = −20, the gradients of the main and
auxiliary functions point in the same direction and the cosine similarity is 1; minimizing the auxiliary
loss is beneficial for minimizing the main. However, at a different point, θ = 5, the two gradients
point in different directions and the cosine similarity is −1; minimizing the auxiliary loss would
hinder minimizing the main loss (See Figure 7 in Appendix B for an illustration.).

This example suggests a natural strategy for approximating λ(t): minimize the auxiliary loss as long
as its gradient has non-negative cosine similarity with the target gradient; otherwise, the auxiliary
loss should be ignored. This follows the well-known intuition that if a vector is in the same half-space
as the gradient of a function f , then it is a decent direction for f . This reduces our strategy to ask if
the gradient of the auxiliary loss is a descent direction for the main loss of interest.
Proposition 1. Given any gradient vector field G(θ) = ∇θL(θ) and any vector field V (θ) (such as
the gradient of another loss function, or an arbitrary set of updates), an update rule of the form

θ(t+1) := θ(t) − α(t)(G(θ(t)) + V (θ(t)) max(0, cos(G(θ(t)), V (θ(t))))

converges to the local minimum of L given small enough α(t).

Proof is provided in Appendix A.1.

Note that the above statement does not guarantee any improvement of convergence, but only guaran-
tees lack of divergence. In particular, cosine similarity is not a silver bullet that guarantees positive
transfer, but it can drop the “worst-case scenarios”. In principle, one can create example functions
where the convergence of the main loss is affected both positively (see Figure 1) and negatively (see
Figure 8 in Appendix D). Nevertheless, convergence on the main task is guaranteed for our proposed
strategy, as the proposition shows.

In addition, it is important to note that simply adding an arbitrary vector field does not have the

convergence property. For example, use function V (θ) = −∇θL(θ) +
[
− θ2
θ21+θ

2
2
, θ1
θ21+θ

2
2

]T
as a

two-dimensional case, which leads to an update rule of θ(t+1) = θ(t) − α
[
− θ2
θ21+θ

2
2
, θ1
θ21+θ

2
2

]T
. This

is a non-conservative vector field which cases the optimizer to follow concentric circles around the
origin (see the fourth row in Figure 1). This is crucial to note for some realistic scenarios where
one does not always form a gradient field (e.g., the update rule of the Q-learning algorithm in RL).

1In the supervised learning case when the input features are shared, this setting resembles the multi-task
learning without label correspondences setting (Quadrianto et al., 2010).

3

Under review as a conference paper at ICLR 2019

Figure 1 provides a few illustrative examples on quadratic functions using the proposed approach,
which helps intuitively understand the kind of scenarios for which the approach could help.

The above proposition refers to losses with the same set of parameters θ, while equation 2 refers
to the scenario when each loss has task specific parameters (e.g. φmain and φaux). The following
proposition extends to this scenario:
Proposition 2. Given two losses parametrized with Θ (some of which are shared θ and some unique
to each loss φmain and φaux), learning rule:

θ(t+1) := θ(t)−α(t)(∇θLmain(θ(t))+∇θLaux(θ(t)) max(0, cos(∇θLmain(θ(t)),∇θLaux(θ(t))))

φ
(t+1)
main := φ

(t)
main − α

(t)∇φmain
Lmain(Θ(t)) and φ(t+1)

aux := φ(t)
aux − α(t)∇φaux

Laux(Θ(t))

leads to convergence to local minimum of Lmain w.r.t. (θ,φmain) given small enough α(t).

Proof. Comes directly from the previous proposition that G = ∇θLmain and V = ∇θLaux. For
any vector fields A,B,C, we have 〈A,B〉 ≥ 0 and 〈C,B〉 ≥ 0 implies 〈A+ C,B〉 ≥ 0.

Analogous guarantees hold for the unweighted version of this algorithm, where instead of weighting
by cos(G,V) we use a binary weight (sign(cos(G,V)) + 1)/2 which is equivalent to using V iff
cos(G,V) > 0. When training with mini-batches, accurately estimating cos(G,V) can be difficult
due to mini-batch noise; the unweighted variant only requires sign(cos(G,V) which can be estimated
more robustly. Hence, we use this variant in our experiments unless otherwise specified. Additionally,
note that there is no guarantee that Laux is optimized. For example, if Laux = −Lmain then Laux is
ignored (see a visualization in the last row of Figure 1).

Despite its simplicity, the proposed update rule can give rise to interesting phenomena. We can show
that the emerging vector field could be non-conservative, which means there does not exist a loss
function for which it is a gradient. While this might seem problematic (for gradient-descent-based
optimizers), it describes only the global structure—typically used optimizers are local in nature and
they do local, linear or quadratic approximations of the function (Shwartz-Ziv and Tishby, 2017).
Consequently, in practice, one should not expect any negative effects from this phenomena, as it
simply shows that our proposed technique is in fact qualitatively changing the nature of the update
rules for training.
Proposition 3. In general, the proposed update rule does not have to create a conservative vector
field.

Proof is provided in Appendix A.2.

3 APPLICATIONS OF GRADIENT COSINE SIMILARITY

In this section, we use the gradient cosine similarity to decide when to train on the auxiliary task. All
experiments (unless otherwise stated) follow the unweighted version of our method, summarized in
Algorithm 1. The weighted version of our method is summarized in Algorithm 2, Appendix C.
Algorithm 1 Unweighted version of our method.

1: Initialize shared parameters θ and task specific parameters φmain,φaux randomly.
2: for iter = 1 : max iter do
3: Compute∇θLmain,∇φmain

Lmain,∇θLaux,∇φaux
Laux.

4: Update φmain and φaux using corresponding gradients
5: if cos(∇θLmain,∇θLaux) ≥ 0 then
6: Update θ using ∇θLmain +∇θLaux
7: else
8: Update θ using ∇θLmain

3.1 EXPERIMENTS ON IMAGE CLASSIFICATION TASKS

First, we consider a classification problem on ImageNet (Russakovsky et al., 2015) and design a
simple multi-task binary classification task to test our hypothesis that transferable tasks should have
high cosine similarity (and vice versa). We take a pair of classes from ImageNet, refer to these as

4

Under review as a conference paper at ICLR 2019

class A and class B; all the other 998 classes in ImageNet (except A and B) are referred to as the
background. Our tasks Tmain and Taux are then formed as a binary classification of if an image is
class A (otherwise background) and if an image is class B (otherwise background) respectively.

Ideally, we want to pick groups of class pairs that reflect near or far distance, for the purpose of
providing a baseline of transferability. Therefore, we used two distance measures, lowest common
ancestor (LCA) in the ImageNet label hierarchy and Frechet Inception Distance (FID) (Heusel et al.,
2017) of pre-trained image embedding, to serve as a ground truth of class similarity for selecting class
pair A and B. Based on these measures, we picked three pair of classes for near, class 871 (trimaran)
vs. 484 (catamaran), 250 (Siberian husky) vs. 249 (malamute), and 238 (Greater Swiss Mountain
dog) vs. 241 (Entleucher); and for far, class 920 (traffic light) vs. 62 (rock python), 926 (hotpot) vs.
800 (slot), and 48 (Komodo dragon) vs. 920 (traffic light). Details on the class pair selection are
described in Appendix E.

We use a modified ResNetV2-18 model (He et al., 2016b) for training in this experiment. All
parameters in the convolutional layers are shared (denote as θ), followed by task-specific parameters
φmain and φaux. First, we use a multi-task learning setup and minimize Lmain+Laux, and measure
cosine similarity on θ through the course of training. Figure 2(a) shows that cosine similarity is
higher for near pairs (blue lines) and lower for far pairs (red lines). Next, we compare single-task
training, multi-task training, and our proposed variant on two scenarios (i) auxiliary task helps and (ii)
auxiliary task hurts. As mentioned earlier, our goal is have a method that can automatically leverage
auxiliary tasks when they are helpful and avoid negative transfer when auxiliary tasks are not helpful.
Figure 2(b) shows that on a near pair, all variants perform similarly in terms of final performance;
furthermore, our method performs similar to multi-task learning and learns faster than single task
because the task is transferable. Figure 2(c) shows that on a far pair, multi-task learning leads to
poorer performance than single-task learning on the main task due to the potential negative transfer,
whereas our method of using gradient cosine similarity blocks negative transfer and automatically
achieves performance that is comparable to single-task learning.

(a) Cosine similarities on near pairs (blue)
and far pairs (red).

(b) Near pair: 871 vs 484 (c) Far pair: 48 vs 920

Figure 2: Multi-task learning setup on ImageNet class pairs. (a): gradient cosine similarity is higher
for near pairs and lower for far pairs. (b) and (c): testing accuracy on single task (dotted), naive
multi-task (dashed), and our method (solid). Naive multi-task learning helps in near pairs (see (b))
but hurts in far pairs (see (c)) because of its lack of the ability to prevent negative effects from the
auxiliary task to the main task. Our method can overcome this limitation by dropping the auxiliary
task when its gradient direction disagrees with the main task, thus achieving the best of both worlds:
matching the multi-task performance on near pairs (see (b) where our method and multi-task learning
learn faster than single task only) and the single task performance in far pairs (see (c) where multi-task
learning performs poorly, but our method automatically recovers single task performance).

3.2 EXPERIMENTS ON REINFORCEMENT LEARNING GRIDWORLD TASKS

We then consider a typical RL problem where one aims to find a policy π that maximizes sum of
future discounted rewards Eπ[

∑N
t′=1 γ

t′−1rt′] in a partially observable Markov decision process
(POMDP). There have been many techniques proposed to solve this optimization problem, from
classical policy gradient (Williams, 1992), Q-Learning (Watkins, 1989), to the more modern Proximal
Policy Optimization (Schulman et al., 2017) and V-Trace (Espeholt et al., 2018). Inherently, these
techniques are data inefficient due to the complexity of the problem. One way to address this issue is
to use transfer learning, such as transfer from pre-trained policies (Rusu et al., 2015). However, a
teacher policy is not always available for the main task. When in this scenario, one can train policies
in other tasks that share enough similarities and hope for a positive transfer. One way of exploiting

5

Under review as a conference paper at ICLR 2019

this extra information is to use behavioral cloning, or distillation (Hinton et al., 2015; Rusu et al.,
2015), to guide the main task in its initial learning phase (Schmitt et al., 2018), although it might
be difficult to find a suitable strategy that combines the main and auxiliary losses and/or smoothly
transition between them. Typically, the teacher policy can be treated as an auxiliary loss (Schmitt
et al., 2018) or a prior (Teh et al., 2017) with a fixed mixing coefficient. However, these techniques
become unsound if the teacher policy is helpful only in specific states while hindering in other states.

We propose a simple RL experiment to show that our method is capable of finding the strategy
of combining the main loss and the auxiliary loss. We define a distribution over a set of 15 × 15
gridworlds, where an agent observes its surrounding (up to four pixels away) and can move in four
directions.We randomly place two types of positive rewards, +5 and +10 points, both terminating
an episode. In order to guarantee a finite length of episodes, we add a fixed probability of 0.01 of
transitioning to a non-rewarding terminal state. Experiment details are provided in Appendix F.

First, we train a Q-learning agent on such a gridworld which gives us a teacher policy πQ. Then,
we create the main task to which there is a possible positive knowledge transfer by keeping the
environment with the same gridworld layout but remove the +10 rewards (and corresponding states
are no longer terminating). Consequently, we have two tasks: the auxiliary task Taux where we
have a strong teacher policy πQ, and the main task Tmain where the +10 rewards are removed. We
sample 1, 000 such environment pairs and report expected returns obtained (100 evaluation episodes
per evaluation point) using various training regimes. One can use any RL method to solve the main
task and learn π, here we use episode-level policy gradient (Williams, 1992) with value function as a
baseline method, which gives a score of slightly above 1 point after 10, 000 steps of training (see the
top row of Figure 3).

To leverage teacher policies, we define the auxiliary loss to be a distillation loss, which is a per-state
cross-entropy between teacher’s and student’s distributions over actions. First, we test using solely
the distillation loss while sampling trajectories from the student. We recover a subset of teacher’s
behaviors and end up with 0 point—an expected negative transfer as the teacher is guiding us to states
that are no longer rewarding. Then, we test simply adding gradients estimated by policy gradient
and distillation. The resulting policy learns quickly but saturates at a return of 1 point, showing
very limited positive transfer. Lastly, when using our proposed gradient cosine similarity as the
measure of transferability, we get a significant performance boost. The learned policies reach baseline
performance after just one-third of steps taken by the baseline, and on average obtain 3 points after
10, 000 steps.2 See Figure 3 for all learning curves. In Appendix F, we visualize the environment and
show an example solution.

This experiment shows that gradient cosine similarity allows using knowledge from other related
tasks in an automatic fashion. The agent is simply ignoring teacher signal when it disagrees with
policy gradient estimator. If they do agree in terms of which actions to reinforce—teacher logits are
used for better replication of useful policies. In particular, in the bottom row of Figure 3, we present
an experiment of transfer between the same task Tmain. We see that the cosine similarity experiments
underperformed that of simply adding the two losses. This is expected as the noise in the gradients
makes it hard to measure if the two tasks are a good fit or not.

3.3 EXPERIMENTS ON ATARI

Finally, we consider a similar RL setup on the Atari domain (Bellemare et al., 2013). For this set of
experiments, we follow the same convolutional architecture as in previous works (Mnih et al., 2015;
2016; Espeholt et al., 2018; Hessel et al., 2018) and train using the batched actor-critic with V-trace
algorithm (Espeholt et al., 2018). Details on the experiment setup are provided in Appendix G.

First, we look at training an agent to play a main task (here, Breakout) given a sub-optimal teacher
solution to the task. Analogous to the previous experiment, we leverage information about the
task by distilling the teacher’s behaviour with a Kullback-Leibler (KL) loss. As expected, solely
relying on distilling from the sub-optimal teacher (Only KL) leads to lower performance. Training
with both distillation and RL losses (RL+KL(Baseline)) leads to slightly better but also sub-optimal
performance. While both approaches learn very quickly, they plateau much lower than the pure RL

2Note that we compute cosine similarity between a distillation gradient and a single sample of the policy
gradient estimator, meaning that we are using a high variance estimate of the similarity. For larger experiments,
one would need to compute running means for reliable statistics.

6

Under review as a conference paper at ICLR 2019

Cross-task transfer experiment Taux → Tmain

Distilling from the solution of the same task Tmain → Tmain

Figure 3: Top row: expected learning curves for cross-environment distillation experiments, averaged
over 1, 000 partially observable gridworlds. Teacher’s policy is based on Q-Learning, its performance
in a new environment (with modified positive rewards) is represented by the top dotted line. The
bottom dotted line represents random policy score. Each column represents a different temperature
applied to the teacher policy. 0 temperature refers to the original deterministic greedy policy given by
Q-Learning. We report five methods: reward using just policy gradient in the new task; distill using
just distillation cost towards the teacher; add adding the two above; cos using the weighted version
of our method (Algorithm 2); strict cos using the unweighted version of our method (Algorithm 1).
Bottom row: expected learning curves for same-environment distillation experiments when the teacher
is perfect. In this case, the optimal thing is to trust the teacher everywhere.

approach (RL(Baseline)). In our method (RL+KL(Our Method)), the KL penalty is scaled at every
time-step by the cosine similarity between the policy gradient and distillation losses; once this falls
below a fixed threshold, the loss is ‘turned off’. Figure 4 shows that our approach is able to learn
quickly at the start but continue fine-tuning with pure RL loss once the distillation loss is zeroed out.

Figure 4: Results on Breakout.
We look at the effects of dis-
tilling a sub-optimal policy as
an auxiliary task.

Lastly, we consider a setting where the main task Tmain is to train an
agent to play two Atari games, Breakout and Ms. PacMan. Similar
to previous experiment, we have access to a teacher trained on just
Breakout as the auxiliary task Taux, from which we distill a policy
via KL loss. Note that Tmain itself is chosen to be Multitask to
illustrate a complex scenario where Taux helps with only part of
Tmain, and that too only initially. We consider a distillation loss as
was done previously by adding the auxiliary KL loss Laux (between
the teacher and student policies) to the RL multi-task loss Lmain
at every time step. Intuitively, doing so would result in the agent
only be able to solve one of the tasks—the one the teacher knows
about, as the gradients from distillation loss would interfere with
the policy gradient. Figure 5 shows that, compared to the baseline
Multitask and the simple addition of Multitask RL + Distillation
approaches where the agent learns one task at the expense of the
other, our method of scaling the auxiliary loss by gradient cosine
similarity is able to compensate for this by learning from the teacher and then turning off the auxiliary
distillation; it learns Ms. PacMan without forgetting Breakout. The evolution of the gradient cosine
similarity between Breakout and Ms. PacMan provides a meaningful cue for the usefulness of Laux.

4 RELATED WORK

Our work is related to the literature on identifying task similarity in transfer learning. It is generally
believed that positive transfer can be achieved when source task(s) and target task(s) are related.

7

Under review as a conference paper at ICLR 2019

Figure 5: Results on Breakout and Ms. PacMan (averaged over 3 seeds). The two plots to the left
show performance on Breakout and Ms. PacMan respectively. The third plot shows how the gradient
cosine similarity between the two tasks changes during training. The last plot shows an average
score of the multi-task performance (normalized independently for each game based on the best score
achieved across all experiments). Our method is able to learn both games without forgetting and
achieves the best average performance.

However, it is usually assumed that this relatedness mapping is provided by human experts (Taylor
and Stone, 2009; Pan et al., 2010); few works have addressed the problem of finding a general measure
of similarity to predict transferability between tasks. In image classification, Yosinski et al. (2014)
defined image similarity in ImageNet by manually splitting classes into man-made versus natural
objects. In RL, methods have been proposed to use the Markov decision process (MDP) similarity as
a measure of task relatedness (Carroll and Seppi, 2005; Ammar et al., 2014). While in some degree
capture task similarity, these measures are often domain-specific and not generalizable. In addition,
none of these works have explicitly used the learned similarity metric to improve performance. In our
work, we propose to use cosine similarity of gradients as a generalizable measure across domains and
show it can be directly leveraged to improve the performance of the main task. One important aspect
of task similarity for transfer is that it is highly dependent on the parametrization of the model and
current value of the parameters. We exploit this property by providing a heuristic similarity measure
for the current parameters, resulting in an approach that relies on an adaptive weight over the updates
of the model.

Auxiliary tasks have shown to be beneficial in facilitating learning across domains. In image classifi-
cation, Zhang et al. (2016) used unsupervised reconstruction tasks. In RL, the UNREAL framework
(Jaderberg et al., 2017) incorporates unsupervised control tasks along with reward prediction learn-
ing as auxiliary tasks. Mirowski et al. (2017) studied auxiliary tasks in the context of navigation.
Papoudakis et al. (2018) also explored auxiliary loses for VizDoom. However, these works rely on
empirical results and do not address how the auxiliary tasks were selected in the first instance. In this
work, we aim to propose a simple yet effective way of explicitly selecting auxiliary tasks by using
cosine similarity of task gradients.

Our work is also related to multi-task learning (Caruana, 1997), particularly the line of work on
using adaptive scaling techniques for multi-objective learning. For example, a recently developed
algorithm, GradNorm (Chen et al., 2018), uses gradient magnitude to scale loss function for each task,
aiming to learn well for all tasks. Similarly, Kendall et al. (2018) proposed a weighting mechanism
by considering the homoscedastic uncertainty of each task. However, our work is different in two
ways: first, in our problem setup, we care only about the performance of the main task and we do not
care about all tasks; hence, the optimization goal is different from their setup which is more similar
to traditional multi-objective optimization. Furthermore, it is important to note that our method
differs from aforementioned work in that they scale the losses individually without looking at their
interaction (which can lead to poor performance in our problem setup, when the auxiliary task hurts
the main task), whereas we look for alignments in the vector field between the main and the auxiliary
task, and the auxiliary task is used only when it is well-aligned with the main task.

5 DISCUSSION

In this work, we explored a simple yet efficient technique to ensure that an auxiliary loss does not hurt
the learning on the main task. The proposed approach reduces to applying gradients of the auxiliary
task only if they are a descent direction of the main task.

8

Under review as a conference paper at ICLR 2019

We discuss here a few shortcomings of this method. First, estimating the cosine similarity between
the gradients of tasks could be expensive or noisy and that the threshold for turning off the auxiliary is
a fixed constant. These could be addressed by calculating a running average of the cosine similarity to
get a smoother result and potentially hyper-tune the threshold instead of setting it as a fixed constant.
One might argue that our approach would fail in high-dimensional spaces since random vectors in
such spaces tend to be orthogonal, so that cosine similarity will be naturally driven to 0. In fact, this
is not the case; if two gradients are meant to be co-linear, the noise components cancel each other
thus will not affect the cosine similarity estimation. We empirically explore this in Appendix H.
Second, the new loss surface might be less smooth which can be problematic when using optimizers
that rely on statistics of the gradients or second order information (e.g. Adam or RMSprop). In these
cases, the transition from just the gradient of the main task to the sum of the gradients can affect the
statistics of the optimizer in unwanted ways.

Lastly, although the proposed approach works well empirically on complex and noisy tasks like Atari
games, as discussed in Section 2, it guarantees only that the main task will converge, but not how
fast it will be. While removing the worst case scenarios is important and a good first step, one might
care more for data efficiency when using auxiliary losses (i.e., faster convergence). Particularly in
Appendix D Figure 8, we construct a counter-example where the proposed update rule slows down
learning, compared to optimizing the main task alone. Nevertheless, we have empirically shown the
potential of using the proposed hypothesis as a simple yet efficient way of picking a suitable auxiliary
task. While we have mostly considered scenarios where the auxiliary task helps initially but hurts
later, it would be interesting to explore settings where the auxiliary task hurts initially but helps in the
end. Examples of such are annealing β in β-VAE (Higgins et al., 2017) and annealing the confidence
penalty in (Pereyra et al., 2017).

REFERENCES

H. B. Ammar, E. Eaton, M. E. Taylor, D. C. Mocanu, K. Driessens, G. Weiss, and K. Tuyls. An
automated measure of MDP similarity for transfer in reinforcement learning. In Workshops at the
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

J. L. Carroll and K. Seppi. Task similarity measures for transfer in reinforcement learning task
libraries. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint
Conference on, volume 2, pages 803–808. IEEE, 2005.

R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In ICML, 2018.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. IMPALA: Scalable distributed Deep-RL with importance weighted actor-learner
architectures. arXiv preprint arXiv:1802.01561, 2018.

A. Goldstein. Cauchy’s method of minimization. Numerische Mathematik, 4(1):146–150, 1962.

S. Hauberg, O. Freifeld, A. B. L. Larsen, J. Fisher, and L. Hansen. Dreaming more data: Class-
dependent distributions over diffeomorphisms for learned data augmentation. In Artificial Intelli-
gence and Statistics, pages 342–350, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer, 2016b.

M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Hasselt. Multi-task deep
reinforcement learning with PopArt. arXiv preprint arXiv:1809.04474, 2018.

9

Under review as a conference paper at ICLR 2019

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter. GANs trained
by a two time-scale update rule converge to a Nash equilibrium. arXiv preprint arXiv:1706.08500,
2017.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
β-VAE: Learning basic visual concepts with a constrained variational framework. In ICLR, 2017.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. In ICLR, 2017.

A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using uncertainty to weigh losses for scene
geometry and semantics. In CVPR, 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, et al. Learning to navigate in complex environments. In ICLR, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In ICML, 2016.

S. J. Pan, Q. Yang, et al. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2010.

G. Papoudakis, K. C. Chatzidimitriou, and P. A. Mitkas. Deep reinforcement learning for doom using
unsupervised auxiliary tasks. CoRR, abs/1807.01960, 2018.

G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton. Regularizing neural networks by
penalizing confident output distributions. arXiv preprint arXiv:1701.06548, 2017.

N. Quadrianto, J. Petterson, T. S. Caetano, A. J. Smola, and S. Vishwanathan. Multitask learning
without label correspondences. In NIPS, 2010.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

S. Schmitt, J. J. Hudson, A. Zidek, S. Osindero, C. Doersch, W. M. Czarnecki, J. Z. Leibo, H. Kuttler,
A. Zisserman, K. Simonyan, et al. Kickstarting deep reinforcement learning. arXiv preprint
arXiv:1803.03835, 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural networks via information. arXiv
preprint arXiv:1703.00810, 2017.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of Go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In ICLR, 2015.

10

Under review as a conference paper at ICLR 2019

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey. JMLR,
2009.

Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and R. Pascanu.
Distral: Robust multitask reinforcement learning. In NIPS, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In NIPS, 2017.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge, 1989.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? In NIPS, 2014.

Y. Zhang, K. Lee, and H. Lee. Augmenting supervised neural networks with unsupervised objectives
for large-scale image classification. In ICML, 2016.

11

Under review as a conference paper at ICLR 2019

A PROOFS

A.1 PROOF FOR PROPOSITION 1

Given any gradient vector field G(θ) = ∇θL(θ) and any vector field V (θ) (such as gradient of
another loss function, but could be arbitrary set of updates), an update rule of the form

θ(t+1) := θ(t) − α(t)(G(θ(t)) + V (θ(t)) max(0, cos(G(θ(t)), V (θ(t))))

converges to the local minimum of L given small enough α(t).

Proof. Let us denote

G(t) := G(θ(t)) V (t) := V (θ(t)) ∇L(t) := ∇θL(θ(t))

∆θ(t) := G(t) + V (t) max(0, cos(G(t), V (t))).

Our update rule is simply θ(t+1) := θ(t) − α(t)∆θ(t) and we have

〈∆θ(t),∇L(t)〉 = 〈G(t) + V (t) max(0, cos(G(t), V (t))),∇L(t)〉 (3)

= 〈G(t),∇L(t)〉+ 〈V (t) max(0, cos(G(t), V (t))),∇L(t)〉 (4)

= ‖∇L(t)‖2 + 1
‖V (t)‖‖∇L(t)‖ max(0, 〈∇L(t), V (t)〉)〈V (t),∇L(t)〉 ≥ 0. (5)

And it can be 0 if and only if ‖∇L(t)‖ = 0 (since sum of two non-negative terms is zero iff both are
zero, and step from (4) to (5) is only possible if this is not true), thus it is 0 only when we are at the
critical point of L. Thus the method converges due to convergence of steepest descent methods, see
“Cauchy’s method of minimization” (Goldstein, 1962).

A.2 PROOF FOR PROPOSITION 3

In general, the proposed update rule does not have to create a conservative vector field.

Proof. Proof comes from a counterexample, let us define in 2D space:

Lmain(θ1, θ2) = aθ1

Laux(θ1, θ2) =

{
aθ1 if θ1 ∈ [1, 2] ∧ θ2 ∈ [0, 1]
0 therwise

for some fixed a 6= 0. Let us now define two paths (parametrized by s) between points (0, 0) and
(2, 2), path A which is a concatenation of a line from (0, 0) to (0, 2) (we call it U , since it goes up)
and line from (0, 2) to (2, 2) (which we call R as it goes right), and path B which first goes right and
then up. Let Vcos denote the update rule we follow, then:∫

A

Vcosds =

∫
A

∇Lmainds =

∫
U

∇Lmainds+

∫
R

∇Lmainds =

∫
R

∇Lmainds = 2a

At the same time, since gradient of Lmain is conservative by definition:∫
B

Vcosds =

∫
B

∇Lmainds+

∫
C

∇Lauxds =

∫
A

∇Lmainds+

∫
C

∇Lauxds = 2a+

∫
C

∇Lauxds = 3a

where C is a part of B that goes through [1, 2]× [0, 1]. We conclude that
∫
A
Vcosds 6=

∫
B
Vcosds, so

our vector field is not path invariant, thus by Green’s Theorem it is not conservative, which concludes
the proof. See Figure 6 for visualization.

B ONE-DIMENSIONAL TOY EXAMPLE

Figure 7 shows the surfaces along with gradients for the one-dimensional motivating example
described in Section 2.

12

Under review as a conference paper at ICLR 2019

Figure 6: Visualization of the counterexample from Proposition 3, stars denote starting (green) and
end (black) points. Dotted and dashed lines correspond to paths A and B respectively. Blue arrows
represent gradient vector field of the main loss, while the violet ones the merged vector field.

−20 −10 0 10 20 30
µ

0

200

400

600

800 Lmain=(µ¡ 10)2

Laux= µ2

−20 −10 0 10 20 30
µ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Gradient Cosine Similarity

Figure 7: Illustration of cosine similarity between gradients on synthetic loss surfaces.

C WEIGHTED VERSION OF OUR METHOD

Algorithm 2 describes the weighted version of our method.

D TOY EXAMPLE SHOWING SLOW-DOWN

We discuss here a few potential issues of using cosine similarity of gradients to measure task similarity.
First, the method depends on being able to compute cosine between gradients. However, in DL we
rarely are able to compute exact gradients in practice, nut instead depend on their high variance
estimators (mini batches in supervised learning, or Monte Carlo estimators in RL). Consequently,
estimating the cosine similarity might require additional tricks such as keeping moving averages
of estimates. Second, adding additional task gradient in selected subset of iterates can lead to very
bumpy surface from the perspective of optimizer, causing methods which keep track of gradient
statistics/estimate higher order derivatives, can be less efficient. Finally, one can construct specific
functions, where despite still minimizing the loss, one significantly slows down optimization process.
Figure 8 provides one such function as an example.

E IDENTIFYING NEAR AND FAR CLASSES IN IMAGENET

As a ground truth for class similarity, we identify pairs of ImageNet classes to be near or far using,
lowest common ancestor (LCA) and Frechet Inception Distance (FID) (Heusel et al., 2017).

ImageNet follows a tree hierarchy where each class is a leaf node. We define the distance between
a pair of classes as at which tree level their LCA is found. In particular, there are 19 levels in the
class tree, each leaf node (i.e. class) is considered to be level 0 while the root node is considered to
be level 19. We perform bottom-up search for one pair of random sampled classes and find their LCA
node—the class distance is then defined as the level number of this node. For example, class 871
(“trimaran”) and class 484 (“catamaran”) has class distance 1 because their LCA is one level up.

13

Under review as a conference paper at ICLR 2019

Algorithm 2 Weighted version of our method.
1: Initialize shared parameters θ and task specific parameters φmain,φaux. randomly.
2: for iter = 1 : max iter do
3: Compute∇θLmain,∇φmain

Lmain,∇θLaux,∇φaux
Laux.

4: Update φmain and φaux using corresponding gradients
5: Update θ using ∇θLmain + max(0, cos(∇θLmain,∇θLaux))∇θLaux

Figure 8: Negative example optimization forL1(θ) = (θ1 < 0)(θ21+θ22)+(θ1 > 0)
(

1−exp
(
−2(θ21+

θ22)
))

and L2(θ) = (θ1−2)2+(θ2−0.5)2 where the proposed method slows down the process (com-
pared on red runs). For the ease of presentation, we choose L1, which is non-differentiable/smooth
when θ = 0. But one can create any smooth functions with analogous properties. The core idea
is, when there exists a flat region on the loss surface, the auxiliary lost tends to push the iterates
to this region. Even though this move still decreases the loss (i.e., convergence is guaranteed), the
optimization process will be slowed down.
FID is used as a second measure of similarity. We obtain the image embedding of a pair of classes
using the penultimate layer of a pre-trained ResNetV2-50 model (He et al., 2016b) and then compute
the embedding distance using FID, defined in Heusel et al. (2017) as:

FID = d2
(
(m1, C1), (m2, C2)

)
= ‖m1 −m2‖22 + Tr

(
C1 + C2 − 2(C1C2)1/2

)
. (6)

where mk, Ck denote the mean and covariance of the embeddings from class k.

We randomly sampled 50 pairs of classes for each level of LCA = {1, 2, 3, 4, 16, 17, 18, 19} (400
pair of classes in total) and compute their FID. Figure 9 shows a plot of LCA (x-axis) verses FID
(y-axis) over our sampled class pairs. It can be seen that LCA and FID are (loosely) correlated
and that they reflect human intuition of task similarity for some pairs. For example, trimaran and
catamaran (bottom-left) are similar both visually and conceptually, whereas rock python and traffic
light (top-right) are dissimilar both visually and conceptually. However, there are contrary examples
where LCA disagrees with FID; monkey pinscher and doberman pinscher (top-left) are visually
dissimilar but conceptually similar, whereas bubble and sundial (bottom-right) are visually similar
but conceptually dissimilar.

Per the observations, in subsequent experiments we pick class pairs that are {Low LCA, Low FID} as
near pairs (e.g., trimaran and catamaran), and class pairs that are {high LCA, high FID} as far pairs
(e.g., rock python and traffic light).

F GRIDWORLD EXPERIMENTS

We define a distribution over 15× 15 gridworlds, where an agent observes its surrounding (up to 4
pixels away) and can move in 4 directions (with 10% transition noise). We randomly place walls

14

Under review as a conference paper at ICLR 2019

Figure 9: LCA (x-axis) versus FID (y-axis) as a ground truth for class similarity. The measurements
reflect human intuition of class similarity; trimaran and catamaran (bottom-left) are similar both
visually and conceptually, whereas rock python and traffic light (top-right) are dissimilar both visually
and conceptually.

(blocking movement) as well as two types of positive rewards: +5 and +10 points, both terminating
an episode. There are also some negative rewards (both terminating and non-terminating) to make
problem harder. In order to guarantee (expected) finite length of episodes we add fixed probability of
0.01 of transitioning to a non-rewarding terminal state.

For the sake of simplicity we use episode-level policy gradient (Williams, 1992) with value function
baseline, with policies parametrized as logits θ of π(a|s) =

exp(θs,a)∑
b exp(θs,b)

∈ [0, 1], baselines as
Bs ∈ R, with fixed learning rate of α = 0.01, discount factor γ = 0.95 and 10,000 training steps
(states visited).

For this setup, the update rule for each sequence τ =
(
(s1, a1, r1), . . . (sN , aN , rN)

)
is thus given

by

∆θ = α∇θ log π(at′ |st′)

N−t′∑
i=0

rt′+i −Bst′

 = αG(t) ∆Bst′ = −α∇Bs
t′

(Bst′−
N−t′∑
i=0

rt′+i)
2.

In order to make use of expert policies for Taux we define auxiliary loss as a distillation loss, which
is just a per-state cross-entropy between teacher’s and student’s distributions over actions. If we just
add gradients estimated by policy gradient, and the ones given by distillation, the update is given by

∆θ = α
[
G(t) −∇θH×(πQ(·|st′)‖π(·|st′))

]
= α[G(t) +

∑
a

πQ(a|st′)∇θ log π(a|st′)],

where V (t) =
∑
a π

Q(a|st′)∇θ log π(a|st′) and H×(p, q) = −
∑
k pk log qk is the cross entropy.

However, if we use the proposed gradient cosine similarity, we get the following update

∆θ = α
[
G(t) + V (t)

(
2 · sign(cos(G(t), V (t)))− 1

)]
.

This get a significant boost to performance, and policies that score on average 3 points after 10,000
steps and obtain baseline performance after just one third of steps. Figure 10 shows a depiction of the
task and an example solution.

G ATARI EXPERIMENTS

For these experiments, we use a convolutional architecture as in previous work (Espeholt et al.,
2018; Hessel et al., 2018; Mnih et al., 2015; 2016), trained with batched actor-critic with the V-trace

15

Under review as a conference paper at ICLR 2019

Figure 10: Left most: Initial task Tmain, yellow border denotes starting point and violet ones
terminating states. Red states are penalizing with the value in the box while the green ones provide
positive reward. Middle Left: Solution found by a single run of Q-learning with uniform exploration
policy. Middle Right: Transformed task Taux. Right most: Solution found by gradient cosine
similarity driven distillation with policy gradient.

algorithm (Espeholt et al., 2018). We use a learning rate of 0.0006 and an entropy cost of 0.01 for all
experiments, with a batch size of 32 and 200 parallel actors.

For the single game experiment, Breakout, , we use 0.02 for the threshold on the cosine similarity
and, for technical reasons we ended up computing the cosine distance on a per-layer basis and then
averaged. We additionally need to do a moving average of the cosine over time (0.999c(t−1) +
0.001c(t)) to ensure there are no sudden spikes in the weighting due to noisy gradients. Same setting
is used for the multi-task experiment, just that the threshold is set to 0.01.

H COSINE SIMILARITY IN HIGH DIMENSIONS

100 101 102 103 104 105

Number of dimensions

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Cosine similarity: Random vectors

¾=0: 1

¾=0: 2

¾=0: 3

¾=0: 4

¾=0: 5

100 101 102 103 104 105

Number of dimensions

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Cosine similarity: Corrupted vectors

¾=0: 1

¾=0: 2

¾=0: 3

¾=0: 4

¾=0: 5

Figure 11: Cosine similarity as a function of dimensionality. On the left, we generate two random
vectors θ1 and θ2 from a Gaussian distribution with zero mean and variance σ2 and as expected, the
cosine similarity drops to zero very quickly as the number of dimensions increases. On the right, we
mimic a scenario where the true gradients of the main and auxiliary are aligned, however we observe
only corrupted noisy gradients which are noisy copies of the true underlying vector; we generate
µ ∼ N (0, Id) and generate θ1 ∼ N (µ, σId) and θ2 ∼ N (µ, σId). In this case, cosine similarity is
larger in higher dimensions (as the inner product of the corruption noise goes to zero).

16

	Introduction
	Notation and problem description

	Cosine Similarity Between Gradients of Tasks
	Applications of Gradient Cosine Similarity
	Experiments on image classification tasks
	Experiments on reinforcement learning gridworld tasks
	Experiments on Atari

	related work
	Discussion
	Proofs
	Proof for Proposition 1
	Proof for Proposition 3

	One-dimensional toy example
	Weighted version of our method
	Toy example showing slow-down
	Identifying near and far classes in ImageNet
	Gridworld experiments
	Atari experiments
	Cosine similarity in high dimensions

