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Co-evolution of language and agents in referential games

Anonymous EMNLP submission

Abstract

Referential games offer a grounded learning
environment for neural agents which accounts
for the fact that language is functionally used
to communicate. However, they do not take
into account a second constraint considered to
be fundamental for the shape of human lan-
guage: that it must be learnable by new lan-
guage learners and thus has to overcome a
transmission bottleneck. In this work, we in-
sert such a bottleneck in a referential game, by
introducing a changing population of agents in
which new agents learn by playing with more
experienced agents. We show that mere cul-
tural transmission results in a substantial im-
provement in language efficiency and com-
municative success, measured in convergence
speed, degree of structure in the emerged lan-
guages and within-population consistency of
the language. However, as our core contri-
bution, we show that the optimal situation is
to co-evolve language and agents. When we
allow the agent population to evolve through
genotypical evolution, we achieve across the
board improvements on all considered metrics.
These results stress that for language emer-
gence studies cultural evolution is important,
but also the suitability of the architecture itself
should be considered.

1 Introduction

Human languages show a remarkable degree of
structure and complexity, and how such a complex
system can have emerged is still an open question.
One concept frequently named in the context of
language evolution is cultural evolution. Unlike
animal languages, which are taken to be mostly
innate, human languages must be re-acquired by
each individual (Pinker and Bloom, 1990; Hur-
ford, 1998). This pressures them to fit two con-
straints that govern their cross-generational trans-
mission: They must be learnable by new language

users, and they must allow effective communica-

tion between proficient language users (see, e.g.
Smith and Kirby, 2012).

In the recent past, computational studies of
language emergence using referential games (see
Section 2.1 for a review) has received a new wave
of attention. These studies are motivated by the
second constraint, that language is used to com-
municate. The first constraint, on the other hand,
is in this framework not considered: language is
not transmitted from agent to agent and there is
thus no need for agents to develop languages that
would survive a transmission bottleneck.1

In this work, we introduce a transmission bot-
tleneck in a population of agents playing refer-
ential games, implicitly modelling cultural evolu-

tion. However, merely adding a transmission bot-
tleneck is not enough. Since the types of language
that may emerge through passing this bottleneck
are not just dependent on the existence of a bot-
tleneck, but also on the shape of the bottleneck,
which is determined by the biases of the architec-
ture of the agents playing the game (their geno-
typical design). If the genotypical design of those
agents is not suitable to solve this task through
communication, they will – at best – converge to
a language that doesn’t allow for effective com-
munication or is difficult to learn for every new
agent or – at worst – not converge to an appropri-
ate culturally transmittable language at all. In this
work, we therefore study the co-evolution of lan-
guage and architecture in a referential games.

To this end, we introduce the Language Trans-

mission Engine that allows to model both cultural
and genetic evolution in a population of agents.
We demonstrate that the emerging languages ben-

1In fact, multiple studies, although perhaps unrelatedly,
multiple recent studies have shown that the languages emerg-
ing in such games do not share even basic properties of hu-
man languages (Bouchacourt and Baroni, 2018, e.g.).
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efit from including cultural transmission as well as
genetic evolution, but the best results are achieved
when both types of evolution are included and lan-
guages and agents can co-evolve.

2 Related Work

2.1 Language Emergence Games

Much work has been done on the emergence
of language in artificial agents and investigat-
ing its subsequent structure, compositionality and
morphosyntax (Kirby, 2001; Kirby and Hurford,
2002). The original computer simulations dealt
with logic and symbolic representations (Kirby,
2001; Christiansen and Kirby, 2003), but with
the advent of modern deep learning methods and
sequence-to-sequence models (Sutskever et al.,
2014), there has been a renewed interest in sim-
ulating the emergence of language through neu-
ral network agents (i.a. Lazaridou et al., 2017;
Havrylov and Titov, 2017).

In the exploration of language emergence, dif-
ferent training approaches and tasks have been
proposed to encourage agents to learn and develop
communication. These tasks are commonly set
up in an end-to-end setting where reinforcement
learning can be applied. This is often a two-player
referential game where one agent must commu-
nicate the information it has access to (typically
an image), while the other must guess it out of
a lineup (Evtimova et al., 2018; Lazaridou et al.,
2017). Mordatch and Abbeel (2018) and Choi
et al. (2018) find that structure and composition-
alility can arise in emerged languages in such se-
tups; Kottur et al. (2017) show that ‘natural’ lan-
guage does not arise naturally and has to be incen-
tivised by imposing specific restrictions on games
and agents.

2.2 Evolution of Language

The evolution of human language is a well-studied
but still poorly understood topic. One particu-
lar open question concerns the relation between
two different evolutionary processes: genetic evo-
lution of the agents in the population and cul-

tural evolution of the language itself (Fitch, 2010).
Christiansen and Kirby (2003) assert that the ques-
tion of genetic versus cultural evolution ultimately
arises from three distinct but interacting adaptive
systems: individual learning, cultural transmis-
sion, and genetic evolution.

2.2.1 Cultural Evolution
Cultural transmission is thought to enforce struc-
ture and compression to languages, since a lan-
guage must be used and learned by all individuals
of the culture in which it resides and at the same
time be suitable for a variety of tasks. Kirby et al.
(2015) define those two pressures as compressibil-
ity and expressivity and find that structure arises
from the trade-off between these pressures in gen-
erated languages. The importance of cultural evo-
lution for the emergence of structure is supported
by a number of artificial language learning stud-
ies (e.g. Saldana et al., 2018) and computational
studies using the Iterated Learning paradigm, in
which agents learn a language by observing the
output produced by another agent from the previ-
ous ‘generation’ (e.g. Kalish et al., 2007; Kirby
et al., 2008, 2015). An alternative way of impos-
ing cultural pressures on agents, is by simulating
a large population of them and pairing agents ran-
domly to solve a communicative game (Cogswell
et al., 2019). This approach is more naturally
aligned with cultural pressures in humans (see e.g.
Wray and Grace, 2007) and is the one we use in
this paper.

2.2.2 Genetic Evolution
While there is much controversy about the selec-
tion pressures under which the fundamental traits
underlying the human ability to learn and use lan-
guage evolved in other humans, that genetic evolu-
tion played an essential role in endowing humans
with the capabilities to learn and use language is
generally undebated. Pre-modern humans, for in-
stance, did not have the ability to speak or under-
stand complex structures (Fitch, 2010).

There are several approaches to simulate ge-
netic evolution of neural network agents. Neu-
ral Architectural Search (NAS) focuses on search-
ing the architecture space of the networks, unlike
many traditional evolutionary techniques which
often include parameter weights in their search
space. Some of the earlier techniques such as
NEAT gained considerable traction as a sound way
of doing topology search using biologically in-
spired concepts (Stanley and Miikkulainen, 2002).
NAS methods however have mostly reverted to op-
timising solely the neural architecture and using
gradient based methods such as SGD for weight
optimisation due to the large parameter space
of modern architectures (see, e.g., Elsken et al.
(2019) for a survey).
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More recently, state-of-the-art one-shot search
techniques such as ENAS (Efficient Neural Archi-
tecture Search) and DARTS (Differentiable Archi-
tecture Search) have allowed to bring a gradient-
based approach to NAS through the use of intel-
ligent weight-sharing schemes (Liu et al., 2018;
Pham et al., 2018). In this work, we use
the DARTS search space, which is constrained
but still obtained state-of-the-art performance on
benchmark natural language tasks (Li and Tal-
walkar, 2019).

3 Approach

3.1 Sender/Receiver communication
We study language emergence in a referential
game inspired by the signalling games proposed
by Lewis (1969). In this game, one agent (called
the sender) observes an image and generates a dis-
crete message. The other agent, the receiver of
the message, uses the message to select the right
image from a set of images containing both the
sender image and several distractor images. Since
the information shown to the sender agent is cru-
cial to the receivers success, this setup urges the
two agents to come up with a communication pro-
tocol that conveys the right information.

Formally, our referential game is similar to
Havrylov and Titov (2017):

1. The meaning space of the game consists of a collec-
tion D of K images {d0, d1, ..., dK}, represented by
z-dimensional feature vectors.

2. In each round i of the game, a target item di is ran-
domly sampled from D, along with a set C of n dis-
tractor items.

3. The sender agent s of the game, parametrised by a neu-
ral network, is given item di, and generates a discrete
message mi from a vocabulary V . The message is
capped to a max message length of L.

4. The receiver agent r, also parametrised by a neural net-
work, receives message mi and uses it to identify di in
the union of di and C.

We use z = 512, and n = 3 and train agents
with Gumbel-Softmax (Jang et al., 2017a) based
on task-success.

3.2 Language Transmission Engine
We introduce both cultural and genetic evolution
to this game through a process that we call the
Language Transmission Engine (LTE), which is
depicted in Figure 1.2 Similar to Cogswell et al.

2We will make the code publicly available upon accep-
tance.

(2019), we create a population of communicat-
ing agents. In every training iteration, two ran-
dom agents are sampled to play the game. This
forces the agents to adopt a simpler language nat-
urally: to succeed they must be able to commu-
nicate or understand all opposing agents. In our
setup, agents are either sender or receiver, they do
not switch roles during their lifetime.

Figure 1: The Language Transmission Engine: Agent
pairs are randomly sampled from each population and
trained. After l training steps, a portion ↵ of the popu-
lation is culled.

3.2.1 Cultural evolution
To model cultural evolution in the LTE, we period-
ically replace agents in the population with newly
initialised agents. Cultural evolution is implicitly
modelled in this setup, as new agents have to learn
to communicate with agents that already master
the task. Following Cogswell et al. (2019), we ex-
periment with three different methods to select the
agents that are replaced: randomly (no selection
pressure), replacing the oldest agents or replacing
the agents with the lowest fitness (as defined in
Section 3.3). We call these setups cu-random,
cu-age and cu-best, respectively.

3.2.2 Genetic evolution
To model genetic evolution, rather than period-
ically replacing agents with randomly initialised
new agents, we instead mutate the most successful
agents and replace the worst agents with variations
of the best agents, as outlined in Section 3.2.2.
Note that cultural evolution is still implicitly mod-
elled in this setup, as new agents still have to learn
to communicate with older agents. Therefore, we
call this setup with the term co-evolution.

Culling We refer to the selection process and
subsequent mutation or re-initialisation step as
culling. In biology, culling is the process of
artificially removing organisms from a group to
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promote certain characteristics, so, in this case,
culling consists of removing a subset of the worst
agents and replacing them with variations of the
best architecture. The proportion of agents from
each population selected to be mutated is deter-
mined by the culling rate ↵, where ↵ 2 [0, 1). The
culling interval l defines the number of iterations
between culling steps. A formalisation of the LTE
can be found in appendix A.1.

Mutation Algorithm We base potential muta-
tions on the RNN cell search space DARTS, de-
fined by Liu et al. (2018). This space includes re-
current cells with up to N nodes, where each node
n1, n2, ..., nN can take the output of any preceding
nodes including n0, which represents the cell’s in-
put. All potential connections are modulated by
an activation function, which can be the identity
function, Tanh, Sigmoid or ReLU. Following Liu
et al. (2018) and Pham et al. (2018), we enhance
each operation with a highway bypass (Zilly et al.,
2016) and the average of all intermediate nodes is
treated as the cell output.

To sample the initial model, we sample a ran-
dom cell with a single node (N = 1). As this
node must necessarily be connected to the input,
the only variation stems from the possible activa-
tion functions applied to the output of n1, resulting
in four possible starting configurations. We set a
node cap of N = 8. We mutate cells by randomly
sampling an architecture which is one edit step
away from the previous architecture. Edit steps
are uniformly sampled from i) changing an incom-
ing connection, ii) changing an output operation
or iii) adding a new node; the mutation location
is uniformly sample from all possible mutations.3

Note that while we use the DARTS search space
to define potential mutations, contrary to Liu et al.
(2018), we do not use differentation to sample new
architectures based on a selection criterion.

3.3 Fitness Measure
The fitness criterion that we use in both the
cu-best and co-evolution setup is based
on task performance. However, rather than consid-
ering agents’ performance right before the culling
step, we consider the age of the youngest agent
in the population (defined in terms of number of
batches that it was trained) and for every agent
compute their performance up until when they had

3For a formal description of the mutation process, we re-
fer to Appendix A.2.

that age. For any agent aj in population A this is
defined as:

fitness(aj) =
1

TA

TAX

t=0

L(atj) (1)

where TA = mina2A T (a) is the age T (a) of
the youngest agent in the population, and L(atj)
is the loss of agent aj at time step t. This fitness
criterion is not biased towards older agents, that
have seem already more data and have simply con-
verged more. It is thus not only considering task
performance but also the speed at which this per-
formance is reached.

4 Experiments

We test the LTE framework on a compositionally
defined image dataset, using a range of different
selection mechanisms.

4.1 Dataset
In all our experiments, we use a modified version
of the Shapes dataset (Andreas et al., 2016), which
consists of 30 by 30 pixel images of 2D objects,
characterised by shape (circle, square, triangle),
colour (red, green, blue), and size (small, big).
While every image has a unique symbolic descrip-
tion – consisting of the shape, colour and size of
the object and its horizontal and vertical position
in a 3x3 grid – one symbolic representation maps
to multiple images, that differ in terms of exact
pixels and object location. We use 80k, 8k, 40k
images for train, validation and test sets, respec-
tively. Some example images are depicted in Fig-
ure 2.

We pre-train a CNN feature extractor for the im-
ages in a two-agent setting of the task (see Ap-
pendix A.4 for more details).

4.2 Architecture and Training
For our co-evolution experiments, we use the
DARTS search space as described above. For all
cultural evolution approaches, we use an LSTM
(Hochreiter and Schmidhuber, 1997) for both the
sender and receiver architectures (see Appendix
A.3 for more details). Unless otherwise specified,
we use the same sizes and hyper-parameters for
all models. The sender and receiver models have
a hidden size of 64 for the recurrent layer and an
embedding layer of size 64. Further, we use a vo-
cabulary size V of 4, with an additional bound to-
ken serving as the indicator for beginning and end-
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Figure 2: The modified Shapes task consists of show-
ing an image the sender, and then letting the receiver
deduce from the sender’s message which image out of
the target and k distractors is the correct one.

of-sequence. We limit the maximum length of a
sentence L to 5.

We back-propagate gradients through the dis-
crete step outputs (message) of the sender by using
the Straight-Through (ST) Gumbel-Softmax Esti-
mator (Jang et al., 2017b). We run all experiments
with a fixed temperature ⌧ = 1.2. We use the de-
fault Pytorch (Paszke et al., 2017) Adam (Kingma
and Ba, 2015) optimiser with a learning rate of
0.001 and a batch-size of 1024. Note that the opti-
miser is reset for every batch.

For all multi-agent experiments we use a pop-
ulation size of 16 senders and 16 receivers. The
culling rate ↵ is set to 0.25 or four agents, and
we cull (re-initialise or mutate) every l = 5k it-
erations. We run the experiments for a total of
I = 500k iterations, and evaluate the populations
before each culling step.

4.3 Evaluation

We use an range of metrics to evaluate both the
population of agents and the emerging languages.

Jaccard Similarity We measure the consistency
of the emerged languages throughout the popula-
tion using Jaccard Similarity, which is defined as
the ratio between the size of the intersection and
the union of two sets. We sample 200 messages
per input image for each possible sender-receiver
pair and average the Jaccard Similarity of the sam-
ples over the population. A high Jaccard Similar-
ity between two messages is an indication that the
same tokens are used in both messages.

Proportion of Unique Matches We compute
how similar the messages that different agents
emit for the same inputs by looking at all possible
(sender, message) pairs for one input and assess
whether they are the same. This metric is 1 when
all agents always emit the same messages for the
same inputs.

Number of Unique Messages We compute the
average number of unique messages generated by
each sender in the population. An intuitive refer-
ence point for this metric is the number of images
with distinct symbolic representations. If agents
generate more messages than expected by this ref-
erence point, this demonstrates that they use mul-
tiple messages for the images that are – from a
task perspective – identical. A smaller number of
unique messages, on the other hand, indicates that
the agent is using a simpler language which is un-
derspecified compared to the symbolic description
of the image.

Topographic Similarity Topographic similar-
ity, used in a similar context by Lazaridou et al.
(2018), represents the similarity between the
meaning space (defined by the symbolic represen-
tations) and the signal space (the messages send by
an agent). It is defined as the correlation between
the distances between pairs in meaning space and
the distances between the corresponding messages
in the signal space. We compute the topographic
similarity for an agent by sampling 5,000 pairs of
symbolic inputs and corresponding messages and
compute the Pearson’s ⇢ correlation between the
cosine similarity of the one-hot encoded symbolic
input pairs and the cosine similarity of the one-hot
encoded message pairs.

Average Population Convergence To estimate
the speed of learning of the agents in the pop-
ulation, estimate the average population conver-

gence. For each agent, at each point in time, this
is defined as the agents average performance from
the time it was born until it had the age of the cur-
rent youngest agent in the population (analogous
to the fitness criterion defined in Section 3.3). To
get the average population convergence, we aver-
age those values for all agents in the population.

Average Agent Entropy We compute the aver-
age certainty of sender agents in their generation
process by computing and averaging their entropy

during generation.
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5 Results

We now present a detailed comparison of our cul-
tural and co-evolution setups. For each approach,
we averaged over four random seeds, the error
bars in all plots represent the standard deviation
across these four runs. To analyse the evolution
of both agents and languages, we consider the de-
velopment of all previously outlined metrics over
time. We then test the best converged languages
and architectures in a single sender-receiver setup,
to assess the impact of cultural and genetic evolu-
tion more independently. In these experiments, we
compare also directly to a single sender-receiver
baseline, which is impossible for most of the met-
rics we consider in this paper. Finally, we briefly
consider the emerged architectures from a qualita-
tive perspective.

5.1 Task performance
We first confirm that all setups in fact converge to a
solution to the task. As can be seen in Figure 3, all
populations converge to a (close to perfect) solu-
tion to the game. The cu-age approach slightly
outperforms the other approaches, with a accuracy
that surpasses the 95% accuracy mark. Note that,
due to the ever changing population, the accuracy
at any point in time is an average of both ‘chil-
dren’ and ‘adults’, that communicate with differ-
ent members of the population.

Figure 3: Average Population Accuracy of final popu-
lations.

5.2 Agent behaviour
To assess the behaviour of the agents over time,
we monitor their average message entropy con-
vergence speed. As can be seen in Figure 4, the
co-evolution setup results in the lowest aver-
age entropy scores, the messages that they assign
to one particular image will thus have lower vari-
ation than in the other setups. Of the cultural evo-
lution setups, the lowest entropy score is achieved
in the cu-best setup.

Figure 4: Average Agent Entropy over time.

Figure 5 shows the average population con-
vergence over time. Also in this case, we ob-
serve a clear difference between cultural evolu-
tion only and co-evolution, with an immediately
much lower convergence time for co-evolution and
a slightly downward trending curve.

Figure 5: Average convergence for all cultural trans-
mission modes and evolution.

5.3 Language Analysis
To check the consistencies of languages within a
population, we compare the Jaccard Similarity and
the Average Proportion of Unique Matches, which
we plot in Figure 6. This shows that, compared to
cultural evolution only, not only are the messages
in co-evolution more similar across agents (higher
Jaccard Similarity), but also that agents are con-
siderably more aligned with respect to the same
inputs (less unique matches).

To assess the level of structure of the emerged
languages, we plot the average Topographic Sim-
ilarity and the Average Number of Unique Mes-
sages generated by all senders (Figure 7). The
co-evolution condition again outperforms all cul-
tural only conditions, with a simpler language (the
number of the unique messages closer to the sym-
bolic reference point) that is structurally more sim-



7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 6: Average Jaccard Similarity and proportion of
message matches for all cultural transmission modes
and evolution

ilar to the symbolic representation of the input
(higher Topographical Similarity).

5.4 Architecture Analysis

In Figure 8 we show the co-evolution of an agent
and a sample of its language during three selected
iterations in the co-evolution setup. Strikingly, the
best sender architecture does not evolve from its
original form, which could point towards the lim-
itations of of our search strategy and space. On
the contrary, the receiver goes through quite some
evolution steps and converges into a significantly
more complex architecture than its original form.
We observe a unification of language throughout
evolution in Figure 8, which is also supported by
Figure 7. The population of senders starts out 11
different unique messages and ends with only two
to describe the same input image. We will leave
more detailed analysis of the evolved architectures
for future work.

5.5 Frozen Experiments

With a series of experiments we test the a priori
suitability of the evolved languages and agents for
the task at hand, by monitoring the accuracy of
new agents that are paired with converged agents
and train them from scratch.

We focus, in particular, on training receivers
with a frozen sender from different setups, which
allows us to assess 1) whether cultural evolution
made languages evolve to be more easily picked
up by new agents 2) whether the genetic evolution
made architectures converge more quickly when
faced with this task. We compare the accuracy de-
velopment of:

Figure 7: Average Number of Unique Messages and
Topographic Similarity for all cultural evolution modes
and co-evolution. For comparison, we also plot the
number of unique messages for a symbolic solution that
fully encodes all relevant features of the image (since
we have three possible shapes and colours, two possi-
ble sizes, and a 3 ⇥ 3 grid of possible positions, this
symbolic reference solution has 3 ⇥ 3 ⇥ 2 ⇥ 9 = 162
distinct messages.

• An LSTM receiver trained with a frozen
sender taken from cu-best;

• An evolved receiver trained with a frozen
evolved sender.

For both these experiments, we compare with two
baselines:

• The performance of a receiver agent trained
from scratch along with a receiver agent
that has either the cu architecture or the
evolved co architecture (cu-baseline
and co-baseline, respectively);

• The performance of an agent trained
with an agent that is pretrained in the
single agent setup, with either the cu
architecture or an evolved architecture
(cu-baseline-pretrained and
co-baseline-pretrained).

Each experiment is run 10 times, keeping
the same frozen agent. The results confirm
cultural evolution contributes to the learnabil-
ity and suitability of emerging languages: the
cu-best accuracy (green line) converges sub-
stantially quicker and is substantially higher
than the cu-baseline-pretrained accu-
racy (orange line). Selective pressure on the
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Figure 8: Evolution of the best sender and receiver architecture according to convergence, and the evolution of the
population’s message description of the same input through iterations. The bold messages represent the message
outputted by the best sender whose architecture is pictured above. The count of each message represents the
number of agents in the population which uttered this exact sequence.

language appears to be important: the result-
ing languages are only easier to learn in the
cu-best setup.4 In addition, they show that the
agents benefit also from the genetic evolution: the
best accuracies are achieved in the co-evolution
setup (red line). The difference between the
cu-baseline (blue) and the co-baseline
(brown) further shows that even if the evolved
architectures are trained from scratch, they
perform much better than a baseline model
trained from scratch. The difference between
the co-baseline-pretrained (only genetic
evolution, purple line) and the co-evolution of
agents and language line (red line) illustrates that
genetic evolution alone is not enough: while a new
evolved receiver certainly benefits from learning
from a (from scratch) pretrained evolved sender,
without the cultural transmission pressure, it’s per-
formance is still substantially below a receiver that
learns from an evolved sender whose language
was evolved as well.

6 Conclusion

In this paper, we introduced a language transmis-
sion bottleneck in a referential game, where new
agents have to learn the language by playing with
more experienced agents. To overcome such bot-
tleneck, we enabled both the cultural evolution of
language and the genetic evolution of agents, us-
ing a new Language Transmission Engine. Us-

4cu-age and cu-random are ommitted from the plot
for clarity reasons.

Figure 9: Receiver accuracies trained with different
types of frozen senders.

ing a battery of metrics, we monitored their re-
spective impact on communication efficiency, de-
gree of linguistic structure and intra-population
language homogeneity. While we could find im-
portant differences in between cultural evolution
strategies, it is when we included genetic evolution
that agents scored best. In a second experiment,
we paired new agents with evolved languages and
agents and again confirmed that, while cultural
evolution makes a language easier to learn, co-
evolution leads to the best communication.

In future research, we would like to apply
the Language Transmission Engine on new, more
complex tasks and further increase our under-
standing of the properties of the emerged lan-
guages and architectures. Additionally, we would
like to investigate other neuro-evolution tech-
niques and apply them on different search spaces.
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