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ABSTRACT

Learning can be framed as trying to encode the mutual information between input
and output while discarding other information in the input. Since the distribu-
tion between input and output is unknown, also the true mutual information is.
To quantify how difficult it is to learn a task, we calculate a observed mutual in-
formation score by dividing the estimated mutual information by the entropy of
the input. We substantiate this score analytically by showing that the estimated
mutual information has an error that increases with the entropy of the data. We
show that the observed entropy and mutual information can vary wildly depend-
ing on how the data is represented. This suggests that there needs to be a match
between how data is represented and how a model encodes it. Experimentally, we
analyze image-based input data representations and demonstrate that performance
outcomes of extensive network architectures searches are well aligned to the cal-
culated score. Therefore, to ensure better learning outcomes, representations may
need to be tailored to both task and model to align with the implicit distribution of
the model.

1 INTRODUCTION

Sometimes perspective is everything. While the information content of encoded data may not change
when the way it is represented changes, its usefulness can vary dramatically (see Fig. 1). A “useful”
representation then is one that makes it easy to extract information of interest. This in turn very
much depends on who or which algorithm is extracting the information. Evidently the way data is
encoded and how a model “decodes” the information needs to match.

Historically, people have invented a large variety of “data representations” to convey information.
An instance of this theme is the heliocentric vs. geocentric view of the solar system. Before the
heliocentric viewpoint was widely accepted, scholars had already worked out the movements of the
planets (Theodossiou et al., 2002). The main contribution of the new perspective was that now the
planetary trajectories were simple ellipses instead of more complicated movements involving loops'.

In a machine learning context, many have experimented with finding good data representations
for specific tasks such as speech recognition (Logan et al., 2000), different color spaces for face
recognition (Hsu et al., 2002), for increased robustness in face detection (Podilchuk & Zhang, 1998),
and many others. Yet no clear understanding has emerged of why a given representation is more
suited to one task but less for another. We cast the problem of choosing the data representation for
learning as one of determining the ease of encoding the relationship between input and output which
depends both on how the data is represented and which model is supposed to encode it.

Contribution: In this work, we argue that learning a task is about encoding the relationship between
input and output. Each model implicitly has a way of encoding information, where some variations
in the data are easier to encode than others. Armed with this insight, we empirically evaluate dif-
ferent data representations and record what impact data representations have on learning outcomes
and types of networks found by automated network optimization. Most interestingly, we are able

'For a clear illustration, see for example
http://astronomy.nmsu.edu/geas/lectures/lecturell/slide0Ol.html



Under review as a conference paper at ICLR 2020

Figure 1: These images contain different representations of the same information. However, one of
the two is much easier for us to understand. We posit that, for our nervous system, one of the two
images has a higher observed mutual information for the task of recognizing the person.

to show that relative learning outcomes can be predicted by an empirical mutual information score,
which we coin Observed Mutual Information (OMI) score.

1.1 RELATED WORK

This work aims to bring us a bit closer to understanding what makes a given learning task easier
or harder. While there appears to be little work on this question, a fresh-eyed excursion into what
makes an optimization easier or harder (Alpcan et al., 2014) has been ventured before.

Data representations: Data representations have been optimized for a long time. In fact there is a
rich theory of linear invertible representations for both finite and infinite dimensional spaces called
Frame Theory (Christensen et al., 2016). Specific popular examples of frames are Wavelets (Mal-
lat, 1999) and Curvelets (Candes & Donoho, 2000). Empirically tested only on Imagenet, Uber
research (Gueguen et al., 2018) showed that using a data representation closer to how JPEG encodes
information, may help to create faster residual network architecture with slightly better performance.
In a similar spirit in a robotics context, Grassmann and Kahrs (Grassmann et al., 2018) evaluated
learning performance on approximating robot dynamics using various common robot dynamics data
representations such as Euler angles. What is more common in deep learning is to adapt the net-
work architecture to the task at hand. An intriguing recent example taking this idea a step further
are Weight Agnostic Neural Networks (Gaier & Ha, 2019) which have been designed to already
“function” on a task even when starting from randomly initialized weights.

Measuring learning difficulty: There appears to be little newer literature on the question, yet
Thornton (1995) already posed the question of how to measure how easy or difficult a learning task
is in the nineties. Similar to our own findings, they related the difficulty to information theoretic
measures called the information gain (mutual information) and the information gain ratio (very
similar to our proposed OMI value) introduced in the context of decision trees by Quinlan (1986;
2014). Sadly, this interesting line of inquiry does not appear to have received much attention since.
Tin Kam Ho & Basu (2002) take a different road by comparing several possible scores to assess the
difficulty of classification learning problems such as linear separability and feature efficiency. More
commonly, instead of judging task difficulty, there is a vast literature on feature selection (Guyon
& Elisseeff, 2003), e.g. judging how suitable a feature is for a given learning problem. Desirable
features are reliably selected for a learning task (Meinshausen & Biithlmann, 2010) and ideally are
highly predictive of the output variable. Relating the overall difficulty of selecting good features to
how difficult a learning task is, has not been established to our understanding.

2 DATA REPRESENTATIONS AND OBSERVED MUTUAL INFORMATION

The objective of learning can be phrased as finding a function that minimizes the uncertainty of
the output given the input while discarding as much task irrelevant information as possible. In in-
formation theoretic language, this viewpoint was introduced by Tishby et al. (2000) and extended
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by Achille & Soatto (2018) in the form of the objective of the Information Bottleneck (IB) La-
grangian. Given an input x, a model encoding z, an output y and mutual information I(-;-), the
IB-Lagrangian Tishby et al. (2000) aims to minimize the following cost function:
L(p(zl)) = I(x;2) — BI(y; 2)

The model is supposed to find an encoding z of data x that maximizes the mutual information to
output y while also minimizing the mutual information with x. It becomes apparent that the “ideal”
learning task is one where all of the information in x is highly relevant to output y. In this case
minimizing I(z;z) becomes unnecessary and the learning algorithm can place all of its focus on
simply associating = with y. A highly difficult task would be one where I(x;y) is very small in
absolute terms or where estimating I (x; y) is difficult for the chosen model.

An attractive option to evaluate how difficult a learning task is thus is measuring its mutual infor-
mation I(x;y). Empirically estimating the mutual information however leads to errors that have
a bias with a bound proportional to the entropy H(x). To adjust, we divide by the entropy term,
leading to a score of mutual information which takes into account the uncertainty of the estimate.
In the following we bound the deviation of the true mutual information from the estimated mutual
information. This estimated mutual information we coin Observed Mutual Information since it is the
information, dependent on representation and model, that we may ultimately be able to extract from
the data. We begin by stating a result of Paninski (2003) bounding the error in entropy estimation.

Lemma 1 (Paninski (2003)). For a discrete random variable x € X, with the plug-in estimate H ()
on its entropy, based on an i.i.d sample of size m, we have that

B[ () ~ H(@)| < log (14 11 1) <1>

Using the above bound we are able to bound the error in mutual information estimation, in a partic-
ular regime which is relevant for several applications of interest, such as object detection.

Definition 1 (Distillation regime). In the distillation regime we assume that:

i The samples x have very high entropy H (z).
ii The entropy of y is small with respect to the entropy of x.

iii The number of samples m of x that we have is small compared to H ().

Example 1. Typical object detection tasks are in the distillation regime. The entropy of images is
high (property 1), while labels are compactly represented (property 2). Furthermore, the number of
image samples is small compared to all possible samples (property 3).

Lemma 2 (Mutual information bias). For discrete random variables x € X, y € ), with the plug-in
estimates H (+) on their entropy, based on an i.i.d sample of size m, we bound the deviation of the
estimated mutual information to the true mutual information in the distillation regime and conclude

B[ (z3y) — I(;y)]| < 2(H(2) + € — log(m)))

Proof. We start with a similar left-hand side as Ineq. 1 and expand the mutual information with
entropy terms:
Bl (2;y) — I(z;9)]| = |E[H(2) + H(y) - H
= [E[H(z) — H(z) + H(y) — H(y) + H(z,y) — H(z,y)]]

< |[E[H(z) — H(x)][ + [E[H(y) — H(y)]| + [E[H (z,y) — H(z,y)]|

=

1(z,y) — H(x) = H(y) + H(z,y)]|

Using the stated assumptions and applying Ineq. 1 we arrive at the following bound using the asymp-

totic equipartition property (AEP) |X| < 2H(®)+¢ (Cover&Thomas, 2012):
Qti) ﬁﬁti)
m m

o)1 -1 |
[E[I(z;9)—1(z;9)]] < log (1 + T) + log (1 + + log (1 +

AEP oH(z)+e _ 1 oH(y)+e _ q oH(z,y)+e _ |
< log<1+7) +log(1—|— 7) +log(1+7)
m m m

@, ii) 2H(a;)+e -1
< 2log (1 + 7) w 2(H(z) + ¢ —log(m)))

m
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A similar relationship can be extracted from the information bottleneck bound (Shamir et al., 2010).

Theorem 3 (Theorem 4, Shamir et al. (2010)). For any probability distribution p(x,y), with a
probability of at least 1 — & over the draw of the sample of size m from p(z,y), we have that for all
bottleneck variables z,

I(y; 2) — I(y; 2)| < B(y)B(x,2)

Bly) = /01og7(ny|/5)

B(z,z) = (Cl log(m)\/|Z|1(x; z) + Co| Z[>/*1(2; 2)Y/* + Csl(a; z))

Again we consider the case where || is small, |X| is large, and where the learned bottleneck
variable z captures the output variable y exactly (hence | Z| is small). Then I(z; z) = H(x) — €. For

large terms H (z) the above bound becomes dominated by H () s.t. (for fixed ||, m, &)

I(y:2) — I(y;2)| < O(H(x))

When it comes to mutual information, we care about a high mutual information between input and
output, but also about a reliable estimate of this mutual information. From the above calculations,
we distill that the estimated entropy H (z) has a decisive effect on the uncertainty of the achievable
mutual information between bottleneck variable z and output y. As a metaphor imagine the task
of predicting the birthrate in Mongolia from the movements of the stock market for a given month.
Most certainly one will be able to correlate the two. This is a common occurrence called spurious
correlation (Fan et al., 2012) making us fools of randomness (Taleb, 2005). Hence we arrive at a
score for mutual information that captures both the magnitude of the estimated mutual information
and an estimate of the uncertainty of this estimate.

Definition 2 (OMI). Given random variables x and y, empirical mutual information I (z;y), and
empirical entropy H(x), then the observed mutual information score (OMI) is defined as
I(x:
OMI(z, y) = 1Y)
H(x)

A similar thought process of introducing the same mutual information score has long been used for
selecting features in decision trees (Quinlan, 1986). While we base our score on a whole dataset
of (x, y)-pairs, the information gain ratio (IGR) for decision trees are feature-level criteria. Having
defined our focus on mutual information and its associated OMI values, we turn our attention to the
effect data representations may have on the learning process. We begin by defining what we mean
when we talk about a data representation.

Definition 3. A data representation r € R is the output of a left-invertible mapping m(-) : X — R
applied to the “original” data x € X.

r=m(z),Vee X, z=m '(r),VreR

Therefore, all data representations are in a sense “equivalent”. Since they are invertible they share
the same information content I (z;y) = I(m(z);y)). Yet this is only half true. Clearly, how data is
represented does make a difference. As a “worst case”, an encrypted version of a dataset is unlikely
to be useful for a learning task. In a perfect setting, a dataset could be represented in a way that
directly maps to the desired output while keeping around additional “bits” needed to reconstruct the
input. In such a case, learning would only require disregarding the extra dimensions.

To understand what impact a data representation may have we will employ the idea of expected cod-
ing length E[/(z)] and focus on what happens when we choose the “wrong code”. From Information
Theory (Cover & Thomas, 2012), we learn that the most efficient encoding we can possibly find is
lower bounded by the entropy of the distribution we are trying to compress. In this case, we assume
that we have a candidate distribution ¢(x) that we are trying to fit to the true distribution p(z). The
expected coding length of our candidate distribution can then never be smaller than the entropy of
the true distribution (Cover & Thomas, 2012): E[l(z)] = Hy(x) > Hy(z).
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Theorem 4 ((Wrong code) Theorem 5.4.3 (Cover & Thomas, 2012)). The expected length under
p(z) of the code assignment l(x) = [log ﬁz)] satisfies

H(p) + D(pllq) < E,[I(X)] = H(x) < H(p) + D(pllq) + 1 )

In the following we will assume that any function family J has an associated candidate distribution
q(+) through which it measures how uncertain a variable is, e.g. linear regression uses a normal
distribution and assesses uncertainty via the determinant of the covariance matrix. The difficulty
with assuming a candidate distribution is that it data may not follow the same distribution. Given
such a mismatch, the model will overestimate the entropy of the distribution as shown in theorem 2.

Theorem 5 (Representation-Model-Alignment). Assuming a candidate distribution q(-) and repre-
sentations r1, o with D(p(r1)]|q(r1)) > D(p(r2)||q(r2)) + 1 we have that

Hy(r1) > Hy(ro)
Proof. From theorem 2 we know that H(p(r)) + D(p(r)lla(r)) < H(q(r)) < H(p(r)) +

(
D(p(r)|lq(r)) + 1. Thus Hy(r1) — Hy(ra) > H(p(r1)) + D(p(ri)llg(r1)) — H(p(r2))
D(p(r2)llq(r2)) =1 = D(p(r1)llq(r1)) — D(p(r2)llg(r2)) =1 >0

[

A consequence of the above theorem is that the representation of the data distribution influences
the observed entropy by changing the alignment of the true distribution to the assumed candidate
distribution of the model. Critically for real-world situations, the wrong code theorem invalidates the
assumption that the estimated mutual information does not change when an invertible transformation
is applied. The true mutual information does indeed not change, yet this would be purely anecdotal
if one were to encrypt the data and tried to learn from it. Changing data representations (invertible)
can better align true task and assumed model distribution in the sense of minimizing relative entropy
between candidate ¢(-) and true distribution p(-). This then has direct influence on the observed
mutual information and the OMI score. The closer representation r aligns the true distribution to the
model candidate distribution, the smaller the data entropies H () and H (y|r) will be. In this sense
there are thus better and worse data representations given a model and learning task.

3 EXPERIMENTS

The theoretical findings we presented in the previous sections have to be verified in the real world.
We therefore conducted a wide ranging empirical study on their relevance over a number of different
datasets and network architectures. In total we evaluated over 8000 networks of varying sizes. We
provide the full code and data required to replicate our experiments at the following URL:

https://drive.google.com/open?id=1D8wICzJVPJRUWBOyS5WgceslXZfurY34g

3.1 DATASETS

To have a chance that our findings are applicable beyond the scope of this publication we chose a di-
verse set of four datasets that capture different vision tasks. We chose two datasets for classification
(KDEF and Groceries) and two for regression (Lane Following and Drone Racing). Sample images
for each of the datasets can be found in the appendix.

Table 1: Dataset overview

Dataset input  output split (train/val/test)  loss

Drone 346 x 260 x 1 3x1 10806/1403/1339 L1
Groceries 120 x 120 x3 25 x 1 6409/1018/1016 NLL
KDEF 91 x 127 x 3 7x1 3931/470/497 NLL
LF 160 x 120 x 3 1x1 10850/1386/1364 L1

Lane Following (LF): We generated this dataset using the Duckietown Gym (Chevalier-Boisvert
et al., 2018), which is a simulation environment used for the Al Driving Olympics placed in Duck-
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ietown (Paull et al., 2017; Zilly et al., 2019)%. Tt is the only simulated dataset we used in our ex-
periments. Data is generated using a pure pursuit lane following algorithm, that returns the desired
angular velocity. Longitudinal velocity is assumed to be constant. The learned model has to predict
the angular velocity returned by the expert based on the image of the lane. Both train and test sets
include domain randomization. To reduce the cost of training we downsampled each of the images
to a third of their original size.

KDEF: This dataset is based on an emotion recognition dataset by Lundqvist et al. (1998). Each of
the images shows male and female actors expressing one of seven emotions. Images are captured
from a number of different fixed viewpoints and centered on the face. To add more diversity to the
data we added small color and brightness perturbations and a random crop. Moreover, since the
dataset provides few samples, we downsampled each of the images to a sixth of their original size.

Drone Racing: This dataset is based on the Drone Racing dataset by Delmerico et al. (2019). We
use the mDAVIS data from subsets 3, 5, 6, 9, and 10. While the original dataset provides the full
pose (all six DOF), we train our feedforward networks to recover only the rotational DOF (roll,
pitch, and yaw) from grayscale images. We matched the IMU data, which is sampled at 1000Hz
to the timestamp for each grayscale image captured at 50Hz using linear interpolation. Since the
images do not have multiple color channels we did not investigate a separate YCbCr or PREC rep-
resentation for this dataset.

Groceries: We use the Freiburg Groceries Dataset (Jund et al., 2016) and their original “test0/train0”
split. Our only modifications are that we reserve a random subset of the test data for the evaluation
of our hyperparameter optimization and that we reduce the size of the images from 256 x 256 to
120 x 120 pixels. Each of the images has to be classified into one of 25 categories.

3.2 OMI ESTIMATION

To estimate the OMI values, we calculated the individual entropies H (z), H(y), and H(z,y). To

compute H () and H(x,y), we assume a multivariate Gaussian distribution on the variables. The
entropy is then computed as H(z) = 1 log(det(2meX)), where  denotes the covariance matrix
of z. To calculate this we apply an SVD decomposition and use the sum of log singular values to
estimate the entropy. To avoid severe underestimation (entropy estimation is biased to underesti-
mate (Paninski, 2003)), entropy values are lower bounded by 2. Entropy values for y are calculated
the same way for the regression task. For the classification task, we assume a multinoulli distribution

and estimate the entropy of y accordingly.

3.3 BAYESIAN HYPERPARAMETER OPTIMIZATION

Manually tuning the hyperparameters for neural networks is both time consuming and may introduce
unwanted bias into experiments. There is a wide range of automated methods available to mitigate
these flaws (Bergstra & Bengio, 2012; Hutter et al., 2015). We utilize Bayesian optimization to
find the set of optimal hyperparameters for each network. Since the initial weights of our net-
works are sampled from a uniform random distribution we can expect the performance to fluctuate
between runs. Due to its probabilistic approach Bayesian optimization can account for this uncer-
tainty (Shahriari et al., 2015). Moreover, it can optimize categorical and continuous dimensions
concurrently. The dimensions and their constraints were chosen to be identical for each representa-
tion but were adapted to each dataset. For an in-depth introduction to Bayesian optimization we refer
to Snoek et al. (2012). More information on our particular implementation of Bayesian optimization
can be found in the appendix.

3.4 NETWORK ARCHITECTURES

We investigated three basic architectures. Our optimization was constrained to the same domain for
all representations of a dataset for each of the network architectures. The full list of constraints for
each network and dataset can be found in the code accompanying this paper. The initial learning
rate was optimized for all architectures.

https://www.duckietown.org/
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Convolutional Networks: We use a variable number of convolutional layers (LeCun et al., 1998),
with or without maxpooling layers between them, followed by a variable number of fully connected
layers. Moreover, kernel sizes and number of filters are also parametrized.

Dense Neural Networks: These networks consist of blocks of variably sized fully connected layers.
We optimize the activation function after each layer as a categorical variable.

ResNets: The Residual Neural Networks or ResNets (He et al., 2015) are made up of a variable
number of residual layers. Each of the layers contains a variable number of convolutions which
themselves are fully parametrized.

3.5 REPRESENTATIONS

While one could select an arbitrary number of representations for images, we limit ourselves to
five which have previously been used in image processing. Our focus is not on findings the best
representations but to show how sensitive learning processes are to the representation of input data.
Sample images for each of the representations can be found in the appendix.

RGB: RGB is likely the representation we use most in our everyday life. Almost all modern dis-
plays and cameras capture or display data as an overlay of red, green and blue color channels. For
simplicity we refer to the grayscale images of the Drone Racing dataset as being “RGB”".

YCbCr: The YCbCr representation is used in a number of different image storage formats such as
JPEG and MPEG (David S. Taubman, 2013). It represents the image as a combination of a lumi-
nance and two chrominance channels. It is useful for compression because the human eye is much
less sensitive to changes in chrominance than it is to changes in luminance.

PREC: This representation partially decorrelates the color channels of the image based on pre-
vious work on preconditioning convolutional neural networks (Liu et al., 2018). For an image
x € R™*™X¢ with ¢ channels we first calculate the expected value of the covariance between
the channels for each image in the dataset: ¥ = EpE,,, [x”xz;] € Re*¢, where z;; € R is
the channel vector at pixel (4,7) of image 2 € D. We then solve the eigenvalue problem for
obtaining real eigenvalues A and V' containing the eigenvectors. A small € is added for numerical

stability. u is stored in memory and consecutively applied to each image in the dataset. We get
U = diag(A + 61)7% V' which yields @prec = Zpgp * U.

DCT: The 2D type II discrete cosine transform (DCT) is a frequency-based representation. Low fre-
quency coefficients are located in the top left corner of the representation and horizontal/vertical fre-
quencies increase towards the right or down, respectively. This representation applies the DCT trans-
form to each of the channels separately. DCT has been used extensively for face detection (Hafed
& Levine, 2001; Pan et al., 2000) and all its coefficients bar one are invariant to uniform changes in
brightness (Er et al., 2005).

Block DCT: Unlike for the DCT representation we apply the discrete cosine transform not to the
whole image but to 8 x 8 non-overlapping patches of each of the channels. This exact type of DCT is
widely used in JPEG compression by quantizing the coefficients of the DCT and applying Huffman
encoding (David S. Taubman, 2013).

3.6 TRAINING

Each network was trained using an Adam optimizer (Kingma & Ba, 2014). Training was terminated
when there were more than 7 previous epochs without a decrease in loss on the validation set or after
30 epochs were reached.

4 DISCUSSION AND RESULTS

After evaluating a total of 5753 networks, 3702 of which finished training, we have verified our
intuition that representations are important. We see a fairly consistent pattern over all datasets of
RGB and YCbCr being the best representations, followed by PREC and blockwise DCT, while DCT
falls short (see Fig. 3).
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Figure 2: Performance of the RGB, YCbCr, Block DCT, PREC (blue, orange, green, red) on the
datasets. From left to right: KDEF, Groceries, Lane Following, Drone Racing. DCT was omitted
because of its very small OMI scores.
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Figure 3: Performance of representations on the datasets. From left to right: KDEF, Groceries, Lane
Following, Drone Racing

Moreover, we observe the great importance of hyperparameters in the spread of results for each net-
work architecture. Had we chosen to hand-tune our parameters and accidentally picked a very poor
performing network for the RGB representation we could have easily come to the conclusion that
DCT achieves better results on all datasets. As we predicted, the performance of a representations
also depends greatly on the network architecture. This is especially visible for the lane following
dataset. We can see that, surprisingly, dense networks are among the best for both RGB and YCbCer,
while they fall far behind on all other representations.

The OMI scores we proposed show strong correlation with the results we obtained from architecture
search. They can even predict the comparatively small differences between the other representations
with reasonable accuracy (see Fig. 2). It is unclear why the prediction fails for some of the datasets,
especially the linear score on the KDEF dataset. Overall, we observe the significant correlated effect
representation has on estimated entropy, OMI scores as well as performance.

5 CONCLUSION

This work started by trying to pave a way to the exciting task of determining the difficulty of a
learning task. To achieve this we introduced OMI, as a score that takes both estimated mutual
information and possible variance of such an estimate into account. If the score proves itself also in
future works, it may serve as a useful tool for automatic representation or architecture search. As
outlined, this will depend to a great deal on how well we understand the candidate distributions of
network architectures and representations that are currently in use. Similarly, it will be beneficial to
study further techniques on removing the bias in the estimation of mutual information and entropy.
We have shown that in many problems of interests the naive computation of mutual information is
biased and representation dependent; our OMI score partially remove this bias. This score also now
provides a criterion to evaluate different representations in a principled way.
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APPENDIX
RESULTS TABLE AND NOTES ON NUMERICAL STABILITY

Table 2: Estimated linear (lin) and convolutional (conv) mutual information (MI) and OMI values
for all representations and datasets.

linear convolutional
Dataset Representation HX Ml OMI HX Ml OMI
Block DCT 145.728 0.48 0.003 154.426 0.481 0.003
PREC 152.586 0.48 0.003 171.6 0.482 0.003
LF DCT -65.737  -1.042 0.016 -49.506  -0.939 0.019
RGB 127.45 0.474 0.004 146.184 0.48 0.003
YCbCr 98.935 0.469 0.005 108.237 0.473 0.004
Block DCT 173.03 0.165 0.001 185.891 0.166 0.001
PREC 147.484 0.159 0.001 165.244 0.163  0.001
Groceries DCT -68.498 -22.308 0.326 -57.204 -19.511 0.341
RGB 139.384 0.155 0.001 158.745 0.16 0.001
YCbCr 114.42 0.132  0.001 128.81 0.147 0.001
Block DCT 187.756 0.289 0.002 228.591 0.29 0.001
Drone DCT -78.147  -5.093 0.065 -29.227  -2.692 0.092
RGB 142.092 0.28 0.002 182.263 0.287 0.002
Block DCT 164.168 0.406 0.002 175.626 0.408 0.002
PREC 134.03 0.398 0.003 145.822 0.401 0.003
KDEF DCT -96.852 -14.767 0.152 -79.78  -12.851 0.161
RGB 96.9 0.333 0.003 116.146 0.375 0.003
YCbCr 69.619 0.169 0.002  84.362 0.275 0.003

To narrate Tab. 2 we note that that estimating small entropy values is very error prone. When
assuming a normal distribution, the entropy is calculated via the sum of the logarithm of eigenvalues
of the covariance matrix of the data. The conditioning of the logarithm however gets worse, the
closer its argument is to zero. Eigenvalues close enough to zero are thus likely to carry a significant
error when used for entropy computation. This all is to say that while purely mathematically it is
impossible to have negative mutual information values, numerically such things are bound to happen
when dealing with small eigenvalues as is prominent with the DCT representation.

BAYESIAN OPTIMIZATION SUPPLEMENTARY INFORMATION

While there have been some theoretical proposals that would allow Bayesian optimization to be
run in parallel asynchronously (Snoek et al., 2012), we restrict ourselves to a simple form of batch
parallelization evaluating n = 6 points in parallel. We acquire the points by using the minimum
constant liar strategy (Chevalier & Ginsbourger, 2012). The base estimator is first used after 10
points have been evaluated. Our acquisition function is chosen at each iteration from a portfolio of
acquisition functions using a GP-Hedge strategy, as proposed in (Brochu et al., 2010). We optimize
the acquisition function by sampling it at n points for categorical dimensions and 20 iterations of
L-BFGS (Liu & Nocedal, 1989) for continuous dimensions.

Since the optimizer has no information about the geometric properties of the network or if the
network can fit in the systems memory, some of the generated networks cannot be trained. Two
common modes of failure were too many pooling layers (resulting in a layer size smaller than the
kernel of subsequent layers) and running out of memory, which was especially prevalent for dense
networks. In our experiments we observed that roughly 35% of all networks did not complete
training. To stop the Bayesian optimizer from evaluating these points again we reported a large
artificially generated loss to the optimizer at the point where the network crashed. The magnitude
of this loss was chosen manually for each dataset to be roughly one order of magnitude larger than
the expected loss. The influence of this practice will have to be investigated in future research.
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REPRESENTATION SAMPLES

Figure 4: Image from the Groceries dataset in various representations. From left to right: RGB,
YCBCR, PREC, DCT, blockwise DCT (cropped to show relevant coefficients, contrast boosted).

DATASET SAMPLES

Figure 5: Samples from each of the datasets. From left to right: Lane Following, KDEF, Groceries
and Drone Racing.
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