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ABSTRACT

Supervised deep learning methods require cleanly labeled large-scale datasets, but
collecting such data is difficult and sometimes impossible. There exist two pop-
ular frameworks to alleviate this problem: semi-supervised learning and robust
learning to label noise. Although these frameworks relax the restriction of super-
vised learning, they are studied independently. Hence, the training scheme that is
suitable when only small cleanly-labeled data are available remains unknown. In
this study, we consider learning from bi-quality data as a generalization of these
studies, in which a small portion of data is cleanly labeled, and the rest is corrupt.
Under this framework, we compare recent algorithms for semi-supervised and
robust learning. The results suggest that semi-supervised learning outperforms
robust learning with noisy labels. We also propose a training strategy for mixing
mixup techniques to learn from such bi-quality data effectively.

1 INTRODUCTION

Learning from imperfect data is essential for applying machine learning, especially data-hungry
deep learning, to real-world problems. One approach to handling this problem is semi-supervised
learning (SSL), where training data consist of a small amount of labeled data and a large amount
of unlabeled data. Another approach is robust learning to label noise (RLL), wherein all data are
labeled, but some of them are mislabeled.

SSL leverages large unlabeled data to improve the performance of supervised learning on a limited
number of labeled data. In the context of deep SSL, one effective method is to train neural networks
to maintain consistency for a small perturbation of unlabeled inputs (Miyato et al. (2018); Tarvainen
& Valpola (2017); Verma et al. (2018)). Oliver et al. (2018) refers these methods as consistency
regularization.

In the RLL setting, learners need to enhance their performance using corrupted labels and avoid the
performance deterioration caused by such data. This requirement is particularly important for deep
neural networks because they have ample capacity to remember whole samples even if their labels
are completely random (Arpit et al. (2017); Zhang et al. (2017a)). To tackle this problem, some
methods use a small amount of clean data to estimate noise transition matrix (Xiao et al. (2015);
Hendrycks et al. (2018)) or to learn to select possibly correctly-labeled samples (Jiang et al. (2018);
Jenni & Favaro (2018)).

Although both SSL and RLL aim to alleviate the limited-data problem, they have been studied
independently and evaluated using different benchmarks. However, if only a small amount of clean
data is available, they can be regarded as similar problems. In such as situation, can RLL outperform
SSL under the same settings? This question was our initial motivation to unify these two lines of
research.

In this paper, we introduce a generalization of SSL and RLL, based on the concept of trusted data
(Charikar et al. (2017); Hendrycks et al. (2018)) in the literature of RLL. More precisely, we assumed
that some labels are guaranteed to be clean, and the rest are noisy. The two learning frameworks
can be unified by controlling the ratio of corrupted labels to all labels and the noisiness of label
corruption.

Using the shared evaluation procedure in Oliver et al. (2018), we compared recent SSL and RLL
algorithms using image classification task and found that the existing RLL methods using a small
amount of clean data cannot outperform SSL under this setting. This finding suggests that such RLL
algorithms cannot use noisy labels effectively.
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Therefore, it is necessary to adaptively use SSL and RLL in a data-driven manner. As a baseline
learning algorithm, we propose combining the mixup losses for SSL (Verma et al. (2018)) and
RLL (Zhang et al. (2017b)); the results obtained are comparable to those of SSL- and RLL-specific
methods and indicate the effective use of useful information from noisy labels.

2 LEARNING FROM BI-QUALITY DATA

In this section, we describe the setting of learning from bi-quality data, which is a generalization of
SSL and RLL. In this formulation, we assume that the given data consist of two parts: trusted data
DT (for which the labels are always correct) and untrusted data DU ( for which some labels might
be wrong). Learners are allowed to access the information irrespective of whether each sample is
from DT or DU .

Let us denote the ratio of trusted and untrusted data to the entire data p as follows:

p =
|DT |

|DT |+ |DU |
(thus 1− p =

|DU |
|DT |+ |DU |

). (1)

We also introduce quality as

q = 1− D(pU (y|x)||pT (y|x))
D(p(y)||pT (y|x))

, (2)

where pT (y|x) and pU (y|x) are the conditional probabilities of labels when inputs of trusted data
and untrusted data, respectively, are given, and D is a divergence between two probability distribu-
tions (e.g., Kullback-Leibler divergence). In equation 2, q ∈ [0, 1]. Obviously, q = 0 if the labels
are completely independent of the input features (i.e., completely random), and q = 1 if the labels
are clean. We assume that the quality of untrusted data qU is in [0, 1], and that of trusted data qT is
1.

We believe that this setting is realistic. Suppose that there are unlabeled data. Under budget con-
straint, one strategy to label this dataset as training data is to divide the data to two parts and spend
most of the budget on high-quality labeling to acquire DT (e.g., using experts) and the rest on
lower-quality labeling to obtain DU (e.g., using crowdsourcing), where usually |DT | ≪ |DU |.
Under this generalized framework, SSL is equivalent to the particular case where q = 0, that is,
labels of untrusted data are entirely random and give no useful information. In SSL, such labels
are usually ignored, and the data are treated as unlabeled. Meanwhile, RLL without trustable data
is another special case, where p = 0 and 0 󰃥 q < 1. In some studies on RLL, the setting p > 0
is used explicitly (Charikar et al. (2017); Li et al. (2017); Hendrycks et al. (2018)) and implicitly
(Jiang et al. (2018); Jenni & Favaro (2018)).

Intuitively, when q is relatively high, we can expect some performance gain by utilizing untrusted,
but somewhat informative, labels with RLL. On the contrary, when q is almost zero, untrusted data
are not informative anymore, and better generalization may be obtained using only standard SSL.
A critical problem in practice, however, is that we cannot know the exact quality of untrusted data,
and, therefore, we cannot decide the best learning strategy in advance. To handle such data, we need
an adaptive mechanism to properly fuse SSL and RLL in a data-driven manner.

To realize this goal, we propose to combine techniques for SSL and RLL. We use the convex com-
bination of loss functions for SSL Lsemi and RLL Lrobust. That is, with an additional hyperparameter
γ, the loss function for untrusted data is defined as follows:

LU = γLrobust + (1− γ)Lsemi. (3)

For Lrobust and Lsemi, any loss functions for SSL and RLL can be used 1. In this study, as a baseline
of this setting, we combine mixup techniques for SSL (Verma et al. (2018)) and RLL (Zhang et al.
(2017b)).

1Here, each L· is cross entropy loss.
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Algorithm 1 mixmixup: learning from bi-quality data

Prepare trusted set: DT , untrusted set: DU

Initialize neural network f
Set hyper parameters: α,β, γ
Set loss function: L(·, ·): categorical cross entropy

for k ∈ {0, 1, . . . ,K − 1} :
Sample λα ∼ Beta(α,α),λβ ∼ Beta(β,β)
Sample (xi, yi), (xj , yj) from DT

LT = L(f(λαxi + (1− λα)xj),λαyi + (1− λα)yj)
Sample (x′

i, y
′
i), (x

′
j , y

′
j) from DU

Predict y′′i = f(x′
i) and y′′j = f(x′

j)
Lrobust = L(f(λαx

′
i + (1− λα)x

′
j),λαy

′
i + (1− λα)y

′
j)

Lsemi = L(f(λβx
′
i + (1− λβ)x

′
j),λβy

′′
i + (1− λβ)y

′′
j )

LU = γLrobust + (1− γ)Lsemi
Update parameters of f with LT + σ(k)LU ⊲ For σ, see Section 3

3 MIXMIXUP
mixup is a regularization technique, where neural network models are trained on virtual training
pairs (x̃, ỹ), where

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj . (4)
Here, (xi, yi) and (xj , yj) are sampled from training data, and λ ∈ [0, 1] is sampled from Beta
distribution. Zhang et al. (2017b) showed that this method alleviates the performance decrease
under label corruption.

In Verma et al. (2018), mixup is used for SSL as consistency regularization (Oliver et al. (2018)).
Here, for unlabeled inputs xU

i , xU
j , neural networks are learned to map λxU

i + (1− λ)xU
j to λyUi +

(1− λ)yUj , where yUi , yUj are the predicted outputs corresponding to xU
i , xU

j .

We show the details in Algorithm 1. The parameters of neural networks are updated with a com-
bination of losses on trusted data LT and untrusted data LU as LT + σ(k)LU . We use sigmoid
scheduling σ(k) as Verma et al. (2018).

Because this method mixes the mixup losses, hereinafter we refer to our method as mixmixup.

4 EXPERIMENTS
4.1 SETTINGS

We use CIFAR-10 (Krizhevsky (2009)), which has 50,000 of 10-category images. Following the
common protocol of SSL in Oliver et al. (2018), we split the training dataset into 45,000 images for
training and 5,000 for validation. To simulate bi-quality data, we sample 4,000 examples from the
training data as trusted data and the rest as untrusted data. We randomly replace each label of the
untrusted samples with another one with a given probability, which is a common protocol in RLL
(Zhang et al. (2017b); Jiang et al. (2018)). We use the non-corrupted validation data and test data
for hyperparameter tuning and final evaluation, respectively.

Following Oliver et al. (2018) and Verma et al. (2018), we use WRN-28-2 (Wide ResNet 28-2,
proposed in Zagoruyko & Komodakis (2016)) as the image classifier. To optimize the network, we
use SGD with a learning rate of 0.1, a momentum of 0.9, a weight decay of 1.0× 10−4 and a mini-
batch size of 256. We train networks for 1.6 × 105 iterations, following Verma et al. (2018). We
implement the model with PyTorch v1.0 (Paszke et al. (2017) ) and tune hyperparameters α,β and
γ in Algorithm 1 with a Bayesian optimization algorithm in Optuna v0.8 2.

4.2 RESULTS
4.2.1 LEARNING FROM BI-QUALITY DATA

According to the settings in Section 4.1, we trained WRN-28-2 with bi-quality data of different
quality. We randomly replace 40% and 100% of the labels of the untrusted data to simulate label

2https://optuna.org/

3

https://optuna.org/


The 2nd Learning from Limited Labeled Data (LLD) Workshop, ICLR2019

Table 1: mixmixup can handle bi-quality data effectively. Test accuracy of WRN-28-2 trained
on bi-quality CIFAR-10. In the columns under TRUSTED and UNTRUSTED, we list the number of
samples of trusted and untrusted data with quality q.

METHOD TRUSTED UNTRUSTED ACCURACY

A Basic 4,000 N/A 0.72
input mixup (Zhang et al. (2017b)) 4,000 N/A 0.78

B Basic 4,000 41,000 (q = 0.0) 0.29
Basic 4,000 41,000 (q = 0.6) 0.78

C input mixup (Zhang et al. (2017b)) 4,000 41,000 (q = 0.0) 0.43
input mixup (Zhang et al. (2017b)) 4,000 41,000 (q = 0.6) 0.89

D mixmixup (ours) 4,000 41,000 (q = 0.0) 0.88
mixmixup (ours) 4,000 41,000 (q = 0.6) 0.90

Table 2: Semi-supervised methods can surpass robust learning methods under shared settings.
Test accuracy of WRN-28-2 trained on CIFAR-10 with other state-of-the-art methods for semi-
supervised learning and robust learning. Here, † and †† refer to the scores in the tables are from
Oliver et al. (2018) and our re-implementations, respectively.

METHOD TRUSTED UNTRUSTED ACCURACY

A
input mixup (Verma et al. (2018)) 4,000 41,000 (no label) 0.89

Mean teacher† (Tarvainen & Valpola (2017)) 4,000 41,000 (no label) 0.84
VAT† (Miyato et al. (2018)) 4,000 41,000 (no label) 0.86

B MentorNet DD-MLP†† (Jiang et al. (2018)) 4,000 41,000 (q = 0.6) 0.87
GLC††(Hendrycks et al. (2018)) 4,000 41,000 (q = 0.6) 0.84

C mixmixup (ours) 4,000 41,000 (q = 0.0) 0.88
mixmixup (ours) 4,000 41,000 (q = 0.6) 0.90

corruption. From the definition of quality (equation 2), the quality of these data is 0.6 and 0.0,
respectively. The former corresponds to RLL with trusted data, and the latter to SSL.
4.2.2 COMPARISON WITH OTHER METHODS

Table 2 presents the test accuracy of SSL methods (Verma et al. (2018); Tarvainen & Valpola (2017);
Miyato et al. (2018), Table 2 A) and RLL methods with trusted data (Jiang et al. (2018); Hendrycks
et al. (2018), Table 2 B) with the results obtained using mixmixup (Table 2 C). In all the experiments,
the same network (WRN-28-2) and the same dataset split mentioned above are used. Note that SSL
methods in Table 2 A does not use labels of untrusted data.

Surprisingly, our results suggest that SSL (Table 2 A) can provide better performance than RLL
(Table 2 B) with trusted data for identical settings. This result suggests the difficulty of learning
robustly from partially corrupted labels preventing overfitting.

Further, mixmixup can handle both SSL and RLL. Moreover, the accuracy when the quality is 0.6
(corresponding to RLL) is superior to that for quality 0.0 (corresponding to SSL), indicating that
mixmixup can effectively use information from corrupted labels.

5 CONCLUSION
In this paper, we introduce a novel framework of weakly supervised learning by unifying SSL and
RLL, which have been independently studied. To handle this problem, we propose to mix mixup
for SSL and RLL. This method empirically works well and achieves competitive results with semi-
supervised and robust learning specific methodologies.

In addition, our experiments indicate that the performance of some RLL with trusted data might be
inferior to that of SSL under identical settings. This result suggests that the existing RLL methods
cannot effectively exploit the information which should be extracted from noisy labels.

Our proposed method does not use the estimated quality; instead some hyperparameters are intro-
duced. The use of quality estimation may ease hyperparameter tuning, but is still an open question.
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