
Convergence Analysis of Inexact Randomized Iterative Methods

Nicolas Loizou ∗ Peter Richtárik †

May 28, 2019

Abstract

In this paper we present a convergence rate analysis of inexact variants of several randomized
iterative methods. Among the methods studied are: stochastic gradient descent, stochastic
Newton, stochastic proximal point and stochastic subspace ascent. A common feature of these
methods is that in their update rule a certain sub-problem needs to be solved exactly. We
relax this requirement by allowing for the sub-problem to be solved inexactly. In particular,
we propose and analyze inexact randomized iterative methods for solving three closely related
problems: a convex stochastic quadratic optimization problem, a best approximation problem
and its dual, a concave quadratic maximization problem. We provide iteration complexity
results under several assumptions on the inexactness error. Inexact variants of many popular
and some more exotic methods, including randomized block Kaczmarz, randomized Gaussian
Kaczmarz and randomized block coordinate descent, can be cast as special cases. Numerical
experiments demonstrate the benefits of allowing inexactness.

Keywords Inexact methods · Iteration complexity · Linear systems · Randomized block coordinate
descent · Randomized block Kaczmarz · Stochastic gradient descent · Stochastic Newton method·
Quadratic optimization · Convex optimization
Mathematical Subject Classifications 68Q25 · 68W20 · 68W40 · 65Y20 · 90C15 · 90C20 ·
90C25 · 15A06 · 15B52 · 65F10

1 Introduction

In the era of big data where data sets become continuously larger, randomized iterative methods
become very popular and they are now playing major role in areas like numerical linear algebra,
scientific computing and optimization. They are preferred mainly because of their cheap per itera-
tion cost which leads to the improvement in terms of complexity upon classical results by orders of
magnitude and to the fact that they can easily scale to extreme dimensions. However, a common
feature of these methods is that in their update rule a particular subproblem needs to be solved
exactly. In the case that the size of this problem is large, this step can be computationally very
expensive. The purpose of this work is to reduce the cost of this step by incorporating inexact
updates in the stochastic methods under study.

1.1 The Setting

In this paper we are interested to solve three closely related problems:

• Stochastic Quadratic Optimization Problem

• Best Approximation Problem

• Concave Quadratic Maximization Problem

We start by presenting the main connections and key relationships between these problems as well
as popular randomized iterative methods (with exact updates) for solving each one of them.

∗University of Edinburgh
†King Abdullah University of Science and Technology (KAUST); University of Edinburgh, MIPT

1

Stochastic Optimization Problem: We study the stochastic quadratic optimization problem

min
x∈Rn

f(x) := ES∼D[fS(x)], (1)

first proposed in [46] for reformulating consistent linear systems

Ax = b. (2)

In particular, problem (1) is defined by setting:

fS(x) :=
1

2
‖Ax− b‖2H =

1

2
(Ax− b)>H(Ax− b), (3)

where H is a random symmetric positive semi-definite matrix H := S(S>AB−1A>S)†S> that
depends on three different matrices: the data matrix A ∈ Rm×n of the linear system (2), a random
matrix S ∈ Rm×q ∼ D and on an n×n positive definite matrix B which defines the geometry of the
space. Throughout the paper, B is used to define a B−inner product in Rn via 〈x, z〉B := 〈Bx, z〉
and an induced B−norm, ‖x‖B := (x>Bx)1/2. By † we denote the Moore-Penrose pseudoinverse.

The expectation in (1) is over random matrices S with m rows (and arbitrary number of
columns q, e.g., q = 1) drawn from an arbitrary (user defined) distribution D. The authors of
[46] give necessary and sufficient conditions that distribution D needs to be satisfied for the set of
solutions of (1) to be equal to the set of solutions of the linear system (2); a property for which
the term exactness was coined in (see Section 3 for more details on exactness).

In [46], problem (1) was solved via Stochastic Gradient Descent (SGD)1:

xk+1 = xk − ω∇fSk
(xk), (4)

and a linear rate of convergence was proved despite the fact that f is not necessarily strongly
convex, (1) is not a finite-sum problem and a fixed stepsize ω > 0 is used.

The stochastic optimization problem (1) has many unique characteristics mainly because it has
constructed in a particular way in order to capture all the information of the linear system (2).
For example it holds that fS(x) = 1

2‖∇fS(x)‖2B, and it can be proved that all eigenvalues of its
Hessian matrix ∇2f(x) are upper bounded by 1. Due to these specific characteristics, the update
rules of seemingly different randomized iterative methods are identical. In particular the following
methods for solving (1) have exactly the same behavior with SGD [46]:

Stochastic Newton Method (SNM)2 : xk+1 = xk − ω(∇2fSk
(xk))

†B∇fSk
(xk), (5)

Stochastic Proximal Point Method (SPPM)3 : xk+1 = arg min
x∈Rn

{
fSk

(x) +
1− ω

2ω
‖x− xk‖2B

}
. (6)

In all methods ω > 0 is a fixed stepsize and Sk is sampled afresh in each iteration from
distribution D. See [46] for more insights into the reformulation (1), its properties and other
equivalent reformulations (e.g., stochastic fixed point problem, probabilistic intersection problem,
and stochastic linear system).

Best Approximation Problem and Sketch and Project Method: In [46, 29], it has been
shown that for the case of consistent linear systems with multiple solutions, SGD (and as a result
SNM (5) and SPPM (6)) converges linearly to one particular minimizer of function f , the projection
of the initial iterate x0 onto the solution set of the linear system (2). This naturally leads to the
best approximation problem:

min
x∈Rn

P (x) := 1
2‖x− x0‖

2
B subject to Ax = b. (7)

1The gradient is computed with respect to the inner product 〈Bx, y〉.
2In this method we take the B-pseudoinverse of the Hessian of fSk instead of the classical inverse, as the inverse

does not exist. When B = I, the B pseudoinverse specializes to the standard Moore-Penrose pseudoinverse.
3In this case, the equivalence only works for 0 < ω ≤ 1.

2

Unlike, the linear system (2) which is allowed to have multiple solutions, the best approximation
problem has always (from its construction) a unique solution. For solving problem (7), the Sketch
and Project Method (SPM):

xk+1 = ωΠLSk
,B(xk) + (1− ω)xk, (8)

was analyzed in [18, 46]. Here, ΠLSk
,B(xk) denotes the projection of point xk onto LSk

= {x ∈
Rn : S>k Ax = S>k b} in the B-norm. In the special case of unit stepsize (ω = 1) algorithm (8)
simplifies to

xk+1 = ΠLS,B(xk), (9)

first proposed in [18]. The name Sketch and Project method is justified by the iteration structure
which follows two steps: (i) Choose the sketched system LSk

:= {x : S>Ax = S>b}, (ii) Project
the last iterate xk onto LSk

. The Sketch and Project viewpoint will be useful later in explaining
the natural interpretation of the proposed inexact update rules. (see Section 4.2).

Dual Problem and SDSA: The Fenchel dual of (7) is the (bounded) unconstrained concave
quadratic maximization problem

max
y∈Rm

D(y) := (b−Ax0)
>y − 1

2‖A
>y‖2B−1 . (10)

Boundedness follows from consistency. It turns out that by varying A,B and b (but keeping
consistency of the linear system), the dual problem in fact captures all bounded unconstrained
concave quadratic maximization problems [29].

A direct dual method for solving problem (10) was first proposed in [19]. The dual method—
Stochastic Dual Subspace Ascent (SDSA)— updates the dual vectors yk as follows:

yk+1 = yk + ωSkλk, (11)

where the random matrix Sk is sampled afresh in each iteration from distribution D, and λk is
chosen in such a way to maximize the dual objective D: λk ∈ arg maxλD(yk + Skλ). More
specifically, SDSA is defined by picking the λk with the smallest (standard Euclidean) norm. This
leads to the formula:

λk =
(
S>k AB−1A>Sk

)†
S>k

(
b−A(x0 + B−1A>yk)

)
. (12)

It can be proved, [19, 29], that the iterates {xk}k≥0 of the sketch and project method (8) arise
as affine images of the iterates {yk}k≥0 of the dual method (11) as follows:

xk = x(yk) = x0 + B−1A>yk. (13)

In [19] the dual method was analyzed for the case of unit stepsize (ω = 1). Later in [29] the
analysis extended to capture the cases of ω ∈ (0, 2). Momentum variants of the dual method that
provide further speed up have been also studied in [29].

An interesting property that holds between the suboptimalities of the Sketch and Project
method and SDSA is that the dual suboptimality of y in terms of the dual function values is
equal to the primal suboptimality of x(y) in terms of distance [19, 29]. That is,

D(y∗)−D(y) =
1

2
‖x(y∗)− x(y)‖2B. (14)

This simple to derive result (by combining the expression of the dual function D(y) (10) and
the equation (13)) gives for free the convergence analysis of SDSA, in terms of dual function
suboptimality once the analysis of Sketch and Project is available (see Section 5).

3

1.2 Contributions

In this work we propose and analyze inexact variants of all previously mentioned randomized iter-
ative algorithms for solving the stochastic optimization problem, the best approximation problem
and the dual problem. In all of these methods, a certain potentially expensive calculation/operation
needs to be performed in each step; it is this operation that we propose to be performed inexactly.
For instance, in the case of SGD, it is the computation of the stochastic gradient ∇fSk

(xk), in the
case of SPM is the computation of the projection ΠLS,B(xk), and in the case of SDSA it is the
computation of the dual update Skλk.

We perform an iteration complexity analysis under an abstract notion of inexactness and also
under a more structured form of inexactness appearing in practical scenarios. An inexact solution of
these subproblems can be obtained much more quickly than the exact solution. Since in practical
applications the savings thus obtained are larger than the increase in the number of iterations
needed for convergence, our inexact methods can be dramatically faster.

Let us now briefly outline the rest of the paper:

In Section 2 we describe the subproblems and introduce two notions of inexactness (abstract
and structured) that will be used in the rest of the paper. The Inexact Basic Method (iBasic) is
also presented. iBasic is a method that simultaneously captures inexact variants of the algorithms
(4), (5), (6) for solving the stochastic optimization problem (1) and algorithm (8) for solving the
best approximation problem (7). It is an inexact variant of the Basic Method, first presented in
[46], where the inexactness is introduced by the addition of an inexactness error εk in the original
update rule. We illustrate the generality of iBasic by presenting popular algorithms that can be
cast as special cases.

In Section 3 we establish convergence results of iBasic under general assumptions on the in-
exactness error εk of its update rule (see Algorithm 1). In this part we do not focus on any
specific mechanisms which lead to inexactness; we treat the problem abstractly. However, such
errors appear often in practical scenarios and can be associated with inaccurate numerical solvers,
quantization, sparsification and compression mechanisms. In particular, we introduce several ab-
stract assumptions on the inexactness level and describe our generic convergence results. For all
assumptions we establish linear rate of decay of the quantity E[‖xk − x∗‖2B] (i.e. L2 convergence)4.

Subsequently, in Section 4 we apply our general convergence results to a more structured notion
of inexactness error and propose a concrete mechanisms leading to such errors. We provide theo-
retical guarantees for this method in situations when a linearly convergent iterative method (e.g.,
Conjugate Gradient) is used to solve the subproblem inexactly. We also highlight the importance
of the dual viewpoint through a sketch-and-project interpretation.

In Section 5 we study an inexact variant of SDSA, which we called iSDSA, for directly solving
the dual problem (10). We provide a correspondence between iBasic and iSDSA and we show
that the random iterates of iBasic arise as affine images of iSDSA. We consider both abstract and
structured inexactness errors and provide linearly convergent rates in terms of the dual function
suboptimality E [D(y∗)−D(y0)].

Finally, in Section 6 we evaluate the performance of the proposed inexact methods through
numerical experiments and show the benefits of our approach on both synthetic and real datasets.
Concluding remarks are given in Section 7.

A summary of the convergence results of iBasic under several assumptions on the inexactness
error with pointers to the relevant theorems is available in Table 1. We highlight that similar
convergence results can be also obtained for iSDSA in terms of the dual function suboptimality
E [D(y∗)−D(y0)] (check Section 5 for more details on iSDSA).

1.3 Notation

For convenience, a table of the most frequently used notation is included in the Appendix C. In
particular, with boldface upper-case letters we denote matrices and I is the identity matrix. By L

4As we explain later, a convergence of the expected function values of problem 1 can be easily obtained as a
corollary of L2 convergence.

4

Assumption on
the Inexactness error εk

ω Upper Bounds Theorem

Assumption 1a (0, 2) ρk/2‖x0 − x∗‖B +
∑k−1

i=0 ρ
k−1−i

2 σi 1

Assumption 1b (0, 2)
(√
ρ+ q

)2k ‖x0 − x∗‖2B 2

Assumptions 1,2 (0, 2) ρk‖x0 − x∗‖2B +
∑k−1

i=0 ρ
k−1−iσ̄2i 3(i)

Assumptions 1b,2 (0, 2)
(
ρ+ q2

)k ‖x0 − x∗‖2B 3(ii)

Assumptions 1c,2 (0, 2)
(
ρ+ q2λ+min

)k ‖x0 − x∗‖2B 3(iii)

Table 1: Summary of the iteration complexity results obtained in this paper. ω denotes the stepsize
(relaxation parameter) of the method. In all cases, x∗ = ΠL,B(x0) and ρ = 1−ω(2−ω)λ+min ∈ (0, 1) are the
quantities appear in the convergence results (here λ+min denotes the minimum non zero eigenvalue of matrix
W, see equation (19)). Inexactness parameter q is chosen always in such a way to obtain linear convergence
and it can be seen as the quantity that controls the inexactness. In all theorems the quantity of convergence
is E[‖xk − x∗‖2B] (except in Theorem 1 where we analyze E[‖xk − x∗‖B]). As we show in Section 5, under
similar assumptions, iSDSA has exactly the same convergence with iBasic but the upper bounds of the third
column are related to the dual function values E [D(y∗)−D(y0)].

we denote the solution set of the linear system Ax = b. By LS, where S is a random matrix, we
denote the solution set of the sketched linear system S>Ax = S>b. In general, we use ·∗ to express
the exact solution of a sub-problem and ·≈ to indicate its inexact variant. Unless stated otherwise,
throughout the paper, x∗ is the projection of x0 onto L in the B-norm: x∗ = ΠL,B(x0). An explicit
formula for the projection of point x onto set L is given by

ΠL,B(x) := arg min
x′∈L
‖x′ − x‖B = x−B−1A>(AB−1A>)†(Ax− b). (15)

A formula for the projection onto LS = {x ∈ Rn : S>Ax = S>b} is obtained by replacing A and
b with S>A and S>b respectively into the above equation. We denote this projection by ΠLS,B(x).
We also write [n] := {1, 2, . . . , n}.

In order to keep the expression brief throughout the paper we define5:

Z := A>HA = A>S(S>AB−1A>S)†S>A. (16)

Using this matrix we can easily express important quantities related to the problems under study.
For example the stochastic functions fS of problem (1) can be expressed as

fS(x) =
1

2
(Ax− b)>H(Ax− b) =

1

2
(x− x∗)>Z(x− x∗), (17)

In addition the gradient and the Hessian of fS with respect to the B inner product are equal to

∇fS(x)
(3)
= B−1A>H(Ax− b) = B−1A>HA(x− x∗) = B−1Z(x− x∗), (18)

and ∇2fS(x) = B−1Z [46]. Similarly the gradient and Hessian of the objective function f of
problem (1) are ∇f(x) = B−1E [Z](x− x∗) and ∇2f(x) = B−1E [Z], respectively.

A key matrix in our analysis is

W := B−
1
2E[Z]B−

1
2 , (19)

which has the same spectrum with the matrix ∇2f(x) but at the same time is symmetric and
positive semi-definite6. We denote with λ1 ≤ λ2 ≤ · · · ≤ λn the n eigenvalues of W. With λ+min we
indicate the smallest nonzero eigenvalue, and with λmax = λn the largest eigenvalue. It was shown
in [46] that 0 ≤ λi ≤ 1 for all i ∈ [n].

5In the kth iterate the expression becomes Zk := A>Sk(S>k AB−1A>Sk)†S>k A.
6Note that matrix ∇2f(x) is not symmetric but it is self-adjoint with respect to the B-inner product.

5

2 Inexact update rules

In this section we start by explaining the key sub-problems that need to be solved exactly in the
update rules of the previously described methods. We present iBasic, a method that solves problems
(1) and (7) and we show how by varying the main parameters of the method we recover inexact
variants of popular algorithms as special cases. Finally closely related work on inexact algorithms
for solving different problems is also presented.

2.1 Expensive Sub-problems in Update Rules

Let us devote this subsection on explaining how the inexactness can be introduced in the current
exact update rules of SGD7 (4), Sketch and Project (8) and SDSA (11) for solving the stochastic
optimization, best approximation and the dual problem respectively. As we have shown these
methods solve closely related problems and the key subproblems in their update rule are similar.
However the introduction of inexactness in the update rule of each one of them can have different
interpretation.

For example for the case of SGD for solving the stochastic optimization problem (1) (see also
Section 4.1 and 4.2 for more details), if we define λ∗k = (S>k AB−1A>Sk)

†S>k (b − Axk) then the

stochastic gradient of function f becomes ∇fSk
(xk)

(18)
= −B−1A>Skλ

∗
k and the update rule of

SGD takes the form: xk+1 = xk + ωB−1A>Skλ
∗
k. Clearly in this update the expensive part is the

computation of the quantity λ∗k that can be equivalently computed to be the least norm solution
of the smaller (in comparison to Ax = b) linear system S>k AB−1A>Skλ = S>k (b −Axk). In our
work we are suggesting to use an approximation λ≈k of the exact solution and with this way avoid
executing the possibly expensive step of the update rule. Thus the inexact update is taking the
following form:

xk+1 = xk + ωB−1A>Skλ
≈
k = xk − ω∇fSk

(xk) + ωB−1A>Sk(λ
≈
k − λ∗k)︸ ︷︷ ︸

εk

.

Here εk denotes a more abstract notion of inexactness and it is not necessary to be always equivalent
to the quantity ωB−1A>Sk(λ

≈
k − λ∗k). It can be interpreted as an expression that acts as an

perturbation of the exact update. In the case that εk has the above form we say that the notion of
inexactness is structured. In our work we are interested in both the abstract and more structured
notions of inexactness. We first present general convergence results where we require the error εk
to satisfy general assumptions (without caring how this error is generated) and later we analyze
the concept of structured inexactness by presenting algorithms where εk = ωB−1A>Sk(λ

≈
k − λ∗k).

In similar way, the expensive operation of SPM (8) is the exact computation of the projection
Π∗LSk

,B(xk). Thus we are suggesting to replace this step with an inexact variant and compute

an approximation of this projection. The inexactness here can be also interpreted using both, the

abstract εk error and its more structured version εk = ω
(

Π≈LSk
,B(xk)−Π∗LSk

,B(xk)
)

. At this point,

observe that, by using the expression (15) the structure of the εk in SPM and SGD has the same
form.

In the SDSA the expensive subproblem in the update rule is the computation of the λ∗k that
satisfy λ∗k ∈ arg maxλD(yk + Skλ). Using the definition of the dual function (10) this value can
be also computed by evaluating the least norm solution of the linear system S>k AB−1A>Skλ =
S>k
(
b−A(x0 + B−1A>yk

)
). Later in Section 5 we analyze both notions of inexactness (abstract

and more structured) for inexact variants of SDSA.

Table 2 presents the key sub-problem that needs to be solved in each algorithm as well as the
part where the inexact error is appeared in the update rule.

7Note that SGD has identical updates to the Stochastic Newton and Stochastic proximal point method. Thus the
inexactness can be added to these updates in similar way.

6

Exact Algorithms
Key Subproblem

(problem that we solve inexactly)
Inexact Update Rules

(abstract and structured inexactness error)

SGD (4)
Exact computation of λ∗k,

where λ∗k = arg minλ:Mkλ=dk ‖λ‖.
Appears in the computation of ∇fSk

(xk) = −B−1A>Skλ
∗
k

xk+1 = xk + ωB−1A>Skλ
≈
k

= xk − ω∇fSk
(xk) + ωB−1A>Sk(λ

≈
k − λ∗k)︸ ︷︷ ︸

εk

.

SPM (8)
Exact computation of the projection

Π∗LSk
,B(xk) = arg minx′∈LSk

‖x′ − xk‖B

xk+1 = ωΠ≈LSk
,B(xk) + (1− ω)xk

= ωΠB
LSk

(xk) + (1− ω)xk + ω
(

Π≈LSk
,B(xk)−Π∗LSk

,B(xk)
)

︸ ︷︷ ︸
εk

SDSA (11)
Exact computation of λ∗k,

where λ∗k ∈ arg maxλD(yk + Skλ).
yk+1 = yk + ωSkλ

≈
k = yk + ωSkλ

∗
k + ωSk(λ

≈
k − λ∗k)︸ ︷︷ ︸
εdk

Table 2: The exact algorithms under study with the potentially expensive to compute key sub-problems of
their update rule. The inexact update rules are presented in the last column for both notions of inexactness
(abstract and more structured). We use ·∗ to define the important quantity that needs to be computed
exactly in the update rule of each method and ·≈ to indicate the proposed inexact variant.

2.2 The Inexact Basic Method

In each iteration of the all aforementioned exact methods a sketch matrix S ∼ D is drawn from a
given distribution and then a certain subproblem is solved exactly to obtain the next iterate. The
sketch matrix S ∈ Rm×q requires to have m rows but no assumption on the number of columns is
made which means that the number of columns q allows to vary through the iterations and it can
be very large. The setting that we are interested in is precisely that of having such large random
matrices S. In these cases we expect that having approximate solutions of the subproblems will be
beneficial.

Recently randomized iterative algorithms that requires to solve large subproblems in each itera-
tion have been extensively studied and it was shown that are really beneficial when they compared
to their single coordinates variants (S ∈ Rm×1) [34, 35, 44, 27]. However, in theses cases the
evaluation of an exact solution for the suproblem in the update rule can be computationally very
expensive. In this work we propose and analyze inexact variants by allowing to solve the subprob-
lem that appear in the update rules of the stochastic methods, inexactly. In particular, following
the convention established in [46] of naming the main algorithm of the paper Basic method we
propose the inexact Basic method (iBasic) (Algorithm 1).

Algorithm 1 Inexact Basic Method (iBasic)

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈ Rn×n,
stepsize ω > 0.

Initialize: x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Set xk+1 = xk − ωB−1A>Sk(S

>
k AB−1A>Sk)

†S>k (Axk − b) + εk
4: end for

The εk in the update rule of the method represents the abstract inexactness error described
in Subsection 2.1. Note that, iBasic can have several equivalent interpretations. This allow as to
study the methods (4),(5),(6) for solving the stochastic optimization problem and the sketch and
project method (8) for the best approximation problem in a single algorithm only. In particular
iBasic can be seen as inexact stochastic gradient descent (iSGD) with fixed stepsize applied to
(1). From (17), ∇fSk

(xk) = B−1A>Hk(Axk − b) and as a result the update rule of iBasic can
be equivalently written as: xk+1 = xk − ω∇fSk

(xk) + εk. In the case of the best approximation

7

problem (7), iBasic can be interpreted as inexact Sketch and Project method (iSPM) as follows:

xk+1 = xk − ωB−1A>Sk(S
>
k AB−1A>Sk)

†S>k (Axk − b) + εk

= ω
[
xk −B−1(S>k A)>(S>k AB−1(S>k A)>)†(S>k Ax− S>k b)

]
+ (1− ω)xk + εk

(15)
= ωΠLSk

,B(xk) + (1− ω)xk + εk (20)

For the dual problem (10) we devote Section 5 for presenting an inexact variant of the SDSA
(iSDSA) and analyze its convergence using the rates obtained for the iBasic in Sections 3 and 4.

2.3 General Framework and Further Special Cases

The proposed inexact methods, iBasic (Algorithm 1) and iSDSA (Section 5), belong in the general
sketch and project framework, first proposed from Gower and Richtarik in [18] for solving consistent
linear systems and where a unified analysis of several randomized methods was studied. This
interpretation of the algorithms allow us to recover a comprehensive array of well-known methods
as special cases by choosing carefully the combination of the main parameters of the algorithms.

In particular, the iBasic has two main parameters (besides the stepsize ω > 0 of the update
rule). These are the distribution D from which we draw random matrices S and the positive definite
matrix B ∈ Rn×n. By choosing carefully combinations of the parameters D and B we can recover
several existing popular algorithms as special cases of the general method. For example, special
cases of the exact Basic method are the Randomized Kaczmarz, Randomized Gaussian Kaczmarz8,
Randomized Coordinate Descent and their block variants. For more details about the generality of
the sketch and project framework and further algorithms that can be cast as special cases of the
analysis we refer the interested reader to Section 3 of [18] and Section 7 of [29]. Here we present
only the inexact update rules of two special cases that we will later use in the numerical evaluation.

Special Cases: Let us define with I:C the column concatenation of the m×m identity matrix
indexed by a random subset C of [m].

• Inexact Randomized Block Kaczmarz (iRBK): Let B = I and let pick in each iteration the
random matrix S = I:C ∼ D. In this setup the update rule of the iBasic simplifies to

xk+1 = xk − ωA>C:(AC:A
>
C:)
†(AC:xk − bC) + εk. (21)

• Inexact Randomized Block Coordinate Descent (iRBCD)9: If the matrix A of the linear system
is positive definite then we can choose B = A. Let also pick in each iteration the random
matrix S = I:C ∼ D. In this setup the update rule of the iBasic simplifies to

xk+1 = xk − ωI:C(I>:CAI:C)†I>:C(Axk − b) + εk. (22)

For more papers related to Kaczmarz method (randomized, greedy, cyclic update rules) we
refer the interested reader to [23, 28, 38, 5, 37, 39, 9, 33, 34, 13, 31, 59, 35, 50]. For the coordinate
descent method (a.k.a Gauss-Seidel for linear systems) and its block variant, Randomized Block
Coordinate Descent we suggest [25, 36, 44, 45, 40, 41, 43, 7, 24, 14, 1, 54].

2.4 Other Related Work on Inexact Methods

One of the current trends in the large scale optimization problems is the introduction of inexactness
in the update rules of popular deterministic and stochastic methods. The rational behind this is
that an approximate/inexact step can often computed very efficiently and can have significant
computational gains compare to its exact variants.

8Special case of the iBasic, when the random matrix S is chosen to be a Gaussian vector with mean 0 ∈ Rm and
a positive definite covariance matrix Σ ∈ Rm×m. That is S ∼ N(0,Σ) [18, 29].

9In the setting of solving linear systems Randomized Coordinate Descent is known also as Gauss-Seidel method.
Its block variant can be also interpret as randomized coordinate Newton method (see [42]).

8

In the area of deterministic algorithms, the inexact variant of the full gradient descent method,
xk+1 = xk−ωk[∇f(xk)+εk], has received a lot of attention [49, 11, 51, 16, 32]. It has been analyzed
for the cases of convex and strongly convex functions under several meaningful assumptions on the
inexactness error εk and its practical benefit compared to the exact gradient descent is apparent.
For further deterministic inexact methods check [10] for Inexact Newton methods, [52, 47] for
Inexact Proximal Point methods and [3] for Inexact Fixed point methods.

In the recent years, with the explosion that happens in areas like machine learning and data
science inexactness enters also the updating rules of several stochastic optimization algorithms and
many new methods have been proposed and analyzed.

In the large scale setting, stochastic optimization methods are preferred mainly because of
their cheap per iteration cost (compared to their deterministic variants), their property to scale
to extreme dimensions and their improved theoretical complexity bounds. In areas like machine
learning and data science, where the datasets become larger rapidly, the development of faster and
efficient stochastic algorithms is crucial. For this reason, inexactness has recently introduced to the
update rules of several stochastic optimization algorithms and new methods have been proposed
and analyzed. One of the most interesting work on inexact stochastic algorithms appears in the
area of second order methods. In particular on inexact variants of the Sketch-Newton method and
subsampled Newton Method for minimize convex and non-convex functions [48, 2, 4, 56, 57, 58].
Note that our results are related also with this literature since our algorithm can be seen as inexact
stochastic Newton method (see equation (5)). To the best or our knowledge our work is the first that
provide convergence analysis of inexact stochastic proximal point methods (equation (6)) in any
setting. From numerical linear algebra viewpoint inexact sketch and project methods for solving
the best approximation problem and its dual problem where also never analyzed before.

As we already mentioned our framework is quite general and many algorithms, like iRBK (21)
and iRBCD (22) can be cast as special cases. As a result, our general convergence analysis includes
the analysis of inexact variants of all of these more specific algorithms as special cases. In [34] an
analysis of the exact randomized block Kacmzarz method has been proposed and in the experiments
an inexact variant was used to speedup the method. However, no iteration complexity results were
presented for the inexact variant and both the analysis and numerical evaluation have been made for
linear systems with full rank matrices that come with natural partition of the rows (this is a much
more restricted case than the one analyzed in our setting). For inexact variants of the randomized
block coordinate descent algorithm in different settings than ours we suggest [53, 15, 6, 12].

Finally an analysis of approximate stochastic gradient descent for solving the empirical risk
minimization problem using quadratic constraints and sequential semi-definite programs has been
presented in [22].

3 Convergence Results Under General Assumptions

In this section we consider scenarios in which the inexactness error εk can be controlled, by specify-
ing a per iteration bound σk on the norm of the error. In particular, by making different assumptions
on the bound σk we derive general convergence rate results. Our focus is on the abstract notion of
inexactness described in Section 2.1 and we make no assumptions on how this error is generated.

An important assumption that needs to be hold in all of our results is exactness. A formal
presentation is presented below. We state it here and we highlight that is a requirement for all of
our convergence results (exactness is also required in the analysis of the exact variants [46]).

Exactness. Note that fS is a convex quadratic, and that fS(x) = 0 whenever x ∈ L := {x :
Ax = b}. However, fS can be zero also for points x outside of L. Clearly, f(x) is nonnegative, and
f(x) = 0 for x ∈ L. However, without further assumptions, the set of minimizers of f can be larger
than L. The exactness assumption ensures that this does not happen. For necessary and sufficient
conditions for exactness, we refer the reader to [46]. Here it suffices to remark that a sufficient
condition for exactness is to require E [H] to be positive definite. This is easy to see by observing
that f(x) = E [fS(x)] = 1

2‖Ax − b‖
2
E[H]. In other words, if X = argminf(x) is the solution set of

9

the stochastic optimization problem (1) and L = {x : Ax = b} the solution set of the linear system
(2) then the notion of exactness is captured by: X = L

3.1 Assumptions on Inexactness Error

In the convergence analysis of iBasic the following assumptions on the inexactness error are used.
We note that Assumptions 1a, 1b and 1c are special cases of Assumption 1. Moreover Assumption
2 is algorithmic dependent and can hold in addition of any of the other four assumptions. In our
analysis, depending on the result we aim at, we will require either one of the first four Assumptions
to hold by itself, or to hold together with Assumption 2. We will always assume exactness.

In all assumptions the expectation on the norm of error (‖εk‖2) is conditioned on the value of
the current iterate xk and the random matrix Sk. Moreover it is worth to mention that for the
convergence analysis we never assume that the inexactness error has zero mean, that is E[εk] = 0.

Assumption 1.

E[‖εk‖2B | xk,Sk] ≤ σ2k, (23)

where the upper bound σk is a sequence of random variables (that can possibly depends on both
the value of the current iterate xk and the choice of the random Sk at the kth iteration).

The following three assumptions on the sequence of upper bounds are more restricted however
as we will later see allow us to obtain stronger and more controlled results.

Assumption 1a.

E[‖εk‖2B | xk,Sk] ≤ σ2k, (24)

where the upper bound σk ∈ R is a sequence of real numbers.

Assumption 1b.

E[‖εk‖2B | xk,Sk] ≤ σ2k = q2‖xk − x∗‖2B, (25)

where the upper bound is a special sequence that depends on a non-negative inexactness parameter
q and the distance to the optimal value ‖xk − x∗‖2B.

Assumption 1c.

E[‖εk‖2B | xk,Sk] ≤ σ2k = 2q2fSk
(xk), (26)

where the upper bound is a special sequence that depends on a non-negative inexactness parameter
q and the value of the stochastic function fSk

computed at the iterate xk.

Finally the next assumption is more algorithmic oriented. It holds in cases where the inexactness
error εk in the update rule is chosen to be orthogonal with respect to the B-inner product to the
vector ΠLSk

,B(xk) − x∗ = (I − ωB−1Zk)(xk − x∗). This statement may seem odd at this point
but its usefulness will become more apparent in the next section where inexact algorithms with
structured inexactness error will be analyzed. As it turns out, in the case of structured inexactness
error (Algorithm 2) this assumption is satisfied.

Assumption 2.

E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B

] = 0. (27)

3.2 Convergence Results

In this section we present the analysis of the convergence rates of iBasic by assuming several
combination of the previous presented assumptions.

All convergence results are described only in terms of convergence of the iterates xk, that is
‖xk − x∗‖2B, and not the objective function values f(xk). This is sufficient, because by f(x) ≤
λmax
2 ‖x− x∗‖

2
B (see Lemma 10) we can directly deduce a convergence rate for the function values.

The exact Basic method (Algorithm 1 with εk = 0), has been analyzed in [46] and it was shown
to converge with E[‖xk−x∗‖2B] ≤ ρk‖x0−x∗‖2B where ρ = 1−ω(2−ω)λ+min. Our analysis of iBasic
is more general and includes the convergence of the exact Basic method as special case when we

10

assume that the upper bound is σk = 0, ∀k ≥ 0. For brevity, in he convergence analysis results
of this manuscript we also use

ρ = 1− ω(2− ω)λ+min.

Let us start by presenting the convergence of iBasic when only Assumption 1a holds for the
inexactness error.

Theorem 1. Let assume exactness and let {xk}∞k=0 be the iterates produced by iBasic with ω ∈
(0, 2). Set x∗ = ΠL,B(x0) and consider the error εk be such that it satisfies Assumption 1a. Then,

E[‖xk − x∗‖B] ≤ ρk/2‖x0 − x∗‖B +
k−1∑
i=0

ρ
k−1−i

2 σi. (28)

Proof. See Appendix B.1.

Corollary 1. In the special case that the upper bound σk in Assumption 1a is fixed, that is σk = σ
for all k > 0 then inequality (28) of Theorem 1 takes the following form:

E[‖xk − x∗‖B] ≤ ρk/2‖x0 − x∗‖B + σ
ρ1/2

1− ρ
. (29)

This means that we obtain a linear convergence rate up to a solution level that is proportional to
the upper bound σ10.

Proof. See Appendix B.2.

Inspired from [16], let us now analyze iBasic using the sequence of upper bounds that described
in Assumption 1b. This construction of the upper bounds allows us to obtain stronger and more
controlled results. In particular using the upper bound of Assumption 1b the sequence of expected
errors converge linearly to the exact x∗ (not in a potential neighborhood like the previous result).
In addition Assumption 1b guarantees that the distance to the optimal solution reduces with the
increasing of the number of iterations. However for this stronger convergence a bound for λ+min

is required, a quantity that in many problems is unknown to the user or intractable to compute.
Nevertheless, there are cases that this value has a close form expression and can be computed
before hand without any further cost. See for example [27, 30, 26, 21] where methods for solving
the average consensus were presented and the value of λ+min corresponds to the algebraic connectivity
of the network under study.

Theorem 2. Assume exactness. Let {xk}∞k=0 be the iterates produced by iBasic with ω ∈ (0, 2).
Set x∗ = ΠL,B(x0) and consider the inexactness error εk be such that it satisfies Assumption 1b,
with 0 ≤ q < 1−√ρ. Then

E[‖xk − x∗‖2B] ≤ (
√
ρ+ q)2k ‖x0 − x∗‖2B. (30)

Proof. See Appendix B.3.

At Theorem 2, to guarantee linear convergence the inexact parameter q should live in the interval[
0, 1−√ρ

)
. In particular, q is the parameter that controls the level of inexactness of Algorithm

1. Not surprisingly the fastest convergence rate is obtained when q = 0; in such case the method
becomes equivalent with its exact variant and the convergence rate simplifies to ρ = 1−ω(2−ω)λ+min.
Note also that similar to the exact case the optimal convergence rate is obtained for ω = 1 [46].

Moreover, the upper bound σk of Assumption 1b depends on two important quantities, the λ+min

(through the upper bound of the inexactness parameter q) and the distance to the optimal solution
‖xk−x∗‖2B. Thus, it can have natural interpretation. In particular the inexactness error is allowed

10Several similar more specific assumptions can be made for the upper bound σk. For example if the upper bound
satisfies σk = σk with σ ∈ (0, 1) for all k > 0 then it can be shown that C ∈ (0, 1) exist such that inequality (28) of
Theorem 1 takes the form: E[‖xk − x∗‖B] ≤ O(Ck) (see [51, 16] for similar results).

11

to be large either when the current iterate is far from the optimal solution (‖xk − x∗‖2B large) or
when the problem is well conditioned and λ+min is large. In the opposite scenario, when we have ill
conditioned problem or we are already close enough to the optimum x∗ we should be more careful
and allow less errors to the updates of the method.

In the next theorem we provide the complexity results of iBasic in the case that the Assumption 2
is satisfied combined with one of the previous assumptions.

Theorem 3. Let assume exactness and let {xk}∞k=0 be the iterates produced by iBasic with ω ∈
(0, 2). Set x∗ = ΠL,B(x0). Let also assume that the inexactness error εk be such that it satisfies
Assumption 2. Then:

(i) If Assumption 1 holds:

E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B +
k−1∑
i=0

ρk−1−iσ̄2i , (31)

where σ̄2i = E[σ2i],∀i ∈ [k − 1].

(ii) If Assumption 1b holds with q ∈
(
0,
√
ρ
)
:

E[‖xk − x∗‖2B] ≤ (ρ+ q2)k‖x0 − x∗‖2B. (32)

(iii) If Assumption 1c holds with q ∈
(

0,
√
ω(2− ω)

)
:

E[‖xk − x∗‖2B] ≤ (1− (ω(2− ω)− q2)λ+min)k‖x0 − x∗‖2B = (ρ+ q2λ+min)k‖x0 − x∗‖2B. (33)

Proof. See Appendix B.4.

Remark 1. In the case that Assumptions 1a and 2 hold simultaneously, the convergence of iBasic
is similar to (31) but in this case σ̄2i = σ2i , ∀i ∈ [k−1] (due to Assumption 1a, σk ∈ R is a sequence
of real numbers). In addition, note that for q ∈ (0,min{√ρ, 1−√ρ}) having Assumption 2 on top
of Assumption 1b leads to improvement of the convergence rate. In particular, from Theorem 2,
iBasic converges with rate (

√
ρ+q)2 = ρ+q2+2

√
ρq while having both assumptions this is simplified

to the faster ρ+ q2 (32).

4 iBasic with Structured Inexactness Error

Up to this point, the analysis of iBasic was focused in more general abstract cases where the
inexactness error εk of the update rule satisfies several general assumptions. In this section we
are focusing on a more structured form of inexactness error and we provide convergence analysis
in the case that a linearly convergent algorithm is used for the computation of the expensive key
subproblem of the method.

4.1 Linear System in the Update Rule

As we already mentioned in Section 2.1 the update rule of the exact Basic method (Algorithm 1 with
εk = 0) can be expressed as xk+1 = xk+ωB−1A>Skλ

∗
k, where λ∗k = (S>k AB−1A>Sk)

†S>k (b−Axk).
Using this expression the exact Basic method can be equivalently interpreted as the following

two step procedure:

1. Find the least norm solution11 of S>k AB−1A>Sk︸ ︷︷ ︸
Mk

λ = S>k (b−Axk)︸ ︷︷ ︸
dk

. That is find λ∗k =

arg minλ∈Qk
‖λ‖ where Qk = {λ ∈ Rq : Mkλ = dk}.

11We are precisely looking for the least norm solution of the linear system Mkλ = dk because this solution can
be written down in a compact way using the Moore-Penrose pseudoinverse. This is equivalent with the expression
that appears in our update: λ∗k = (S>k AB−1A>Sk)†S>k (b−Axk) = M†kdk. However it can be easily shown that the
method will still converge with the same rate of convergence even if we choose any other solution of the linear system
Mkλ = dk.

12

2. Compute the next iterate: xk+1 = xk + ωB−1A>Skλ
∗
k.

In the case that the random matrix Sk is large (this is the case that we are interested in), solving
exactly the linear system Mkλ = dk in each step can be prohibitively expensive. To reduce this
cost we allow the inner linear system Mkλ = dk to be solved inexactly using an iterative method.
In particular we propose and analyze the following inexact algorithm:

Algorithm 2 iBasic with structured inexactness error

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈ Rn×n,
stepsize ω > 0.

Initialize: x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Using an iterative method compute an approximation λ≈k of the least norm solution of the

linear system:
S>k AB−1A>Sk︸ ︷︷ ︸

Mk

λ = S>k (b−Axk)︸ ︷︷ ︸
dk

. (34)

4: Set xk+1 = xk + ωB−1A>Skλ
≈
k .

5: end for

For the computation of the inexact solution of the linear system (34) any known iterative method
for solving general linear systems can be used. In our analysis we focus on linearly convergent
methods. For example based on the properties of the linear system (34), conjugate gradient (CG)
or sketch and project method (SPM) can be used for the execution of step 3. In these cases, we
name Algorithm 2, InexactCG and InexactSP respectively.

It is known that the classical CG can solve linear systems with positive definite matrices. In our
approach matrix Mk is positive definite only when the original linear system Ax = b has full rank
matrix A. On the other side SPM can solve any consistent linear system and as a result can solve
the inner linear system Mkλk = dk without any further assumption on the original linear system.
In this case, one should be careful because the system has no unique solution. We are interested to
find the least norm solution of Mkλk = dk which means that the starting point of the sketch and
project at the kth iteration should be always λ0k = 0. Recall that any special case of the sketch and
project method (Section 2.3) solves the best approximation problem.

Let us now define λrk to be the approximate solution λ≈k of the q× q linear system (34) obtained
after r steps of the linearly convergent iterative method. Using this, the update rule of Algorithm 2,
takes the form:

xk+1 = xk + ωB−1A>Skλ
r
k. (35)

Remark 2. The update rule (35) of Algorithm 2 is equivalent to the update rule of iBasic (Algo-
rithm 1) when the error εk is chosen to be,

εk = ωB−1A>Sk(λ
r
k − λ∗k). (36)

This is precisely the connection between the abstract and more concrete/structured notion of inex-
actness that first presented in Table 2.

Let us now define a Lemma that is useful for the analysis of this section and it verifies that
Algorithm 2 with unit stepsize satisfies the general Assumption 2 presented in Section 3.1.

Lemma 4. Let us denote x∗k = ΠLSk
,B(xk) the projection of xk onto LSk

in the B-norm and
x∗ = ΠL,B(x0). Let also assume that ω = 1 (unit stepsize). Then for the updates of Algorithm 2 it
holds that:

〈x∗k − x∗, εk〉B =
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B

= 0, ∀k ≥ 0. (37)

13

Figure 1: Graphical interpretation of orthogonality (justifies equation (37)). It shows that the two vectors,
x∗k − x∗ and εk, are orthogonal complements of each other with respect to the B-inner product. xk+1 is
the point that Algorithm 2 computes in each step. The colored region represents the Null(S>k A). x∗k =
ΠLSk

,B(xk), x∗ = ΠL,B(x0) and εk is the inexactness error.

Proof. Note that x∗k−x∗ = xk−∇fSk
(xk)−x∗ ∈ Null(S>k A) . Moreover εk

(36)
= B−1A>Sk(λ

r
k−λ∗k) ∈

Range(B−1A>Sk). From the knowledge that the null space of an arbitrary matrix is the orthogonal
complement of the range space of its transpose we have that Null(S>k A) is orthogonal with respect
to the B-inner product to Range(B−1A>Sk). This completes the proof (see Figure 1 for the
graphical interpretation).

4.2 Sketch and Project Interpretation

Let us now give a different interpretation of the inexact update rule of Algorithm 2 using the sketch
and project approach. That will make us appreciate more the importance of the dual viewpoint
and make clear the connection between the primal and dual methods.

Recall that in the special case of unit stepsize (see equation (9)) the exact sketch and project
method perform updates of the form:

xk+1 = argminx∈Rn
1
2‖x− xk‖

2
B subject to S>k Ax = S>k b. (38)

That is, a sketched system S>Ax = S>b is first chosen and then a the next iterate is computed by
making a projection of the current iterate xk onto this system.

In general, execute a projection step is one of the most common task in numerical linear alge-
bra/optimization literature. However in the large scale setting even this task can be prohibitively
expensive and it can be difficult to execute inexactly. For this reason we suggest to move to the
dual space where the inexactness can be easily controlled.

Observe that the update rule of equation (38) has the same structure as the best approximation
problem (7) where the linear system under study is the sketched system S>k Ax = S>k b and the
starting point is the current iterate xk. Hence we can easily compute its dual:

max
λ∈Rq

Dk(λ) := (S>k b− S>k Axk)
>λ− 1

2‖A
>Skλ‖2B−1 . (39)

where λ ∈ Rq is the dual variable. The λ∗k (possibly more than one) that solves the dual problem
in each iteration k, is the one that satisfies ∇Dk(λ

∗
k) = 0. By computing the derivative this is

equivalent with finding the λ that satisfies the linear system S>k AB−1A>Skλ = S>k (b − Axk).
This is the same linear system we desire to solve inexactly in Algorithm 2. Thus, computing an
inexact solution λ≈k of the linear system is equivalent with computing an inexact solution of the
dual problem (39). Then by using the affine mapping (13) that connects the primal and the dual
spaces we can also evaluate an inexact solution of the original primal problem (38).

The following result relates the inexact levels of these quantities. In particular it shows that
dual suboptimality of λk in terms of dual function values is equal to the distance of the dual values
λk in the Mk-norm.

14

Lemma 5. Let us define λ∗k ∈ Rq be the exact solution of the linear system S>k AB−1A>Skλ =
S>k (b − Axk) or equivalently of dual problem (39). Let us also denote with λ≈k ∈ Rq the inexact
solution. Then:

Dk(λ
∗
k)−Dk(λ

≈
k) =

1

2
‖λ≈k − λ∗k‖2S>k AB−1A>Sk

.

Proof.

Dk(λ
∗
k)−Dk(λ

≈
k)

(39)
= [S>k b− S>k Axk]

>[λ∗k − λ≈k]− 1

2
(λ∗k)

>S>k AB−1A>Skλ
∗
k

+
1

2
(λ≈k)>S>k AB−1A>Skλ

≈
k

(13)
= (λ∗k)

>S>k AB−1A>Sk[λ
∗
k − λ≈k]− 1

2
(λ∗k)

>S>k AB−1A>Skλ
∗
k

+
1

2
(λ≈k)>S>k AB−1A>Skλ

≈
k

=
1

2
(λ≈k − λ∗k)>S>k AB−1A>Sk(λ

≈
k − λ∗k)

=
1

2
‖λ≈k − λ∗k‖2S>k AB−1A>Sk

where in the second equality we use equation (13) to connect the optimal solutions of (38) and (39)
and obtain [S>k b− S>k Axk]

> = (λ∗k)
>S>k AB−1A>Sk.

4.3 Complexity Results

In this part we analyze the performance of Algorithm 2 when a linearly convergent iterative method
is used for solving inexactly the linear system (34) in step 3 of Algorithm 2 . We denote with λrk
the approximate solution of the linear system after we run the iterative method for r steps.

Before state the main convergence result let us present a lemma that summarize some observa-
tions that are true in our setting.

Lemma 6. Let λ∗k = (S>k AB−1A>Sk)
†S>k (b −Axk) be the exact solution and λrk be approximate

solution of the linear system (34). Then, ‖λ∗k‖2Mk
= 2fSk

(xk) and ‖εk‖2B = ‖λrk − λ∗k‖2Mk
.

Proof.

‖λ∗k‖2Mk
= ‖M†

kS
>
k A(x∗ − xk)‖2Mk

= (xk − x∗)>A>Sk M†
kMkM

†
k︸ ︷︷ ︸

M†k

S>k A(xk − x∗)

(16)
= (xk − x∗)>Zk(xk − x∗)

(17)
= 2fSk

(xk). (40)

Moreover,

‖εk‖2B
Remark 2

= ‖B−1A>Sk(λ
r
k − λ∗k)‖2B = ‖λrk − λ∗k‖2S>k AB−1A>Sk

= ‖λrk − λ∗k‖2Mk
. (41)

Theorem 7. Let us assume that for the computation of the inexact solution of the linear system
(34) in step 3 of Algorithm 2, a linearly convergent iterative method is chosen such that 12:

E[‖λrk − λ∗k‖2Mk
| xk,Sk] ≤ ρrSk

‖λ0k − λ∗k‖2Mk
, (42)

where λ0k = 0 for any k > 0 and ρSk
∈ (0, 1) for every choice of Sk ∼ D. Let exactness hold and

let {xk}∞k=0 be the iterates produced by Algorithm 2 with unit stepsize (ω = 1). Set x∗ = ΠL,B(x0).
Suppose further that there exists a scalar θ < 1 such that with probability 1, ρSk

≤ θ. Then,
Algorithm 2 converges linearly with:

E[‖xk − x∗‖2B] ≤
[
1− (1− θr)λ+min

]k ‖x0 − x∗‖2B.
12In the case that deterministic iterative method is used, like CG, we have that ‖λr

k − λ∗k‖2Mk
≤ ρrSk

‖λ0
k − λ∗k‖2Mk

which is also true in expectation

15

Proof. Theorem 7 can be interpreted as corollary of the general Theorem 3(iii). Thus, it is sufficient
to show that Algorithm 2 satisfies the two Assumptions 1c and 2. Firstly, note that from Lemma 4,
Assumption 2 is true. Moreover,

E[‖εk‖2Mk
| xk,Sk]

(41)
= E[‖λrk − λ∗k‖2Mk

| xk,Sk]
(42)

≤ ρrSk
‖λ0k − λ∗k‖2Mk

≤ θr‖λ0k − λ∗k‖2Mk

λ0k=0
= θr‖λ∗k‖2Mk

(40)
= 2θrfSk

(xk)

which means that Assumption 1c also holds with q = θr/2 ∈ (0, 1). This completes the proof.

Having present the main result of this section let us now state some remarks that will help
understand the convergence rate of the last Theorem.

Remark 3. From its definition θr ∈ (0, 1) and as a result (1− θr)λ+min ≤ λ+min. This means that
the method converges linearly but always with worst rate than its exact variant.

Remark 4. Let us assume that θ is fixed. Then as the number of iterations in step 3 of the
algorithm (r →∞) increasing (1− θr)→ 1 and as a result the method behaves similar to the exact
case.

Remark 5. The λ+min depends only on the random matrices S ∼ D and to the positive definite
matrix B and is independent to the iterative process used in step 3. The iterative process of step 3
controls only the parameter θ of the convergence rate.

Remark 6. Let us assume that we run Algorithm 2 two separate times for two different choices of
the linearly convergence iterative method of step 3. Let also assume that the distribution D of the
random matrices and the positive definite matrix B are the same for both instances and that for
step 3 the iterative method run for r steps for both algorithms. Let assume that θ1 < θ2 then we
have that ρ1 = 1 − (1− θr1)λ+min < 1 − (1− θr2)λ+min = ρ2. This means in the case that θ is easily
computable, we should always prefer the inexact method with smaller θ.

The convergence of Theorem 7 is quite general and it holds for any linearly convergent methods
that can inexactly solve (34). However, in case that the iterative method is known we can have
more concrete results. See below the more specified results for the cases of Conjugate gradient
(CG) and Sketch and project method (SPM).

Convergence of InexactCG: CG is deterministic iterative method for solving linear systems
Ax = b with symmetric and positive definite matrix A ∈ Rn×n in finite number of iterations. In
particular, it can be shown that converges to the unique solution in at most n steps. The worst
case behavior of CG is given by [55, 17] 13:

‖xk − x∗‖A ≤

(√
κ(A)− 1√
κ(A) + 1

)2k

‖x0 − x∗‖A, (43)

where xk is the kth iteration of the method and κ(A) the condition number of matrix A.
Having present the convergence of CG for general linear systems, let us now return back to

our setting. We denote λrk ∈ Rq to be the approximate solution of the inner linear system (34)
after r conjugate gradient steps. Thus using (43) we know that ‖λrk − λ∗k‖2Mk

≤ ρ4rSk
‖λ0k − λ∗k‖2Mk

,

where ρSk
=

(√
κ(Mk)−1√
κ(Mk)+1

)
. Now by making the same assumption as the general Theorem 7 the

InexactCG converges with E[‖xk − x∗‖2B] ≤
[
1− (1− θrCG)λ+min

]k ‖x0 − x∗‖2B, where θCG < 1 such

that ρSk
=

(√
κ(Mk)−1√
κ(Mk)+1

)4

≤ θCG with probability 1.

13A sharper convergence rate of CG [55] for solving Ax = b can be also used

‖xk − x∗‖2A ≤
(
λn−k − λ1

λn−k + λ1

)2

‖x0 − x∗‖2A,

where matrix A ∈ Rn×n has λ1 ≤ λ2 ≤ · · · ≤ λn eigenvalues.

16

Convergence of InexactSP: In this setting we suggest to run the sketch and project method
(SPM) for solving inexactly the linear system (34). This allow us to have no assumptions on the
structure of the original system Ax = b and as a result we are able to solve more general problems
compared to what problems InexactCG can solve14. Like before, by making the same assumptions

as in Theorem 7 the more specific convergence E[‖xk − x∗‖2B] ≤
[
1− (1− θrSP)λ+min

]k ‖x0 − x∗‖2B,
for the InexactSP can be obtained. Now the quantity ρSk

denotes the convergence rate of the exact
Basic method15 when this applied to solve linear system (34) and θSP < 1 is a scalar such that
ρSk
≤ θSP with probability 1.

5 Inexact Dual Method

In the previous sections we focused on the analysis of inexact stochastic methods for solving the
stochastic optimization problem (1) and the best approximation (7). In this section we turn into
the dual of the best approximation (10) and we propose and analyze an inexact variant of the
SDSA (11). We call the new method iSDSA and is formalized as Algorithm 3. In the update rule
εdk indicates the dual inexactness error that appears in the kth iteration of iSDSA.

Algorithm 3 Inexact Stochastic Dual Subspace Ascent (iSDSA)

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈ Rn×n,
stepsize ω > 0.

Initialize: y0 = 0 ∈ Rm, x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Draw a fresh sample Sk ∼ D
3: Set yk+1 = yk + ωSk

(
S>k AB−1A>Sk

)†
S>k
(
b−A(x0 + B−1A>yk)

)
+ εdk

4: end for

5.1 Correspondence Between the Primal and Dual Methods

With the sequence of the dual iterates {yk}∞k=0 produced by the iSDSA we can associate a sequence
of primal iterates {xk}∞k=0 using the affine mapping (13). In our first result we show that the
random iterates produced by iBasic arise as an affine image of iSDSA under this affine mapping.

Theorem 8. (Correspondence between the primal and dual methods) Let {xk}∞k=0 be the iterates
produced by iBasic (Algorithm 1). Let y0 = 0, and {yk}∞k=0 the iterates of the iSDSA. Assume
that the two methods use the same stepsize ω > 0 and the same sequence of random matrices Sk.
Assume also that εk = B−1A>εdk where εk and εdk are the inexactness errors appear in the update
rules of iBasic and iSDSA respectively. Then

xk = φ(yk) = x0 + B−1A>yk.

for all k ≥ 0. That is, the primal iterates arise as affine images of the dual iterates.

Proof.

φ(yk+1)
(13)
= x0 + B−1A>yk+1

(12),Alg.3
= x0 + B−1A>

[
yk + ωSkλk + εdk

]
(16),(12)

= x0 + B−1A>yk︸ ︷︷ ︸
φ(yk)

+ωB−1Zk

x∗ − (x0 + B−1A>yk︸ ︷︷ ︸
φ(yk)

)

+ B−1A>εdk

= φ(yk)− ωB−1Zk(φ(yk)− x∗) + B−1A>εdk

14Recall that InexactCG requires the matrix Mk to be positive definite (this is true when matrix A is a full rank
matrix)

15Recall that iBasic and its exact variant (εk = 0) can be expressed as sketch and project methods (20).

17

Thus by choosing the inexactness error of the primal method to be εk = B−1A>εdk the sequence of
vectors {φ(yk)} satisfies the same recursion as the sequence {xk} defined by iBasic. It remains to
check that the first element of both recursions coincide. Indeed, since y0 = 0, we have x0 = φ(0) =
φ(y0).

5.2 iSDSA with Structured Inexactness Error

In this subsection we present Algorithm 4. It can be seen as a special case of iSDSA but with a
more structured inexactness error.

Algorithm 4 iSDSA with structured inexactness error

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈ Rn×n,
stepsize ω > 0.

Initialize: y0 = 0 ∈ Rm, x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Using an Iterative method compute an approximation λ≈k of the least norm solution of the

linear system:
S>k AB−1A>Sk︸ ︷︷ ︸

Mk

λ = S>k (b−A(x0 + B−1A>yk)︸ ︷︷ ︸
dk

(44)

4: Set yk+1 = yk + ωSkλ
≈
k

5: end for

Similar to their primal variants, it can be easily checked that Algorithm 4 is a special case of the
iSDSA (Algorithm 3) when the dual inexactness error is chosen to be εdk = Sk(λ

r
k−λ∗k). Note that,

using the observation of Remark 2 that εk = ωB−1A>Sk(λ
r
k−λ∗k) and the above expression of εdk we

can easily verify that the expression εk = B−1A>εdk holds. This is precisely the connection between
the primal and dual inexactness errors that have already been used in the proof of Theorem 8.

5.3 Convergence of Dual Function Values

We are now ready to state a linear convergence result describing the behavior of the inexact dual
method in terms of the function values D(yk). The following result is focused on the convergence
of iSDSA by making similar assumption to Assumption 1b. Similar convergence results can be
obtained using any other assumption of Section 3.1. The convergence of Algorithm 4, can be also
easily derived using similar arguments with the one presented in Section 4 and the convergence
guarantees of Theorem 7.

Theorem 9. (Convergence of dual objective). Assume exactness. Let y0 = 0 and let {yk}∞k=0 to
be the dual iterates of iSDSA (Algorithm 3) with ω ∈ (0, 2). Set x∗ = ΠL,B(x0) and let y∗ be any dual
optimal solution. Consider the inexactness error εdk be such that it satisfies E[‖B−1A>εdk‖2B | yk,Sk] ≤
σ2k = q22 [D(y∗)−D(yk)] where 0 ≤ q < 1−√ρ. Then

E[D(y∗)−D(yk)] ≤ (
√
ρ+ q)2k [D(y∗)−D(y0)] . (45)

Proof. The proof follows by applying Theorem 2 together with Theorem 8 and the identity 1
2‖xk−

x∗‖2B = D(y∗)−D(yk) (14).

Note that in the case that q = 0, iSDSA simplifies to its exact variant SDSA and the convergence
rate coincide with the one presented in [29, 19]. Following similar arguments to those in [19], the
same rate can be proved for the duality gap E[P (xk)−D(yk)].

18

6 Numerical Evaluation

In this section we perform preliminary numerical tests for studying the computational behavior of
iBasic with structured inexactness error when is used to solve the best approximation problem (7)
or equivalently the stochastic optimization problem (1)16. As we have already mentioned, iBasic
can be interpreted as sketch-and-project method, and as a result a comprehensive array of well-
known algorithms can be recovered as special cases by varying the main parameters of the methods
(Section 2.3). In particular, in our experiments we focus on the evaluation of two popular special
cases, the inexact Randomized Block Kaczmarz (iRBK) (equation (21)) and inexact randomized
block coordinate descent method (iRBCD) (equation (22))We implement Algorithm 2 presented
in Section 4 using CG 17 to inexactly solve the linear system of the update rule (equation (34)).
Recall that in this case we named the method InexactCG.

The convergence analysis of previous sections is quite general and holds for several combinations
of the two main parameters of the method, the positive definite matrix B and the distribution D
of the random matrices S. For obtaining iRBK as special case we have to choose B = I ∈ Rn×n
(Identity matrix) and for the iRBCD the given matrix A should be positive definite and choose
B = A. For both methods the distribution D should be over random matrices S = I:C where I:C
is the column concatenation of the m ×m identity matrix indexed by a random subset C of [m].
In our experiments we choose to have one specific distribution over these matrices. In particular,
we assume that the random matrix in each iteration is chosen uniformly at random to be S = I:d
with the subset d of [m] to have fixed pre-specified cardinality.

The code for all experiments is written in the Julia 0.6.3 programming language and run on a
Mac laptop computer (OS X El Capitan), 2.7 GHz Intel Core i5 with 8 GB of RAM.

To coincide with the theoretical convergence results of Algorithm 2 the relaxation parameter
(stepsize) of the methods study in our experiments is chosen to be ω = 1 (no relaxation). In all
implementations, we use x0 = 0 ∈ Rn as an initial point and in comparing the methods with their

inexact variants we use the relative error measure ‖xk − x∗‖2B/‖x0− x∗‖2B
x0=0
= ‖xk − x∗‖2B/‖x∗‖2B.

We run each method (exact and inexact) until the relative error is below 10−5. For the horizontal
axis we use either the number of iterations or the wall-clock time measured using the tic-toc Julia
function. In the exact variants, the linear system (34) in Algorithm 2 needs to be solved exactly. In
our experiments we follow the implementation of [18] for both exact RBCD and exact RBK where
the built-in direct solver (sometimes referred to as ”backslash”) is used.

Experimental setup: For the construction of consistent linear systems Ax = b we use the
following setup:

• For iRBK: Let matrix A ∈ Rm×n being given (it can be either synthetic or real data). Then
a vector z ∈ Rn is chosen to be i.i.d N (0, 1) and the right hand side of the linear system is
set to b = Az. With this way the consistency of the linear system with matrix A and right
hand side b is ensured.

• For iRBCD: A Gaussian matrix P ∈ Rm×n is generated and then matrix A = P>P ∈ Rn×n
is used in the linear system (with this way matrix A is positive definite with probability 1).
The vector z ∈ Rn is chosen to be i.i.d N (0, 1) and again to ensure consistency of the linear
system, the right hand side is set to b = Az.

6.1 Importance of Large Block Size

Many recent works have shown that using larger block sizes can be very beneficial for the perfor-
mance of randomized iterative algorithms [18, 44, 34, 27]. In Figure 2 we numerically verify this

16Note that from Section 5 and the correspondence between the primal and dual methods, iSDSA will have similar
behavior when is applied to the dual problem (10).

17Recall that in order to use CG, the matrix Mk that appears in linear system (34) should be positive definite.
This is true in the case that the matrix A of the original system has full column rank matrix. Note however that the
analysis of Section 4 holds for any consistent linear system Ax = b and without making any further assumption on
its structure or the linearly convergence methods.

19

0 20000 40000 60000
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

m = 1000, n = 7000, d = 300
RBK
RK

0 20000 40000 60000 80000
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 700, d = 300
RBCD
RCD

0 1 2 3 4
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

m = 1000, n = 700, d = 300
RBK
RK

(a) RK vs RBK

0 1 2 3
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 700, d = 300
RBCD
RCD

(b) RCD vs RBCD

Figure 2: Comparison of the performance of the exact RBK and RBCD with their non-block variants
RK and RCD. For the Kaczmarz methods (first column) A ∈ R1000,700 is a Gaussian matrix and for the
Coordinate descent methods (second column) A = P>P ∈ R700×700 where P ∈ R1000×700 is Gaussian
matrix. To guarantee consistency b = Az where z is also Gaussian vector. The block size that chosen for
the block variants is d = 300.

statement. We show that both RBK and RBCD (no inexact updates) outperform in number of
iterations and wall clock time their serial variants where only one coordinate is chosen (block of
size d = 1) per iteration. This justify the necessity of choosing methods with large block sizes.
Recall that this is precisely the class of algorithms that could have an expensive subproblem in
their update rule which is required to be solved exactly and as a result can benefit the most from
the introduction of inexactness.

6.2 Inexactness and Block Size (iRBCD)

In this experiment, we first construct a positive definite linear system following the previously
described procedure for iRBCD. We first generate a Gaussian matrix P ∈ R10000×7000 and then
the positive definite matrix A = P>P ∈ R7000×7000 is used to define a consistent liner system. We
run iRBCD in this specific linear system and compare its performance with its exact variance for
several block sizes d (numbers of column of matrix S). For evaluating the inexact solution of the
linear system in the update rule we run CG for either 2, 5 or 10 iterations. In Figure 3, we plot the
evolution of the relative error in terms of both the number of iterations and the wall-clock time.

We observe that for any block size the inexact methods are always faster in terms of wall
clock time than their exact variants even if they require (as is expected) equal or larger number
of iterations. Moreover it is obvious that the performance of the inexact method becomes much
better than the exact variant as the size d increases and as a results the sub-problem that needs
to be solved in each step becomes more expensive. It is worth to highlight that for the chosen
systems, the exact RBCD behaves better in terms of wall clock time as the size of block increases
(this coincides with the findings of the previous experiment).

6.3 Evaluation of iRBK

In the last experiment we evaluate the performance of iRBK in both synthetic and real datasets. For
computing the inexact solution of the linear system in the update rule we run CG for pre-specified
number of iterations that can vary depending the datasets. In particular, we compare iRBK and
RBK on synthetic linear systems generated with the Julia Gaussian matrix functions “randn(m,n)”
and “sprandn(m,n,r)” (input r of sprandn function indicates the density of the matrix). For the
real datasets, we test the performance of iRBK and RBK using real matrices from the library of
support vector machine problems LIBSVM [8]. Each dataset of the LIBSVM consists of a matrix

20

0 200 400 600
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 1000
RBCD
InexCG2
InexCG5
InexCG10

0 50 100 150 200 250 300
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 2000
RBCD
InexCG2
InexCG5
InexCG10

0 20 40 60 80 100 120
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 3500
RBCD
InexCG2
InexCG5
InexCG10

0 20 40 60 80
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 4500
RBCD
InexCG2
InexCG5
InexCG10

0 50 100 150 200
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 1000
RBCD
InexCG2
InexCG5
InexCG10

(a) d=1000

0 25 50 75 100 125 150
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 2000
RBCD
InexCG2
InexCG5
InexCG10

(b) d=2000

0 20 40 60 80 100
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 3500
RBCD
InexCG2
InexCG5
InexCG10

(c) d=3500

0 20 40 60 80 100
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

n = 7000, d = 4500
RBCD
InexCG2
InexCG5
InexCG10

(d) d=4500

Figure 3: Performance of iRBCD (InexactCG) and exact RBCD for solving a consistent linear systems
with A = P>P ∈ R7000×7000, where P ∈ R10000×7000 is a Gaussian matrix. The right hand side for the
system is chosen to be b = Az where z is also a Gaussian vector. Several block sizes are used: d =
1000, 2000, 3500, 4500. The graphs in the first (second) row plot the iterations (time) against relative error
‖xk − x∗‖2A/‖x∗‖2A.

0 25 50 75 100 125 150
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

m = 1000, n = 7000, d = 300
RBK
InexCG2
InexCG5
InexCG10

0 1000 2000 3000 4000 5000
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

m = 1000, n = 7000, d = 300
RBK
InexCG2
InexCG5
InexCG10

0 5 10 15 20 25
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

splice, d = 40
RBK
InexCG2
InexCG5
InexCG10

0 500 1000 1500
Iterations

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

madelon, d = 300
RBK
InexCG20
InexCG30
InexCG40

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

m = 1000, n = 700, d = 300
RBK
InexCG2
InexCG5
InexCG10

(a) randn(m,n)

0 1 2 3 4 5 6
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

m = 1000, n = 700, d = 300
RBK
InexCG2
InexCG5
InexCG10

(b) sprandn(m,n,0.01)

0.000 0.001 0.002 0.003 0.004
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

splice, d = 40
RBK
InexCG2
InexCG5
InexCG10

(c) splice

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

madelon, d = 300
RBK
InexCG20
InexCG30
InexCG40

(d) madelon

Figure 4: The performance of iRBK (InexactCG) and RBK on synthetic and real datasets. Synthetic ma-
trices: (a) randn(m,n) with (m,n)=(1000,700), (b) sprandn(m,n,0.01) with (m,n)=(1000,700). Real Matrices
from LIBSVM [8] : (c) splice : (m,n)=(1000,60), (d) madelon: (m,n)=(2000,500). The graphs in the first
(second) row plot the iterations (time) against relative error ‖xk − x∗‖2/‖x∗‖2. The quantity d in the title
of each plot indicates the size of the block size for both iRBK and RBK.

A ∈ Rm×n (m features and n characteristics) and a vector of labels b ∈ Rm. In our experiments we
choose to use only the matrices of the datasets and ignore the label vectors 18. As before, to ensure
consistency of the linear system, we choose a Gaussian vector z ∈ Rn and the right hand side of
the linear system is set to b = Az (for both the synthetic and the real matrices). By observing
Figure 4 it is clear that for all problems under study the performance of iRBK in terms of wall
clock time is much better than its exact variant RBK.

18Note that the real matrices of the Splice and Madelon datasets are full rank matrices.

21

7 Conclusion

In this work we propose and analyze inexact variants of several stochastic algorithms for solving
quadratic optimization problems and linear systems. We provide linear convergence rate under
several assumptions on the inexactness error. The proposed methods require more iterations than
their exact variants to achieve the same accuracy. However, as we show through our numerical
evaluations, the inexact algorithms require significantly less time to converge.

With the continuously increasing size of datasets, inexactness should definitely be a tool that
practitioners should use in their implementations even in the case of stochastic methods that
have much cheaper-to-compute iteration complexity than their deterministic variants. Recently,
accelerated and parallel stochastic optimization methods [29, 46, 54] have been proposed for solving
linear systems. We speculate that the addition of inexactness to these update rules will lead to
methods faster in practice. We also believe that our approach and complexity results can be
extended to the more general case of minimization of convex and non-convex functions in the
stochastic setting. Finally, sketch-and-project algorithms have been used for solving the average
consensus problem [27, 20] popular in distributed optimization literature. Our results could also
be useful in this area and lead to the development of novel randomized gossip algorithms that use
inexactness in their update rule.

8 Acknowledgements

The first author would like to acknowledge Aritra Dutta (KAUST), Robert Mansel Gower (Télécom
ParisTech), Georgios Loizou (Edinburgh) and Rachael Tappenden (University of Canterbury) for
useful discussions.

References

[1] Z. Allen-Zhu, Z. Qu, P. Richtárik, and Y. Yuan. Even faster accelerated coordinate descent using non-uniform
sampling. In ICML, pages 1110–1119, 2016.

[2] A.S. Berahas, R. Bollapragada, and J. Nocedal. An investigation of Newton-sketch and subsampled Newton
methods. arXiv preprint arXiv:1705.06211, 2017.

[3] P. Birken. Termination criteria for inexact fixed-point schemes. Numer. Linear Algebra Appl., 22(4):702–716,
2015.

[4] R. Bollapragada, R. Byrd, and J. Nocedal. Exact and inexact subsampled Newton methods for optimization.
arXiv preprint arXiv:1609.08502, 2016.

[5] C.L. Byrne. Applied iterative methods. AK Peters Wellesley, 2008.

[6] A. Cassioli, D. Di Lorenzo, and M. Sciandrone. On the convergence of inexact block coordinate descent methods
for constrained optimization. European Journal of Operational Research, 231(2):274–281, 2013.

[7] A. Chambolle, M.J. Ehrhardt, P. Richtárik, and C.B. Schönlieb. Stochastic primal-dual hybrid gradient algo-
rithm with arbitrary sampling and imaging applications. SIAM J. Optim., 28(4):2783–2808, 2018.

[8] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[9] D. Csiba and P. Richtárik. Global convergence of arbitrary-block gradient methods for generalized Polyak-
Lojasiewicz functions. arXiv preprint arXiv:1709.03014, 2017.

[10] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal., 19(2):400–408,
1982.

[11] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact
oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[12] P. Dvurechensky, A. Gasnikov, and A. Tiurin. Randomized similar triangles method: A unifying framework for
accelerated randomized optimization methods (coordinate descent, directional search, derivative-free method).
arXiv preprint arXiv:1707.08486, 2017.

[13] Y.C. Eldar and D. Needell. Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss lemma.
Numerical Algorithms, 58(2):163–177, 2011.

[14] O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim., 25(4):1997–
2023, 2015.

22

[15] K. Fountoulakis and R. Tappenden. A flexible coordinate descent method. Computational Optimization and
Applications, 70(2):351–394, 2018.

[16] M.P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM J. Sci.
Comput., 34(3):A1380–A1405, 2012.

[17] G.H. Golub and C.F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[18] R.M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM. J. Matrix Anal. &
Appl., 36(4):1660–1690, 2015.

[19] R.M. Gower and P. Richtárik. Stochastic dual ascent for solving linear systems. arXiv preprint arXiv:1512.06890,
2015.

[20] F. Hanzely, J. Konečný, N. Loizou, P. Richtárik, and D. Grishchenko. Privacy preserving randomized gossip
algorithms. arXiv preprint arXiv:1706.07636, 2017.

[21] F. Hanzely, J. Konečnỳ, N. Loizou, P. Richtárik, and D. Grishchenko. A privacy preserving randomized gossip
algorithm via controlled noise insertion. NeurIPS Privacy Preserving Machine Learning Workshop, 2018.

[22] B. Hu, P. Seiler, and L. Lessard. Analysis of approximate stochastic gradient using quadratic constraints and
sequential semidefinite programs. arXiv preprint arXiv:1711.00987, 2017.

[23] S. Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de lAcademie
Polonaise des Sciences et des Lettres, 35:355–357, 1937.

[24] Y.T. Lee and A. Sidford. Efficient accelerated coordinate descent methods and faster algorithms for solving
linear systems. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages
147–156. IEEE, 2013.

[25] D. Leventhal and A.S. Lewis. Randomized methods for linear constraints: convergence rates and conditioning.
Mathematics of Operations Research, 35(3):641–654, 2010.

[26] N. Loizou, M. Rabbat, and P. Richtárik. Provably accelerated randomized gossip algorithms. arXiv preprint
arXiv:1810.13084, 2018.

[27] N. Loizou and P. Richtárik. A new perspective on randomized gossip algorithms. In 4th IEEE Global Conference
on Signal and Information Processing (GlobalSIP), 2016.

[28] N. Loizou and P. Richtárik. Linearly convergent stochastic heavy ball method for minimizing generalization
error. NIPS-Workshop on Optimization for Machine Learning [arXiv preprint arXiv:1710.10737], 2017.

[29] N. Loizou and P. Richtárik. Momentum and stochastic momentum for stochastic gradient, Newton, proximal
point and subspace descent methods. arXiv preprint arXiv:1712.09677, 2017.

[30] N. Loizou and P. Richtárik. Accelerated gossip via stochastic heavy ball method. 56th Annual Allerton Confer-
ence on Communication, Control, and Computing, 2018.

[31] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the randomized extended Gauss-Seidel and
Kaczmarz methods. SIAM. J. Matrix Anal. & Appl., 36(4):1590–1604, 2015.

[32] I. Necoara and V. Nedelcu. Rate analysis of inexact dual first-order methods application to dual decomposition.
IEEE Transactions on Automatic Control, 59(5):1232–1243, 2014.

[33] D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT Numerical Mathematics, 50(2):395–403,
2010.

[34] D. Needell and J.A. Tropp. Paved with good intentions: analysis of a randomized block Kaczmarz method.
Linear Algebra Appl., 441:199–221, 2014.

[35] D. Needell, R. Zhao, and A. Zouzias. Randomized block Kaczmarz method with projection for solving least
squares. Linear Algebra Appl., 484:322–343, 2015.

[36] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim.,
22(2):341–362, 2012.

[37] J. Nutini, B. Sepehry, I. Laradji, M. Schmidt, H. Koepke, and A. Virani. Convergence rates for greedy Kaczmarz
algorithms, and faster randomized Kaczmarz rules using the orthogonality graph. In Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial Intelligence, pages 547–556. AUAI Press, 2016.

[38] C. Popa. Least-squares solution of overdetermined inconsistent linear systems using Kaczmarz’s relaxation.
International Journal of Computer Mathematics, 55(1-2):79–89, 1995.

[39] C. Popa. Convergence rates for Kaczmarz-type algorithms. arXiv preprint arXiv:1701.08002, 2017.

[40] Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling i: Algorithms and complexity. Optimization
Methods and Software, 31(5):829–857, 2016.

[41] Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling ii: Expected separable overapproximation.
Optimization Methods and Software, 31(5):858–884, 2016.

[42] Z. Qu, P. Richtárik, M. Takáč, and O. Fercoq. SDNA: Stochastic dual Newton ascent for empirical risk mini-
mization. ICML, 2016.

23

[43] Z. Qu, P. Richtárik, and T. Zhang. Quartz: Randomized dual coordinate ascent with arbitrary sampling. In
Advances in Neural Information Processing Systems, pages 865–873, 2015.

[44] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for minimizing
a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

[45] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization. Mathematical
Programming, 156(1-2):433–484, 2016.

[46] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: algorithms and convergence theory.
arXiv:1706.01108, 2017.

[47] S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. Journal of Convex Analysis, 19(4):1167–
1192, 2012.

[48] M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in machine learning. Optimization for Machine
Learning, page 305, 2011.

[49] M. Schmidt, N.L. Roux, and F.R. Bach. Convergence rates of inexact proximal-gradient methods for convex
optimization. In Advances in Neural Information Processing Systems, pages 1458–1466, 2011.

[50] F. Schöpfer and D.A. Lorenz. Linear convergence of the randomized sparse Kaczmarz method. arXiv preprint
arXiv:1610.02889, 2016.

[51] Anthony Man-Cho So and Z. Zhou. Non-asymptotic convergence analysis of inexact gradient methods for
machine learning without strong convexity. Optimization Methods and Software, 32(4):963–992, 2017.

[52] M.V. Solodov and B.F. Svaiter. A unified framework for some inexact proximal point algorithms. Numer. Func.
Anal. Opt., 22(7-8):1013–1035, 2001.

[53] R. Tappenden, P. Richtárik, and J. Gondzio. Inexact coordinate descent: complexity and preconditioning.
Journal of Optimization Theory and Applications, 170(1):144–176, 2016.

[54] S. Tu, S. Venkataraman, A.C. Wilson, A. Gittens, M.I. Jordan, and B. Recht. Breaking locality accelerates
block Gauss-Seidel. In ICML, 2017.

[55] S. Wright and J. Nocedal. Numerical optimization. Springer Science, 35(67-68):7, 1999.

[56] P. Xu, F. Roosta-Khorasani, and M.W. Mahoney. Newton-type methods for non-convex optimization under
inexact hessian information. arXiv preprint arXiv:1708.07164, 2017.

[57] P. Xu, . Yang, J, F. Roosta-Khorasani, C. Ré, and M.W. Mahoney. Sub-sampled Newton methods with non-
uniform sampling. In Advances in Neural Information Processing Systems, pages 3000–3008, 2016.

[58] Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Inexact non-convex Newton-type
methods. arXiv preprint arXiv:1802.06925, 2018.

[59] A. Zouzias and N.M. Freris. Randomized extended Kaczmarz for solving least squares. SIAM. J. Matrix Anal.
& Appl., 34(2):773–793, 2013.

A Technical Preliminaries

Lemma 10. (Lemma 4.2 [46]: Quadratic bounds) For all x ∈ Rn and x∗ ∈ L the following hold:
λ+minf(x) ≤ 1

2‖∇f(x)‖2B ≤ λmaxf(x) and f(x) ≤ λmax
2 ‖x − x∗‖2B. Furthermore, if exactness is

satisfied and we let x∗ = ΠL,B(x0) we have

λ+min

2
‖x− x∗‖2B ≤ f(x). (46)

Lemma 11. [46] Let x∗ ∈ L and {xk}k≥0 be the random iterates produced by the exact Basic
method (Algorithm 1 with εk = 0) with an arbitrary stepsize ω ∈ R. Then:

‖xk+1 − x∗‖2B = ‖(I− ωB−1Zk)(xk − x∗)‖2B = ‖xk − x∗‖2B − 2ω(2− ω)fSk
(x). (47)

By taking expectation condition on xk (that is, the expectation is with respect to Sk) and assuming
ω ∈ (0, 2) we can further obtain:

E
[
‖xk+1 − x∗‖2B | xk

]
= ‖xk − x∗‖2B − 2ω(2− ω)f(xk)

(46)

≤
[
1− ω(2− ω)λ+min

]
‖xk − x∗‖2B. (48)

Remark 7. Let x and y be random vectors and let σ positive constant. If we assume E[‖x‖2B | y] ≤
σ2 then by using the variance inequality (check Table 3) we obtain E[‖x‖B | y] ≤ σ. In our setting
if we assume E[‖εk‖2B | xk,Sk] ≤ σ2k where εk is the inexactness error and xk is the current iterate
then by the variance inequality it holds that E[‖εk‖B | xk,Sk] ≤ σk.

24

B Proofs of Main Results

In our convergence analysis we use several popular inequalities. Look Table 3 in Appendix C for
the abbreviations and the relevant formulas.

A key step in the proofs of the theorems is to use the tower property of the expectation. We
use it in the form

E[E[E[X | xk,Sk] | xk]] = E[X], (49)

where X is some random variable. In all proofs we perform the three expectations in order, from
the innermost to the outermost. Similar to the main part of the paper we use ρ = 1−ω(2−ω)λ+min.

B.1 Proof of Theorem 1

Proof. First we decompose:

‖xk+1 − x∗‖2B = ‖(I− ωB−1Zk)(xk − x∗) + εk‖2B
= ‖(I− ωB−1Zk)(xk − x∗)‖2B + ‖εk‖2B + 2

〈
(I− ωB−1Zk)(xk − x∗), εk

〉
. (50)

Applying the innermost expectation of (49) to (50), we get:

E[‖xk+1 − x∗‖2B | xk,Sk] = E[‖(I− ωB−1Zk)(xk − x∗)‖2B | xk,Sk]︸ ︷︷ ︸
T1

+E[‖εk‖2B | xk,Sk]︸ ︷︷ ︸
T2

+2E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B
| xk,Sk]︸ ︷︷ ︸

T3

. (51)

We now analyze the three expression T1,T2,T3 separately.

Note that an upper bound for the expression T2 can be directly obtained from the assumption

T2 = E[‖εk‖2B | xk,Sk] ≤ σ2k. (52)

The first expression can be written as:

T1 = E[‖(I− ωB−1Zk)(xk − x∗)‖2B | xk,Sk] = ‖(I− ωB−1Zk)(xk − x∗)‖2B
(47)
= ‖xk − x∗‖2B − 2ω(2− ω)fSk

(xk). (53)

For expression T3:

E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B
| xk,Sk] =

〈
(I− ωB−1Zk)(xk − x∗),E[εk | xk,Sk]

〉
B

C.S.
≤ ‖(I− ωB−1Zk)(xk − x∗)‖B‖E[εk | xk,Sk]‖B

Cond.Jensen
≤ ‖(I− ωB−1Zk)(xk − x∗)‖BE[‖εk‖B | xk,Sk]

Remark 7 and (24)

≤ ‖(I− ωB−1Zk)(xk − x∗)‖Bσk. (54)

By substituting the bounds (52), (53), and (54) into (51) we obtain:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + σ2k

+2‖(I− ωB−1Zk)(xk − x∗)‖Bσk. (55)

We now take the middle expectation (see (49)) and apply it to inequality (55):

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + σ2k

+2E[‖(I− ωB−1Zk)(xk − x∗)‖B | xk]σk. (56)

25

Now let us find a bound on the quantity E
[
‖(I− ωB−1Zk)(xk − x∗)‖B | xk

]
. Note that from (48)

and (47) we have that E
[
‖(I− ωB−1Zk)(xk − x∗)‖2B | xk

]
≤ ρ‖xk − x∗‖2B. By using Remark 7 in

the last inequality we obtain:

E
[
‖(I− ωB−1Zk)(xk − x∗)‖B | xk

]
=
√
ρ‖xk − x∗‖B. (57)

By substituting (57) in (56):

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + σ2k

+2σk
√
ρ‖xk − x∗‖B

(48)

≤ ρ‖xk − x∗‖2B + σ2k + 2σk
√
ρ‖xk − x∗‖B (58)

We take the final expectation (outermost expectation in the tower rule (49)) on the above expression
to find:

E[‖xk+1 − x∗‖2B] = E[E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk]]
≤ ρE[‖xk − x∗‖2B] + σ2k + 2σk

√
ρ E[‖xk − x∗‖B]

V.I
≤ ρE[‖xk − x∗‖2B] + σ2k + 2σk

√
ρ
√
E[‖xk − x∗‖2B] (59)

Using rk = E
[
‖xk − x∗‖2B

]
equation (59) takes the form:

rk+1 ≤ ρrk + σ2k + 2σk
√
ρ
√
rk =

(√
ρrk + σk

)2
If we further substitute pk =

√
rk and ` =

√
ρ the recurrence simplifies to:

pk+1 ≤ `pk + σk

By unrolling the final inequality:

pk ≤ `kr0 + (`0σk−1 + `σk−2 + · · ·+ `k−1σ0) = `kp0 +
k−1∑
i=0

`k−1−iσi.

Hence, √
E[‖xk − x∗‖2B] ≤ ρk/2‖x0 − x∗‖B +

k−1∑
i=0

ρ
k−1−i

2 σi.

The result is obtained by using V.I in the last expression.

B.2 Proof of Corollary 1

By denoting rk = E[‖xk − x∗‖B] in (28) we obtain:

rk ≤ ρk/2r0 + ρ1/2σ
k−1∑
i=0

ρk−1−i = ρk/2r0 + ρ1/2σ
k−1∑
i=0

ρi = ρk/2r0 + ρ1/2σ
1− ρk

1− ρ
.

Since 1− ρk ≤ 1 the result is obtained.

B.3 Proof of Theorem 2

In order to prove Theorem 2 we need to follow similar steps to the proof of Theorem 1. The main
differences of the two proofs appear at the points that we need to upper bound the norm of the
inexactness error (‖εk‖2). In particular instead of using the general sequence σ2k ∈ R we utilize the
bound q2‖xk − x∗‖2B from Assumption 1b. Thus, it is sufficient to focus at the parts of the proof
that these bound is used.

26

Similar to the proof of Theorem 1 we first decompose to obtain the equation (51). There, the
expression T1 can be upper bounded from (53) but now using the Assumption 1b the expression
T2 and T3 can be upper bounded as follows:

T2 = E[‖εk‖2B | xk,Sk] ≤ q2‖xk − x∗‖2B. (60)

T3 = E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B
| xk,Sk]

Remark 7 and (54)

≤ ‖(I− ωB−1Zk)(xk − x∗)‖Bq‖xk − x∗‖(61)

As a result by substituting the bounds (53), (60), and (61) into (51) we obtain:

E[‖xk+1 − x∗‖2B | xk,Sk]
(51)

≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + q2‖xk − x∗‖2B

+2‖(I− ωB−1Zk)(xk − x∗)‖Bq‖xk − x∗‖B. (62)

By following the same steps to the proof of Theorem 1 the equation (58) takes the form:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ρ‖xk − x∗‖2B + q2‖xk − x∗‖2B + 2q‖xk − x∗‖B
√
ρ‖xk − x∗‖B

=
(
ρ+ 2q

√
ρ+ q2

)
‖xk − x∗‖2B.

= (
√
ρ+ q)2 ‖xk − x∗‖2B (63)

We take the final expectation (outermost expectation in the tower rule (49)) on the above expression
to find:

E[‖xk+1 − x∗‖2B] = E[E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk]]
≤ (

√
ρ+ q)2 E[‖xk − x∗‖2B]. (64)

The final result follows by unrolling the recurrence.

B.4 Proof of Theorem 3

Proof. Similar to the previous two proofs by decomposing the update rule and using the innermost
expectation of (49) we obtain equation (51). An upper bound of expression T1 is again given by
inequality (53). For the expression T2 depending the assumption that we have on the norm of the
inexactness error different upper bounds can be used. In particular,

(i) If Assumption 1 holds then: T2 = E[‖εk‖2B | xk,Sk] ≤ σ2k.

(ii) If Assumption 1b holds then: T2 = E[‖εk‖2B | xk,Sk] ≤ σ2k = q2‖xk − x∗‖2B.

(iii) If Assumption 1c holds then: T2 = E[‖εk‖2B | xk,Sk] ≤ σ2k = 2q2fSk
(xk).

The main difference from the previous proofs, is that due to the Assumption 2 and tower
property (49) the expression T3 will eventually be equal to zero. More specifically, we have that:

E[E[E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B
| xk,Sk] | xk]] = E[

〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B

] = T3 = 0,

Thus, in this case equation (55) takes the form:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + σ2k. (65)

Using the above expression depending the assumption that we have we obtain the following results:

(i) By taking the middle expectation (see (49)) and apply it to the above inequality:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + E[σ2k | xk]
(48)

≤ ρ‖xk − x∗‖2B + E[σ2k | xk] (66)

27

We take the final expectation (outermost expectation in the tower rule (49)) on the above
expression to find:

E[‖xk+1 − x∗‖2B] = E[E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk]]
≤ ρE[‖xk − x∗‖2B] + E[E[σ2k | xk]]
= ρE[‖xk − x∗‖2B] + E[σ2k]

= ρE[‖xk − x∗‖2B] + σ̄2k (67)

Using rk = E
[
‖xk − x∗‖2B

]
the last inequality takes the form rk+1 ≤ ρrk + σ̄2k. By unrolling

the last expression: rk ≤ ρkr0 + (ρ0σ̄2k−1 + ρσ̄2k−2 + · · · + ρk−1σ̄20) = ρkr0 +
∑k−1

i=0 ρ
k−1−iσ̄2i .

Hence,

E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B +

k−1∑
i=0

ρk−1−iσ̄2i .

(ii) For the case (ii) inequality (65) takes the form:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + q2‖xk − x∗‖2B, (68)

and by taking the middle expectation (see (49)) we obtain:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + q2‖xk − x∗‖2B
(48)

≤ ρ‖xk − x∗‖2B + q2‖xk − x∗‖2B
= (ρ+ q2)‖xk − x∗‖2B. (69)

By taking the final expectation of the tower rule (49) and apply it to the above inequality:

E[‖xk+1 − x∗‖2B] ≤ (ρ+ q2)E[‖xk − x∗‖2B]. (70)

and the result is obtain by unrolling the last expression.

(iii) For the case (iii) inequality (65) takes the form:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2(ω(2− ω)− q2)fSk
(xk), (71)

and by taking the middle expectation (see (49)) we obtain:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2(ω(2− ω)− q2)f(xk)

(46)

≤ ‖xk − x∗‖2B − (ω(2− ω)− q2)λ+min‖xk − x∗‖
2
B

= (1− (ω(2− ω)− q2)λ+min)‖xk − x∗‖2B. (72)

By taking the final expectation of the tower rule (49) to the above inequality:

E[‖xk+1 − x∗‖2B] ≤ (1− (ω(2− ω)− q2)λ+min)E[‖xk − x∗‖2B]. (73)

and the result is obtain by unrolling the last expression.

28

C Useful Inequalities and Frequently Used Notation

Useful inequalities

Inequalities (Full names) Abbreviations Formula Assumptions

Jensen Inequality Jensen f [E(x)] ≤ E[f(x)] f is convex

Conditional Jensen Inequality cond. Jensen f(E[x | s]) ≤ E[f(x) | s] f is convex

Cauchy-Swartz (B-norm) C.S. |〈a, b〉B| ≤ ‖a‖B‖b‖B a, b ∈ Rn
Variance Inequality V.I. (E[X])2 ≤ E[X2] X random vari-

able

Table 3: Popular inequalities with abbreviations and formulas.

The Basics

A, b m× n matrix and m× 1 vector defining the system Ax = b
L {x : Ax = b} (solution set of the linear system)
B n× n symmetric positive definite matrix

〈x, y〉B x>By (B-inner product)

‖x‖B
√
〈x, x〉B (B-norm)

M† Moore-Penrose pseudoinverse of matrix M
S a random real matrix with m rows
D distribution from which matrix S is drawn (S ∼ D)
H S(S>AB−1A>S)†S>

Z A>HA
Range (M) range space of matrix M
Null (M) null space of matrix M

P(·) probability of an event
E[·] expectation

Projections

ΠL,B(x) projection of x onto L in the B-norm
B−1Z projection matrix, in the B-norm, onto Range

(
B−1A>S

)
Optimization

X set of minimizers of f
x∗ a point in L

fS, ∇fS, ∇2fS stochastic function, its gradient and Hessian
LS {x : S>Ax = S>b} (set of minimizers of fS)
f E[fS]
∇f gradient of f with respect to the B-inner product
∇2f B−1E[Z] (Hessian of f in the B-inner product)

Eigenvalues

W B−1/2E[Z]B−1/2 (psd matrix with the same spectrum as ∇2f)
λ1, . . . , λn eigenvalues of W
λmax, λ

+
min largest and smallest nonzero eigenvalues of W

Algorithms

ω relaxation parameter / stepsize
εk Inexactness error
q Inexactness parameter
ρ 1− ω(2− ω)λ+min

Table 4: Frequently used notation.

29

	Introduction
	The Setting
	Contributions
	Notation

	Inexact update rules
	Expensive Sub-problems in Update Rules
	The Inexact Basic Method
	General Framework and Further Special Cases
	Other Related Work on Inexact Methods

	Convergence Results Under General Assumptions
	Assumptions on Inexactness Error
	Convergence Results

	iBasic with Structured Inexactness Error
	Linear System in the Update Rule
	Sketch and Project Interpretation
	Complexity Results

	Inexact Dual Method
	Correspondence Between the Primal and Dual Methods
	iSDSA with Structured Inexactness Error
	Convergence of Dual Function Values

	Numerical Evaluation
	Importance of Large Block Size
	Inexactness and Block Size (iRBCD)
	Evaluation of iRBK

	Conclusion
	Acknowledgements
	Technical Preliminaries
	Proofs of Main Results
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3

	Useful Inequalities and Frequently Used Notation

