
Under review as a conference paper at ICLR 2018

SEMANTIC CODE REPAIR USING NEURO-SYMBOLIC
TRANSFORMATION NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of semantic code repair, which can be broadly defined as
automatically fixing non-syntactic bugs in source code. The majority of past work
in semantic code repair assumed access to unit tests against which candidate repairs
could be validated. In contrast, the goal here is to develop a strong statistical
model to accurately predict both bug locations and exact fixes without access to
information about the intended correct behavior of the program. Achieving such a
goal requires a robust contextual repair model, which we train on a large corpus
of real-world source code that has been augmented with synthetically injected
bugs. Our framework adopts a two-stage approach where first a large set of repair
candidates are generated by rule-based processors, and then these candidates are
scored by a statistical model using a novel neural network architecture which
we refer to as Share, Specialize, and Compete. Specifically, the architecture (1)
generates a shared encoding of the source code using an RNN over the abstract
syntax tree, (2) scores each candidate repair using specialized network modules,
and (3) then normalizes these scores together so they can compete against one
another in comparable probability space. We evaluate our model on a real-world
test set gathered from GitHub containing four common categories of bugs. Our
model is able to predict the exact correct repair 41% of the time with a single guess,
compared to 13% accuracy for an attentional sequence-to-sequence model.

1 INTRODUCTION

The term automatic code repair is typically used to describe two overarching tasks: The first involves
fixing syntactic errors, which are malformations that cause the code to not adhere to some language
specification (Gupta et al., 2017; Bhatia and Singh, 2016). The second, which is the focus of this
work, involves fixing semantic bugs, which refer to any case where the actual program behavior is
not the same as the behavior the programmer intended. Clearly, this covers an extremely wide range
of code issues, so this work is limited to a class of semantic bugs, which we roughly define as: “Bugs
that can be identified and fixed by an experienced human programmer, without running the code or
having deep contextual knowledge of the program.” This does not imply that the bugs are trivially
fixable, as they often require time-consuming analysis of the code, rich background knowledge of the
language and APIs, and complex logical reasoning about the original programmer’s intent.

Unlike previous work, we do not assume access to unit tests at training or test time. This requirement
is important because it forces development of models which can infer intended semantic purpose
from source code before proposing repairs, as a human programmer might. Most previous work relies
on unit tests – a common theme is combining coarse-grained repair models with search algorithms to
find some repair that satisfies unit tests (Harman, 2010; Singh et al., 2013). In contrast, our proposed
task requires models to deeply understand the code in order to propose a single set of repairs. Thus,
semantic code repair without unit tests presents a concrete, real-world test bed for the more general
task of understanding and modifying source code.

Our semantic repair model was trained on a large corpus of open-source Python projects with
synthetically injected bugs. We test on both real-bug and synthetic-bug test sets. 1 To train the repair
model, we first evaluated an attentional sequence-to-sequence architecture. Although this model was
able to achieve non-trivial results, we believe it to be an unsuitable solution in a number of ways,
such as the lack of direct competition between repair candidates at different locations. Instead, we

1All data sets will be made publicly available.

1



Under review as a conference paper at ICLR 2018

use an alternative approach which decouples the non-statistical process of generating and applying
repair proposal from the statistical process of scoring and ranking repairs.

This two-stage process itself is not new, but the core novelty in this work is the specific neural
framework we propose for scoring repair candidates. We refer to our architecture as a Share,
Specialize, and Compete (SSC) network:

• SHARE: The input code snippet is encoded with a neural network. This is a shared
representation used by all repair types.
• SPECIALIZE: Each repair type is associated with its own specialized neural module (An-

dreas et al., 2016), which emits a score for every repair candidate of that type.
• COMPETE: The raw scores from the specialized modules are normalized to compete in

comparable probability space.

Our model can also be thought of as an evolution of work on neural code completion and summariza-
tion Allamanis et al. (2016); Bhoopchand et al. (2016). Like those systems, our SHARE network is
used to learn a rich semantic understanding of the code snippet. Our SPECIALIZE modules then build
on top of this representation to learn how to identify and fix specific bug types.

Although we have described our framework in relation to the problem of code repair, it has a
number of other possible applications in sequence transformation scenarios where the input and
output sequences have high overlap. For example, it could be applied to natural language grammar
correction (Schmaltz et al., 2016), machine translation post editing (Libovickỳ et al., 2016), source
code refactoring (Allamanis et al., 2015), or program optimization (Bunel et al., 2016).

2 RELATED WORK

We believe this paper to be the first work addressing the issue of semantic program repair in the
absence of unit tests, where functionality must be inferred from the code. However, our work adds to
a substantial literature on program repair and program analysis, some of which we describe below:

Neural Syntax Repair: There have been several recent techniques developed for training neural
networks to correct syntax errors in code. DeepFix (Gupta et al., 2017) uses an attentional seq-to-seq
model to fix syntax errors in a program by predicting both the buggy line and the statement to replace
it. Bhatia and Singh (2016) train an RNN based token sequence model to predict token insertion or
replacement at program locations provided by the compiler to fix syntax errors.

Statistical Program Repair: Approaches such as Arcuri and Yao (2008) and Goues et al. (2012)
use genetic programming techniques to iteratively propose program modifications. Prophet (Long
and Rinard, 2016) learns a probabilistic model to rank patches for null pointer exceptions and array
out-of-bounds errors. The model is learnt from human patches using a set of hand-engineered
program features. In contrast, our neural model automatically learns useful program representations
for repairing a much richer class of semantic bugs.

Natural Source Code / Big Code: A number of recent papers have trained statistical models on
large datasets of real-world code. These papers study tasks involving varying degrees of reasoning
about source code, such as code completion (Raychev et al., 2015; 2014; Bhoopchand et al., 2016)
and variable/class/function renaming (Raychev, 2016; Allamanis et al., 2015).

Rule-Based Static Analyzers: Rule-based analyzers for Python (Pylint (Thenault, 2001) and
Pyflakes (PyCQA, 2012)) handle a highly disjoint set of issues compared to the type of bugs we
are targeting, and generally do not directly propose fixes.

3 PROBLEM OVERVIEW

As mentioned in the introduction, our goal is to develop a system which can statically analyze a piece
of code and predict the location of the bug along with the actual fix. We do not assume to have unit
tests or any other specification associated with the snippet being repaired. These proposed repairs can
be directly presented to the user, or taken as input to some downstream application. Since the task of
“fixing bugs in code” is incredibly broad, we limit ourselves to four classes of common Python bugs
that are described with examples in Section 3.

2



Under review as a conference paper at ICLR 2018

Ideally, we would train such a repair model using a large number of buggy/repaired code snippets.
However, such a large data set does not exist. It is possible to extract a modest test set of genuine bugs
from project commit histories, but it is not enough to train a large-scale neural network. Fortunately,
there is a large amount of real-world non-buggy code available to which bugs can be injected. We
demonstrate that a model trained on synthesized bugs is able to generalize to a test set with real bugs.

Training Data To create the training data, we first downloaded all Python projects from GitHub
that were followed by at least 15 users and had permissive licenses (MIT/BSD/Apache), which
amounted to 19,000 total repositories. We extracted every function from each Python source file as a
code snippet. In all experiments presented here, each snippet was analyzed on its own without any
surrounding context. All models explored in this paper only use static code representations, so each
snippet must be parsable as an Abstract Syntax Tree (AST), but does not need to be runnable. Note
that many of the extracted functions are member functions of some class, so although they can be
parsed, they are not runnable without external context. We only kept snippets with between 5 and 300
nodes in their AST, which approximately corresponds to 1 to 40 lines of code. The average extracted
snippet had 45 AST nodes and 6 lines of code.

This data was carved into training, test, and validation at the repository level, to eliminate any overlap
between training and test. We also filtered out any training snippet which overlapped with any test
snippet by more than 5 lines. In total we extracted 2,900,000 training snippets, and held-out 2,000 for
test and 2,000 for validation.

Bug/Repair Types In this work, we consider four general classes of semantic repairs, which were
chosen to be “simple” but still common during development, as reported by the Python programmers:

• VarReplace: An incorrect local variable is used at a particular location, and should be
replaced with another variable from the snippet.
• CompReplace: An incorrect comparison operator is used at a particular location.
• IsSwap: The is operator is used instead of is not, or vice versa.
• ClassMember: A self accessor is missing from a variable.

Generating synthetic bugs from these categories is straightforward. For example, for VarReplace, we
synthesize bugs by replacing one random variable from a snippet with another variable from the same
snippet. All bug types, locations, and replacements were chosen with random uniform likelihood. We
applied this bug synthesis procedure to all of the training snippets to create our training data, as well
as a synthetic test set (Synth-Bug Test).

Real-Bug Test Set In order to evaluate on a test set where both the code and bugs were real,
we mined the Git commit history from the projects crawled from Github. We found that it was
quite difficult to automatically distinguish bug repairs from other code changes such as refactoring,
especially since we wanted to avoid introducing biases into the data set through the use of complex
filtering heuristics. For this reason, we limited extraction to commits where exactly one line in a file

3



Under review as a conference paper at ICLR 2018

was changed, and the commit contained a word from the list “bug, error, issue, exception, fix”. We
then filtered these commits to only keep those that correspond to one of our four bug types. Overall,
we obtained 926 buggy/repaired snippet pairs with exactly one bug each. We believe that the small
number of extracted snippets does not reflect the true frequency of these bugs during development,
but rather reflect the fact that (1) one line Git commits are quite rare, (2) these type of bugs rarely
make it into the public branch of high-quality repositories.

4 BASELINE ATTENTIONAL SEQUENCE-TO-SEQUENCE MODEL

Since the goal of program repair is to transform a buggy snippet into a repaired snippet, an obvious
baseline is an attention sequence-to-sequence neural network (Bahdanau et al., 2014), which has been
successfully used for the related tasks of syntatic code repair and code completion. On those tasks,
sequence-to-sequence models have been shown to outperform a number of baseline methods such as
n-gram language models or classifiers.

Because this model must actually generate a sequence, we first converted the buggy/repaired ASTs
from Synth-Bug Train back to their tokenized source code, which is a simple deterministic process.
The architecture used is almost identical to the machine translation system of Bahdanau et al. (2014).
To handle the high number of rare tokens in the data, tokens were split by underscores and camel
case. The size of the neural net vocabulary was 50,000, and the final out-of-vocabulary (OOV) rate
was 1.1%. In evaluation we included OOVs in the reference, so OOVs did not cause a degradation in
results. The LSTMs were 512-dimensional and decoding was performed with a beam of 8. When
evaluating on the Single-Repair Synth-Bug Test set, the 1-best output exactly matches the reference
26% of the time. If we give the model credit when it predicts the correct repair but also predicts other
changes, the accuracy is 41%.

Although this accuracy seem to be non-trivial, there are some intuitive weaknesses in using a sequence-
to-sequence architecture for semantic code repair. First, the system is burdened with constructing the
entire output sequence, even though on average it is 98.5% identical to the input. Second, potential
repairs at different locations do not fairly “compete” with one another in probability space, but only
compete with tokens at the same location. Third, it is difficult to use a richer code representation such
as the AST, since the repaired code must be generated.

5 SHARE, SPECIALIZE, AND COMPETE (SSC) MODEL

Instead of directly generating the entire output snippet with a neural network, we consider an
alternative approach where repairs are iteratively applied to the input snippet. Here, for each bug type
described in Section 3, the system proposes all possible repairs of that type in the snippet. Although
these candidate generators are manually written, they simply propose all possible repairs of a given
type and do not perform any heuristic pruning, so each of the four generators can be written in a
few lines of code. The challenging work of determining the correct repair using the code context is
performed by our statistical model.

Figure 1: Model Visualization: A visualization of the Share, Specialize, and Compete architecture
for neural program repair.

4



Under review as a conference paper at ICLR 2018

For clarity of terminology, a repair candidate is a particular fix that can be made at a particular
location (e.g., “Replace == with != at node 4”). A repair instance refers to a particular repair location
the generator proposes and all of the candidates at that location. Each instance is guaranteed to have
exactly one no-op candidate, which results in no change to the AST if applied (e.g., “Replace ==
with == at node 4”). The reference label refers to the correct candidate of a given instance (e.g., “The
correct replacement at node 4 is <=”). Note that for the majority of repair instances that are proposed,
the reference label will be the no-op candidate.

We now present the statistical model used to score repair candidates. We refer to it as a Share,
Specialize, and Compete (SSC) network. A visual representation is given in Figure 1.

5.1 SHARE

The SHARE component performs a rich encoding of the input AST using a neural network. Crucially,
this encoding is only conditioned on the AST itself and not on any repair candidates, so it serves
a shared representation for the next component. This network can take many forms, with the only
restriction being that it must emit one vector of some dimension d for each node in the AST. An
example of a Python AST is given on the right side of Figure 1.

Here, for efficiency purposes, we encode the AST with a sequential bidirectional LSTM by enumerat-
ing a depth first traversal of the nodes, which roughly corresponds to “source code order.” However,
we encode the rich AST structure by using embeddings for (1) the absolute position of the node in
the AST, (2) the type of the node in the AST, (3) the relationship between the node and its parent, and
(4) the surface form string of the node.

These tokens are projected through an embedding layer and then concatenated, and the resulting
vector is used as input to a bidirectional LSTM. The output of this layer is represented as H =
(h1, h2, ..., hn), where hi ∈ Rd, d is the hidden dimension, and n is the number of nodes in the AST.

The core concept of the shared component is that the vast majority of neural computation is performed
here, independent of the repairs themselves. We contrast this to an alternative approach where each
repair candidate is applied to the input AST and each resulting repair candidate AST is encoded with
an RNN – such an approach would be orders of magnitude more expensive to train and evaluate.

5.2 SPECIALIZE

The SPECIALIZE component scores each repair candidate using a specialized network module
(Andreas et al., 2016) for each repair type. Instances of the same type are processed by the same
module, but obtain separate scores since they have different input. Each module takes as input the
shared representation H and a repair instance R with m candidates. It produces an un-normalized
scalar score for each candidate in the instance, ŝ = (s1, ..., sm). We use two module types:

Multi-Layer Perceptron (MLP) Module: This module performs scoring over a fixed label set using
one non-linear hidden layer. This is used for the CompReplace, IsSwap, and ClassMember generators.
It is computed as:

ŝ = V × tanh(Whj)

where V ∈ Rm×c, W ∈ Rc×d, c is the hidden dimension, m is the number of labels (i.e., transform
candidates), and j is the transform location corresponding to the transform instance T . Note that
separate V and W weights are learned for each repair type.

Pooled Pointer Module: Predicting variables for VarReplace presents a unique challenge when
modeling code repair. First, the variable names in a test snippet may never have been seen in training.
More importantly, the semantics of a variable are primarily defined by its usage, rather than its name.
To address this, instead of using a fixed output layer, each candidate (i.e., another variable) is encoded
using pointers to each usage of that variable in the AST. An example is given in Figure 1. Formally,
it is computed as:

si = tanh(Whj) · [MaxPoolk∈pi
(tanh(V hk))]

where i is the candidate (i.e., variable) index, pi is the list of locations (pointers) of the variable i in
the AST, j is the location of the repair in the AST, and V,W ∈ Rc×d are learned weight matrices.

5



Under review as a conference paper at ICLR 2018

5.3 COMPETE

Once a scalar score has been produced for each repair candidate, these must be normalized to compete
against one another. We consider two approaches to normalizing these scores:

Local Norm: A separate softmax is performed for each repair instance (i.e., location and type), so
candidates are only normalized against other candidates in the same instance, including no-op. At
test time we sort all candidates across all instances by probability, even though they have not been
normalized against each other.

Global Norm: All candidates at all locations are normalized with a single softmax. No-op candidates
are not included in this formulation.

6 EXPERIMENTAL RESULTS

We train the SSC model on the Synth-Bug Train data for 30 epochs. Different bugs are synthesized at
each epoch which significantly mitigates over-fitting. We set the hidden dimensions of the SHARE
and SPECIALIZE components to 512, and the embedding size to 128. A dropout of 0.25 is used on
the output of the SHARE component. Training was done with plain SGD + gradient clipping using an
in-house toolkit. A small amount of hyperparameter tuning was performed on the Synth-Bug Val set.

In the first condition we evaluate, all snippets in both training and test have exactly one bug each. As
was described in Section 3, for Synth-Bug Test, the code snippets are real, but the bugs have been
artificially inserted at random. For Real-Bug Test, we extracted 926 buggy/fixed snippet pairs mined
from GitHub commit logs, so both the snippet and bug are real. The average snippet in the Real-Bug
Test set has 31 repair locations and 102 total repair candidates, compared to 20 locations and 50
candidates of the Synth-Bug Test test set.

Table 1 presents Single-Repair results on Synth-Bug and Real-Bug test sets. The accuracy metric
denotes how often the 1-best repair prediction exactly matches the reference repair, i.e., the model
correctly detects where the bug is and correctly predicts how to fix it. In this case, the model was
constrained to predict exactly one repair, but all candidates across all repair types are directly com-
peting against one another. On Synth-Bug, the SSC model drastically outperforms the attentional
sequence-to-sequence model, even using the upper bound seq-to-seq accuracy. Since global normal-
ization and local normalization have similar performance and it is not obvious how to extend global
normalization to multiple repairs, we use local normalization for multi-repair experiments.

On Real-Bug Test, the absolute accuracy is lower than on Synth-Bug Test, but the SSC model still
significantly outperforms the seq-to-seq baseline. To better understand the absolute quality of the
Real-Bug Test results, we perform a preliminary human evaluation in Section 6.

Single-Repair
Synth-Bug Real-Bug
Accuracy Accuracy

Att. Seq-to-Seq 26% (40%†) 13% (18%†)

SSC (Global Norm) 86% 41%
SSC (Local Norm) 87% 41%

VarReplace 82% 36%
CompReplace 80% 29%
IsSwap 96% 82%
ClassMember 95% 56%

Multi-Repair
Synth-Bug

Num Exact
Bugs F-Score Accuracy

0 - 82%
1 85% 78%
2 84% 61%
3 81% 45%

All 82% 66%

Table 1: Repair Accuracy: 1-best repair accuracy prediction for the single-repair and multi-repair
condition †Denotes “upper bound” accuracies as in Sec. 4.

Example predictions from the Real-Bug Test set are presented below. The red region is the bug, and
the green is the reference repair. For the incorrect predictions, the blue region is the predicted repair.
Results on all 926 Real-Bug Test examples are provided in the supplementary material.

6



Under review as a conference paper at ICLR 2018

In the multi-repair setting, we consider the more realistic scenario where a snippet may have multiple
bugs, or may have none. To model this scenario, the data was re-generated so that 0, 1, 2, or 3 bugs
was added to each training/test/val snippet, with equal probability of each. We refer to these new
sets as Synth-Multi-Bug Test and Synth-Multi-Bug Val. Unfortunately, we were not able to extract
multi-bug examples from the Real-Bug data.

The major new complexity is that the system must now determine how many repairs to predict per
snippet, if any. We use a simple threshold-based approach: Since each repair candidate is assigned
a probability by the model, we simply emit all repairs which have probability greater than δ. The
system is not constrained to emit only 3 repairs. A parameter sweep over the validation set revealed
that accuracy is surprisingly un-sensitive to δ, so we simply use δ = 0.5. Note that we only perform
a single pass of repair scoring here, but in future work we will explore an iterative decoder.

Results are presented on the right side of Table 1. For accuracy at the per-repair level, there is only a
moderate decrease in F-score from 85% to 81% between the 1-repair and 3-repair settings. The Exact
Accuracy does decrease significantly, but not beyond the “expected value.” In other words, three
independent 1-repair snippets have an expected accuracy of 0.783 = 0.47, which is similar to the
45% accuracy observed for 3-repair snippet. We also see that the system is 82% accurate at correctly
predicting when a snippet has no bugs.

Human Evaluation To better understand the significance of the performance of our system, we
performed a preliminary human evaluation under identical conditions to the model. The evaluator
was presented with a snippet from the test set, where all repair instances were highlighted in the
code. The evaluator could click on a repair location to see all candidates at that location. They were
explained each of the four bug types and told that there was always exactly one bug per snippet. This
evaluation required experienced Python programmers performing a complex task, so we performed
a small evaluation using 4 evaluators and 30 snippets each from the Real-Bug Test set. Evaluators
typically used 2-6 minutes per snippet. These snippets were limited to 150 nodes for the benefit of
the human evaluators, so the SSC model accuracy is higher on this subset than on the full set.

On these snippets, the humans achieved 37% accuracy compared to the 60% accuracy of the SSC
model. One possible reason for this performance gap is that the model is simply better than humans
at this task, presumably because it has been able to learn from such a large amount of data. Another
possible reason is that humans did not spend the time or mental energy to perform as well as they
could. To examine these possibilities, we performed a second evaluation with the same set of humans.
In this evaluation, instead of having to consider all possible repairs – up to 100 candidates – the
humans only had to decide between the four “most likely” repair candidates. These candidates were
generated by taking the top four predictions from the SSC model (or the top three and the correct
repair), shown in random order. In this evaluation, humans achieved 76% accuracy, which shows that
the low performance of humans in the full task is due to the mental energy required, rather than lack
of context or code understanding. We believe that these evaluations demonstrate that Real-Bug Test
is a challenging set and that the accuracy achieved by the SSC model is empirically strong.

7



Under review as a conference paper at ICLR 2018

7 ANALYSIS AND DISCUSSION

Our first goal is to conceptually understand at what “level” the model was able to generalize to new
snippets. Although the hidden activations of the neural network model are not directly interpretable,
we can attempt to interpret the latent model space using nearest neighbor retrieval on the hidden
vectors hi. The goal is to determine if the model is simply memorizing common n-grams, or if it is
actually learning high-level repair concepts. Nearest neighbor retrieval for several test snippets are
presented here:

In Example 1, we see the model is able to learn a high-level pattern “y.x = x”. In Example 2 we see
the pattern “if (x c1 y...) elif (x c2 y...)”. In Example 3 we see the pattern “Strings usually use
the equality (or inequality) operator.” In all cases, the surface form of the training nearest neighbor is
very different from the test snippet. From this, it appears that the SSC model is able to learn a number
of interesting, high-level patterns which it uses to generalize to new data.

We next examined failure cases of the SSC model which a human evaluator was able to repair
correctly. Here, the primary weakness of the model was that humans were able to better infer program
intent by using variable names, function names, and string literals. One major fault in the current
implementation is a lack of sub-word representation. For example, consider a repair of the expression
“dtypes.append(x)” where x could be dtype or syncnode. It is easy for a human to infer
that dtype is the more sensible choice even without deeper understand of the code. In future work
we plan to explore character-level encoding of value strings so that lexical similarity can be modeled
latently by the network.

We finally examined cases where the SSC model succeeded but the human evaluator failed. Generally,
we conclude that the model’s primary advantage was the sheer amount of data it was able to learn
from. For example, consider the expression “if (db.version_info <= 3)”. This may not
be immediately suspicious to a human, but if we analyze the reference training data we can measure
that the pattern “if (x.version_info <= y)” is 10 times less frequent than the pattern “if
(x.version_info < y)”. Intuitively, this makes sense because if a feature is added in version
y, it is not useful to check <= y. However, the neural model is able to easily learn such probabilistic
distributions even without deeper understanding of why they are true.

8 CONCLUSION

We presented a novel neural network architecture that allows specialized network modules to explicitly
model different transformation types based on a shared input representation. When applied to the
domain of semantic code repair, our model achieves high accuracy relative to a seq2seq baseline and
an expert human evaluation. In our analysis of the results, we find that our system is able to learn
fairly sophisticated repair patterns from the training data. In future work we plan to expand our model
to cover a larger set of bug types, and ideally these bug types would be learned automatically from a
corpus of real-world bugs. We also plan to apply the SSC model to other tasks.

8



Under review as a conference paper at ICLR 2018

REFERENCES

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. Suggesting accurate method and class
names. In FSE, pages 38–49, 2015.

Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional attention network for extreme summa-
rization of source code. In ICML, pages 2091–2100, 2016.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 39–48, 2016.

Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to automatic software bug fixing. In IEEE
Congress on Evolutionary Computation, pages 162–168. IEEE, 2008.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in programming assignments using
recurrent neural networks. CoRR, abs/1603.06129, 2016.

Avishkar Bhoopchand, Tim Rocktäschel, Earl Barr, and Sebastian Riedel. Learning python code suggestion with
a sparse pointer network. arXiv preprint arXiv:1611.08307, 2016.

Rudy Bunel, Alban Desmaison, M Pawan Kumar, Philip HS Torr, and Pushmeet Kohli. Learning to superoptimize
programs. arXiv preprint arXiv:1611.01787, 2016.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common c language errors by
deep learning. In AAAI, 2017.

Mark Harman. Automated patching techniques: the fix is in: technical perspective. Communications of the
ACM, 53(5):108–108, 2010.

Jindřich Libovickỳ, Jindřich Helcl, Marek Tlustỳ, Pavel Pecina, and Ondřej Bojar. Cuni system for wmt16
automatic post-editing and multimodal translation tasks. arXiv preprint arXiv:1606.07481, 2016.

Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In POPL, pages 298–312,
2016.

PyCQA. Pyflakes, 2012. URL https://github.com/PyCQA/pyflakes.

Veselin Raychev. Learning from large codebases. PhD thesis, 2016.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language models. In ACM
SIGPLAN Notices, volume 49, pages 419–428. ACM, 2014.

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from big code. In ACM
SIGPLAN Notices, volume 50, pages 111–124. ACM, 2015.

Allen Schmaltz, Yoon Kim, Alexander M Rush, and Stuart M Shieber. Sentence-level grammatical error
identification as sequence-to-sequence correction. arXiv preprint arXiv:1604.04677, 2016.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introductory
programming assignments. In PLDI, pages 15–26, 2013.

Sylvain Thenault. Pylint, 2001. URL https://www.pylint.org/.

9

https://github.com/PyCQA/pyflakes
https://www.pylint.org/


Under review as a conference paper at ICLR 2018

A POOLED POINTER MODULE IMPLEMENTATION

Figure 2 provides a diagram of the pooled pointer network module.

Figure 2: Pooled Pointer Module: The application of a pooled pointer module at a single time step,
to predict the variable replacement scores for each potential replacement of the token fname. The input
here is the per-token representation computed by the SHARE module. Representations for variable
names are passed through a pooling module which outputs per-variable pooled representations. These
representations are then passed through a similarity module, as in standard pointer networks, to yield
a (dynamically-sized) output dictionary containing one score for each unique variable.

As described in Section 5.2, the pooling module consists of a projection layer followed by a pooling
operation. For each variable i, its representation is computed by pooling the set of all its occurrences,
pi.

vi = MaxPoolk∈pi
(tanh(V hk))

where hk denotes the representation computed by the SHARE module at location k.

The similarity module produces un-normalized scores for each potential variable replacement i.
When applied at repair location j, it computes:

sij = tanh(Whj) · vi

B EXAMPLES OF PREDICTIONS

We include the full set of system predictions for the Real-Bug Test set. We have made these available
at https://iclr2018anon.github.io/semantic_code_repair/index.html.

10

https://iclr2018anon.github.io/semantic_code_repair/index.html


Under review as a conference paper at ICLR 2018

C ADDITIONAL RESULTS

Varying source code complexity Figure 3 presents accuracy of the model across functions with
varying numbers of repair candidates. While the repair accuracy decreases with the number of
repair candidates, the model achieves reasonably high accuracy even for functions with over 100
repair candidates. Among functions with 101-150 repair candidates, the model accuracy is 73% for
synthetically introduced bugs and 36% for real bugs.

Figure 3: Results binned by number of repair candidates in the snippet

Importance of AST structure The Python abstract syntax tree is a rich source of semantic informa-
tion about the tokens in a snippet. As described in Section 5.1, in addition to the original token string,
we also include (1) the absolute position of the node in the AST, (2) the type of the node, and (3) the
relationship between the node and its parent. To test the model’s reliance on this information, we
present ablation results over these additional feature layers below in Table 2.

We see that using information from the AST provides a significant performance gain. Still, even when
only using the surface form values, the SSC model outperforms the attentional sequence-to-sequence
baseline by a large margin (78.3% repair accuracy compared to 26% for the sequence-to-sequence
model).

Repair Location
Accuracy Accuracy

All 87.1% 91.3%
No Pos. 86.8% 91.1%
No Pos., Rel. 85.7% 90.9%
No Pos., Rel., Val. (Type Only) 80.9% 86.7%
Value Only 78.3% 84.3%

Table 2: Results on Synth-Bug Test with ablation on different token types from the input AST
representation.

11


	Introduction
	Related Work
	Problem Overview
	Baseline Attentional Sequence-to-Sequence Model
	Share, Specialize, and Compete (SSC) Model
	Share
	Specialize
	Compete

	Experimental Results
	Analysis and Discussion
	Conclusion
	Pooled Pointer Module Implementation
	Examples of Predictions
	Additional Results

