Debugging the Black-Box COMPAS Risk Assessment Instrument to Diagnose
and Remediate Bias

Patrick Hall! Navdeep Gill !

Abstract

The black-box Correctional Offender Manage-
ment Profiling for Alternative Sanctions (COM-
PAS) criminal risk assessment instrument (RAI)
is analyzed for confounding racial bias and a
novel procedure is proposed for remediating bias
from individual criminal risk predictions. A re-
peatable global versus local analysis motif is in-
troduced in which global and local model be-
havior are compared to debug and diagnose un-
wanted bias in a black-box prediction system
using tools such as surrogate models, gradient
boosting machine feature importance, leave-one-
covariate-out (LOCO) feature importance, partial
dependence plots, and individual conditional ex-
pectation (ICE) plots. LOCO-derived feature im-
portance is also used to remove prediction con-
tributions from bias-inducing input features. The
proposed global versus local approach and reme-
diation strategy can be applied to many black-
box and machine learning (ML) decision-making
systems.

1. Introduction

Many criminologists and criminal justice reformers agree
that entirely too many people are imprisoned in the U.S.
(Travis et al., 2014). While RAIs, somewhat like the COM-
PAS instrument analyzed here, have been used to lower
pretrial incarceration rates for some populations (Fratello
et al., 2011), they are applied across the U.S. to determine
the risk of pretrial flight, the level of service an inmate or
other individual should receive while under penal super-
vision (Christin et al., 2015), and are now being used or
considered for use in sentencing decisions (Hyatt & Cha-
nenson, 2017).

Proponents of these instruments believe they can be used
to make data-driven, objective decisions about an individ-
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ual’s future criminal risk and reduce jail and prison popu-
lations by diverting individuals that score low or medium
on risk scales to alternative supervision programs (Arnold
& Arnold, 2016). Detractors have raised pointed concerns
about racial bias in these instruments; in particular, inves-
tigative journalists at ProPublica recently uncovered poten-
tially serious problems in COMPAS (Angwin et al., 2016).
However, a subsequent rejoinder from a group of respected
criminologists pointed out noteworthy flaws in the Pro-
Publica analysis (Flores et al., 2016). Is COMPAS biased?
This paper will present evidence that the instrument be-
haves as expected globally, but locally it appears to produce
biased risk scores for certain individuals.

In the following sections, decision tree and gradient boost-
ing machine (GBM) surrogate models (Craven & Shavlik,
1996) are trained to simulate COMPAS risk scores using
demographic features collected by ProPublica. Then sev-
eral additional model debugging techniques including:

e GBM feature importance (Friedman, 2001)

e [eave-one-covariate-out (LOCO) feature importance
(Lei et al., 2017)

e Partial dependence plots (Hastie et al., 2008)

e Individual conditional expectation (ICE) plots (Gold-
stein et al., 2015)

are employed to compare global and local behavior in
COMPAS predictions and diagnose confounding bias
stemming from a latent race feature. Finally, using COM-
PAS as a representative example, a novel, prototype idea is
introduced for numerically remediating the impact of un-
wanted bias in black-box ML and artificial intelligence (AI)
prediction systems.

1.1. The Multiplicity of Good Models

It is well understood that for the same set of input features
and prediction targets, complex ML algorithms can pro-
duce multiple accurate models with very similar, but not
exactly the same, internal mechanisms (Breiman, 2001).
This alone is an obstacle to interpretation, but when using
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these types of algorithms as interpretation tools, or with
interpretation tools, details of the explanation can change
across multiple accurate models. In the reported results,
conclusions are drawn only from trends and results seen
across multiple accurate surrogate models or across re-
peated applications of interpretability tools.

2. Surrogate Models

A surrogate model is typically trained to predict the output
of another intractably complex or opaque black-box model
using some set of interesting training features as inputs and
the predictions of the more complex model as a target. A
trained surrogate model enables a heuristic understanding
of the complex model’s internal mechanisms. In this case,
both the original inputs and internal mechanisms of the pro-
prietary COMPAS instrument are unknown. By using the
data set constructed by ProPublica', in which COMPAS
risk scores are manually associated with an individual’s de-
mographic attributes, surrogate models can be trained in
which age, race, and criminal history are used as input fea-
tures to predict COMPAS risk scores.’

2.1. Single Decision Tree

By training a single decision tree, the resulting surrogate
model displayed in Figure 1 is a global, approximate flow
chart for the COMPAS instrument’s decisions. According
to the flow chart, the most important features in determin-
ing an individual’s COMPAS risk scores are an individual’s
number of prior convictions and an individual’s age. The
path to the leaf node with the highest normalized risk score
value (0.40993544) indicates that individuals younger than
34.5 years of age with more than 10.5 prior convictions
are generally the most likely to receive the highest risk
score from COMPAS. Conversely the path leading to the
leaf node with the lowest normalized risk score value (-
0.23085095) shows that those individuals with less than
4.5 prior convictions and an age of greater than 37.5 years
are typically expected to receive the lowest COMPAS risk
scores.

Race is notably missing from this simple surrogate model,
potentially indicating that race is not a first order consid-
eration in the COMPAS instrument. However, the RMSE
of this surrogate model is approximately 2.7, out of the
ten-point COMPAS risk score scale. Hence, this surrogate
model can provide only an overview of the COMPAS in-
strument’s decision making processes. Next a highly ac-

"Data and other information from the ProPublica analy-
sis is publicly available: https://github.com/propublica/compas-
analysis.

2 According to Flores (2016), the data on pretrial individuals
collected by ProPublica may not be well-suited to analyze their
associated COMPAS scores.
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Figure 1. A global, graphical depiction of a decision tree surro-
gate model for the COMPAS instrument.

Table 1. Hyperparameter values for the GBM surrogate model.

HYPERPARAMETER VALUE
COL_SAMPLE_RATE 0.6
COL_SAMPLE_RATE_CHANGE_PER_LEVEL 1.1
COL_SAMPLE_RATE_PER_TREE 0.68
HISTOGRAM_TYPE ROUNDROBIN
MAX_DEPTH 15
MIN_ROWS 1
MIN_SPLIT_IMPROVEMENT 1E-8
NBINS 112
NBINS_CATS 3344
NTREES 201
SAMPLE_RATE 0.4

curate surrogate model is trained to provide more refined
insights into COMPAS.

2.2. Gradient Boosting Machine

A random grid search strategy (Bergstra & Bengio, 2012) is
used to train a gradient boosting machine surrogate model
for the COMPAS model on the ProPublica data set. 250
candidate models are considered in the random search. The
hyperparameters of the most accurate model found in the
search are presented in Table 1 for reproducibility pur-
poses. This model is used for all further analysis.

The RMSE of the GBM surrogate model is approximately
0.2. Since COMPAS risk scores are on a scale of 1 to 10,
this indicates that the GBM surrogate model simulates the
risk score predictions generated by COMPAS with only 2%
error. Although COMPAS reportedly uses over 100 inputs,
none of which are an individual’s race, this surrogate model
can very accurately simulate COMPAS in the data provided
using only 11 features, including an individual’s race.
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3. Global and Local Feature Importance
Comparison

Global feature importance is calculated following Fried-
man (2001). Local feature importance is calculated using a
variant of the LOCO technique (Lei et al., 2017) as defined
in Equation 1.

Lij = 9(Xi) — 9(Xi () (1)

Each local feature importance I; ; is found by re-scoring
the trained surrogate model for each row i while setting
the feature of interest j to missing giving §(X; (_;). This
modified prediction is then subtracted from the original
prediction §(X;) to find the raw importance for feature j in
row i. Local feature importance values are then scaled for
direct comparison with global values. As these local fea-
ture importance values can be misleading in the presence
of highly correlated input features (Adebayo, 2016), Pear-
son correlations were calculated and found to be acceptable
before evaluating 1 for the input features and GBM surro-
gate model.

Local feature importance values are compared to global
values for two test individuals to debug any unexpected
contributions from race in COMPAS. One test individual
is a relatively older Caucasian male facing felony theft
charges with two prior convictions. The other is a younger,
African-American male arrested on possession of cannabis
with no prior convictions. The COMPAS model gives these
two individuals drastically different risk scores. The Cau-
casian male is predicted to be low risk with a numeric score
of 3, whereas the African-American male is rated as a very
high risk with a numeric score of 10. Both global and local
feature importance values provide insight into how COM-
PAS risk scores are influenced by age, criminal history, and
the latent race feature in the ProPublica data. Figure 2 pro-
vides a visual comparison of the feature importance values
for the two test individuals to each other and to the global
feature importance values.
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Figure 2. Global feature importance compared to local feature im-
portance for the test individuals.

Between the global and local feature importance values,
age and criminal history information dominate the COM-
PAS instrument decision process, as is expected. It is also
clear that race plays a role in COMPAS predictions. Some
feature or features must have pushed the African-American
male’s very high score away from the lower score assigned
to the Caucasian male. Given that the African-American
male received the highest possible score, it is not unreason-
able to assume that each important feature, including race,
likely pushed him up toward this highest possible score.
(Numerical evidence for this assertion is presented in Sec-
tion 6 using raw local feature importance values.) Given
his feature importance values, it is logical for his younger
age and drug arrest to have increased his risk score, but
it seems highly questionable that an individual’s very low
prior conviction count and race should also contribute to a
higher risk score.

4. Global Partial Dependence and Local ICE
Comparison

Partial dependence plots are constructed following Hastie
et al (2008). ICE plots, a newer and less well-known adap-
tation of partial dependence plots, can be used to create lo-
calized explanations by performing a sensitivity analysis of
model predictions for a given individual and input feature.
ICE plots are constructed following Goldstein et al (2015).

ICE; j = 9(Xi, Tk j), Thj € 75 2)

ICE values are simply disaggregated partial dependence.
When displayed for a single individual IC'E; ; ;. they rep-
resent the model predictions for a single row i, where a fea-
ture of interest j is varied over its domain k. Overlaying ICE
plots onto partial dependence plots enables the debugging
of a model’s treatment of certain individuals by compar-
ing an individual’s local predictions to the model’s global
predictions across the domain of an input feature.

4.1. Partial Dependence and ICE for Age

As expected, global, average COMPAS risk scores de-
crease with increasing age as displayed in Figure 3. How-
ever, an African-American male with no prior criminal his-
tory and a Caucasian male with a short criminal history ap-
pear to be treated differently for almost all values of age.
(For this specific surrogate model, the African-American
male is nearly always assessed with a noticeably higher risk
score.) It seems logical that predictions would converge at
high age as risk diminishes, but that does not occur here.
Unless there is some non-obvious criminological justifica-
tion for treating such individuals differently at all ages, this
finding could point to a potential racial bias in the COM-
PAS risk scores.
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Figure 3. Partial dependence compared to ICE for the test individ-
uals across simulated ages from 18 to 96.

4.2. Partial Dependence and ICE for Prior Convictions

Global, average COMPAS risk scores increase as prior con-
victions increase. Again, this prediction behavior agrees
with generally accepted standards. Yet, comparing partial
dependence and ICE for the number of prior convictions
for the two test individuals exposes an unnerving pattern
in the COMPAS predictions as presented in Figure 4. No
matter the number of prior convictions, a young African-
American male facing drug charges would always be as-
sessed a much higher risk score than an older Caucasian
male facing felony theft charges and always be assessed a
much higher than average score. Moreover, this difference
is starkest for individuals with no or short criminal histo-
ries. This behavior is observed across multiple accurate
surrogate models.

4.3. Partial Dependence and ICE for Race

Figure 5 compares the surrogate model’s average treatment
of race with its treatment of race in the test individuals. The
partial dependence of the model on each race is roughly
equivalent, although the partial dependence for African-
American scores is slightly higher than for other groups.
Also, using ICE to treat the African-American male as ev-
ery other race still results in the highest risk scores for each
race group, indicating that something besides race is driv-
ing the test individual’s very high risk score.

However, comparing the two test individuals again points
to the same pattern of potential racial bias:

e Using ICE to treat the African-American male as a
Caucasian male with all other traits held constant
would result in his risk score being cut by roughly

Figure 4. Partial dependence compared to ICE for the test individ-
uals across simulated prior counts from 0 to 38.

one-half to two-thirds across several tested surrogate
models.

e Using ICE to the treat the Caucasian male as an
African-American male holding his other traits con-
stant would nearly double his score across several
tested surrogate models.
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Figure 5. Partial dependence compared to ICE for the test individ-
uals across simulated races.

5. Conclusions

This analysis highlights a set of ideas and tools that can be
used to examine the many and growing number of ML and
Al systems that are impacting human lives in important,
and sometimes undesirable, ways. It is the authors’ opin-
ion that the use of these systems will continue to grow in
number and societal impact. If so, more tools to understand
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their decisions and debug and remediate their mistakes will
be needed in coming years.

By applying the proposed global versus local analysis strat-
egy to COMPAS, expected global behavior is confirmed,
but compelling local patterns of racial bias are exposed for
the test individuals. According to ProPublica, COMPAS
does not consider race explicitly (Angwin et al., 2016).
However, race likely cannot be excluded from a model
where any available training data could be tainted by in-
stitutional racial bias (Travis et al., 2014). More likely race
is a latent, confounding feature in COMPAS that interacts
with all other important input features resulting in biased
predictions for certain individuals.

While the analyzed COMPAS instrument is not recom-
mended for sentencing decisions, it is possible that it could
be misused for serious incarceration decisions, that a pre-
vious risk score could linger in a judge’s mind during sen-
tencing, or that other risk tools could be used for serious
incarceration decisions (Hyatt & Chanenson, 2017). Even
in the best case, if racial bias in COMPAS model is lim-
ited to corner cases, it’s unlikely that any amount of racial
bias is acceptable to individuals who would be negatively
affected by COMPAS model risk scores or other RAI risk
scores. It seems obvious that even a model with minimal
bias should not be used for decisions involving an individ-
ual’s freedom. Unfortunately, this may not have been the
case in the past and may continue to be a terribly unfair
problem into the future.

6. Suggestions for Future Work

Future work entails applying differentially private learning
techniques to build new risk models and testing a novel,
prototype procedure to remediate any unwanted bias from
COMPAS and other ML and Al decision-making systems.

6.1. Differential Privacy

If racial bias is present in training data, racial bias will ap-
pear in any model trained on that data. Differential pri-
vacy approaches offer a theoretical and practical frame-
work for altering data in ways that could potentially re-
duce unwanted bias in models based on an individual’s
attributes while preserving predictive utility (Zemel et al.,
2013). Differentially private learning techniques could be
applied to build new risk models or COMPAS surrogates
and the global versus local analysis strategy could be ap-
plied to test for successful bias remediation.

6.2. Prototype for Bias Remediation

When making decisions that have a large impact on peo-
ple’s live, no level of unwanted bias is acceptable. This
necessity clashes with the realities of both statistical mod-

Table 2. Unscaled local feature importance values for the two test
individuals.

FEATURE AF.-AM. MALE CAUC. MALE
SEX -0.15 -0.08
AGE 2.35 -2.87
RACE 0.55 -0.80
JUV_FEL_COUNT 0.03 0.00
JUV_MISD_COUNT -0.02 -0.04
JUV_OTHER_COUNT 0.02 0.22
C_CHARGE_DEGREE -0.02 -0.12
IS_RECID 1.08 -1.20
IS_VIOLENT_RECID -0.01 0.00
PRIORS_COUNT 1.72 -0.56
CRIME_DESCRIPTION 5.20 -0.43

els, and frankly, the realities of human decision making.
In the future, it may be better to accept that unwanted bias
exists in most data and models and to use tools to identify
and remove unwanted bias before scores are presented to
human decision makers. A prototype procedure using lo-
cal feature importance values for removing unwanted bias
from predictions is presented in this section.

The simulated risk score produced by the GBM surrogate
model for the African-American test individual is 9.87,
very close the actual COMPAS-assigned risk score of 10.
Table 2 presents the unscaled local feature importance val-
ues for the two test individuals. These values can be used
to decompose this score into signed, individual feature con-
tributions.

Since the global versus local analysis calls the COMPAS
instrument’s treatment of race and priors count into ques-
tion, unscaled local feature importance values are used
to remediate the contributions of these features from the
COMPAS risk scores. Also, in the case of the African-
American test individual, his current crime not being clas-
sified as recidivism contributed positively to his simulated
risk score, and the contribution of the is_recid feature
is also be remediated. The new remediated score can be
defined as

gremi =7 — Zl(ij)r (3

where ¥y e, is the remediated risk score for row i, g; is the
original risk score for row i, and each I(; ;) represents the
local feature importance values for the r remediated fea-
tures. For the African-American test individual, the reme-
diated numeric score is

Yi — (Ii,race + Ii,priors,count + Ii,is,recid) =6.53 (4)
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The simulated COMPAS score for the Caucasian test indi-
vidual is 3.17. Carrying out the same remediation proce-
dure yields the remediated risk score in 5.

yi - (Ii,r(zce + Ii,pm’ors,count + Ii,is,recid) =5.74 (5)

Given that this Caucasian male individual went on to com-
mit a serious theft and the African-American male went
on to commit no additional crimes, these remediated risk
scores may be presenting a more accurate overall evalua-
tion of future criminal risk. Of course, broader testing is
required.

Additionally, the unscaled values add more seriousness to
claims asserted in Section 3 that these two individuals are
treated differently by COMPAS based on their race. The
unscaled local value for race for the African-American
is positive, whereas the unscaled race feature importance
value for the Caucasian male is the negative. While race
does not contribute strongly to either prediction, it does
contribute to a difference of 1.35 risk score points between
the two test individuals.
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