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ABSTRACT

Despite their ability to memorize large datasets, deep neural networks often
achieve good generalization performance. However, the differences between the
learned solutions of networks which generalize and those which do not remain
unclear. Additionally, the tuning properties of single directions (defined as the
activation of a single unit or some linear combination of units in response to some
input) have been highlighted, but their importance has not been evaluated. Here,
we connect these lines of inquiry to demonstrate that a network’s reliance on single
directions is a good predictor of its generalization performance, across networks
trained on datasets with different fractions of corrupted labels, across ensembles
of networks trained on datasets with unmodified labels, across different hyper-
parameters, and over the course of training. While dropout only regularizes this
quantity up to a point, batch normalization implicitly discourages single direction
reliance, in part by decreasing the class selectivity of individual units. Finally,
we find that class selectivity is a poor predictor of task importance, suggesting
not only that networks which generalize well minimize their dependence on indi-
vidual units by reducing their selectivity, but also that individually selective units
may not be necessary for strong network performance.

1 INTRODUCTION

Recent work has demonstrated that deep neural networks (DNNs) are capable of memorizing ex-
tremely large datasets such as ImageNet (Zhang et al., 2017). Despite this capability, DNNs in prac-
tice achieve low generalization error on tasks ranging from image classification (He et al., 2015)
to language translation (Wu et al., 2016). These observations raise a key question: why do some
networks generalize while others do not?

Answers to these questions have taken a variety of forms. A variety of studies have related general-
ization performance to the flatness of minima and PAC-Bayes bounds (Hochreiter & Schmidhuber,
1997, Keskar et al., 2017, Neyshabur et al., 2017, Dziugaite & Roy, 2017), though recent work
has demonstrated that sharp minima can also generalize (Dinh et al., 2017). Others have focused
on the information content stored in network weights (Achille & Soatto, 2017), while still others
have demonstrated that stochastic gradient descent itself encourages generalization (Bousquet &
Elisseeff, 2002, Smith & Le, 2017, Wilson et al., 2017).

Here, we use ablation analyses to measure the reliance of trained networks on single directions. We
define a single direction in activation space as the activation of a single unit or feature map or some
linear combination of units in response to some input. We find that networks which memorize the
training set are substantially more dependent on single directions than those which do not, and that
this difference is preserved even across sets of networks with identical topology trained on identical
data, but with different generalization performance. Moreover, we found that as networks begin to
overfit, they become more reliant on single directions, suggesting that this metric could be used as a
signal for early stopping.

1Corresponding author: arimorcos@google.com
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We also show that networks trained with batch normalization are more robust to cumulative abla-
tions than networks trained without batch normalization and that batch normalization decreases the
class selectivity of individual feature maps, suggesting an alternative mechanism by which batch
normalization may encourage good generalization performance. Finally, we show that, despite the
focus on selective single units in the analysis of DNNs (and in neuroscience; Le et al., 2011, Zhou
et al., 2014, Radford et al., 2017, Britten et al., 1992), the class selectivity of single units is a poor
predictor of their importance to the network’s output.

2 APPROACH

In this study, we will use a set of perturbation analyses to examine the relationship between a net-
work’s generalization performance and its reliance upon single directions in activation space. We
will then use a neuroscience-inspired measure of class selectivity to compare the selectivity of in-
dividual directions across networks with variable generalization performance and examine the rela-
tionship between class selectivity and importance.

2.1 SUMMARY OF MODELS AND DATASETS ANALYZED

We analyzed three models: a 2-hidden layer MLP trained on MNIST, an 11-layer convolutional
network trained on CIFAR-10, and a 50-layer residual network trained on ImageNet. In all experi-
ments, ReLU nonlinearities were applied to all layers but the output. Unless otherwise noted, batch
normalization was used for all convolutional networks (Ioffe & Szegedy, 2015). For the ImageNet
ResNet, top-5 accuracy was used in all cases.

Partially corrupted labels As in Zhang et al. (2017), we used datasets with differing fractions
of randomized labels to ensure varying degrees of memorization. To create these datasets, a given
fraction of labels was randomly shuffled and assigned to images, such that the distribution of labels
was maintained, but any true patterns were broken.

2.2 PERTURBATION ANALYSES

Ablations We measured the importance of a single direction to the network’s computation by
asking how the network’s performance degrades once the influence of that direction was removed.
To remove a coordinate-aligned single direction , we clamped the activity of that direction to a fixed
value (i.e., ablating the direction). Ablations were performed either on single units in MLPs or an
entire feature map in convolutional networks. For brevity, we will refer to both of these as ‘units.’
Critically, all ablations were performed in activation space, rather than weight space.

More generally, to evaluate a network’s reliance upon sets of single directions, we asked how the net-
work’s performance degrades as the influence of increasing subsets of single directions was removed
by clamping them to a fixed value (analogous to removing increasingly large subspaces within acti-
vation space). This analysis generates curves of accuracy as a function of the number of directions
ablated: the more reliant a network is on low-dimensional activation subspaces, the more quickly
the accuracy will drop as single directions are ablated.

Interestingly, we found that clamping the activation of a unit to the empirical mean activation across
the training or testing set was more damaging to the network’s performance than clamping the activa-
tion to zero (see Appendix A.1). We therefore clamped activity to zero for all ablation experiments.

Addition of noise As the above analyses perturb units individually, they only measure the influence
of coordinate-aligned single directions. To test networks’ reliance upon random single directions,
we added Gaussian noise to all units with zero mean and progressively increasing variance. To
scale the variance appropriately for each unit, the variance of the noise added was normalized by the
empirical variance of the unit’s activations across the training set.

2.3 QUANTIFYING CLASS SELECTIVITY

To quantify the class selectivity of individual units, we used a metric inspired by the selectivity in-
dices commonly used in systems neuroscience (De Valois et al., 1982, Britten et al., 1992, Freedman
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Figure 1: Memorizing networks are more sensitive to cumulative ablations. Networks were
trained on MNIST (2-hidden layer MLP, a), CIFAR-10 (11-layer convolutional network, b), and
ImageNet (50-layer ResNet, c). In a, all units in all layers were ablated, while in b and c, only
feature maps in the last three layers were ablated. Error bars represent standard deviation across 10
random orderings of units to ablate.

& Assad, 2006). The class-conditional mean activity was first calculated across the test set, and the
selectivity index was then calculated as follows:

selectivity =
µmax − µ−max

µmax + µ−max
(1)

with µmax representing the highest class-conditional mean activity and µ−max representing the
mean activity across all other classes. For convolutional feature maps, activity was first averaged
across all elements of the feature map. This metric varies from 0 to 1, with 0 meaning that a unit’s
average activity was identical for all classes, and 1 meaning that a unit was only active for inputs of
a single class.

We note that this metric is not a perfect measure of information content in single units; for example,
a unit with a little information about every class would have a low class selectivity index. However,
it does measure the discriminability of classes along a given direction. The selectivity index also
identifies units with the same class tuning properties which have been highlighted in the analysis
of DNNs (Le et al., 2011, Zeiler & Fergus, 2014, Coates et al., 2012, Zhou et al., 2014, Radford
et al., 2017). However, in addition to class selectivity, we replicate all of our results using mutual
information, which, in contrast to class selectivity, should highlight units with information about
multiple classes, and we find qualitively similar outcomes (Appendix A.5). We also note that while
a class can be viewed as a highly abstract feature, implying that our results may generalize to feature
selectivity, we do not examine feature selectivity in this work.

3 EXPERIMENTS

3.1 GENERALIZATION

Here, we provide a rough intuition for why a network’s reliance upon single directions might be
related to generalization performance. Consider two networks trained on a large, labeled dataset
with some underlying structure. One of the networks simply memorizes the labels for each input
example and will, by definition, generalize poorly (‘memorizing network’) while the other learns
the structure present in the data and generalizes well (‘structure-finding network’). The minimal
description length of the model should be larger for the memorizing network than for the structure-
finding network. As a result, the memorizing network should use more of its capacity than the
structure-finding network, and by extension, more single directions. Therefore, if a random single
direction is perturbed, the probability that this perturbation will interfere with the representation of
the data should be higher for the memorizing network than for the structure-finding network2.

2Assuming that the memorizing network uses a non-negligible fraction of its capacity.
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a b

Figure 2: Memorizing networks are more sensitive to random noise. Networks were trained
on MNIST (2-hidden layer MLP, a), and CIFAR-10 (11-layer convolutional network, b). Noise
was scaled by the empirical variance of each unit on the training set. Error bars represent standard
deviation across 10 runs. X-axis is on a log scale.

a b

Figure 3: Networks which generalize poorly are more reliant on single directions. 200 net-
works with identical topology were trained on unmodified CIFAR-10. a, Cumulative ablation curves
for the best and worst 5 networks by generalization error. Error bars represent standard deviation
across 5 models and 10 random orderings of feature maps per model. b, Area under cumulative
ablation curve (normalized) as a function of generalization error.

To test whether memorization leads to greater reliance on single directions, we trained a variety of
network types on datasets with differing fractions of randomized labels and evaluated their perfor-
mance as progressively larger fractions of units were ablated (see Sections 2.2 and 2.1). By defini-
tion, these curves must begin at the network’s training accuracy (approximately 1 for all networks
tested) and fall to chance levels when all directions have been ablated. To rule out variance due to
the specific order of unit ablation, all experiments were performed with mutliple random ablation
orderings of units. As many of the models were trained on datasets with corrupted labels and, by
definition, cannot generalize, training accuracy was used to evaluate model performance. Consis-
tent with our intuition, we found that networks trained on varying fractions of corrupted labels were
significantly more sensitive to cumulative ablations than those trained on datasets comprised of true
labels, though curves were not always perfectly ordered by the fraction of corrupted labels (Fig. 1).

We next asked whether this effect was present if networks were perturbed along random bases. To
test this, we added noise to each unit (see Section 2.2). Again, we found that networks trained on
corrupted labels were substantially and consistently more sensitive to noise added along random
bases than those trained on true labels (Fig. 2).

The above results apply to networks which are forced to memorize at least a portion of the training
set – there is no other way to solve the task. However, it is unclear whether these results would
apply to networks trained on uncorrupted data. In other words, do the solutions found by networks
with the same topology and data, but different generalization performance exhibit differing reliance
upon single directions? To test this, we trained 200 networks on CIFAR-10, and evaluated their
generalization error and reliance on single directions. All networks had the same topology and were
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trained on the same dataset (unmodified CIFAR-10). Individual networks only differed in their ran-
dom initialization (drawn from identical distributions), the data order used during training, and their
learning rate3. We found that the 5 networks with the best generalization performance were more
robust to the ablation of single directions than the 5 networks with the worst generalization perfor-
mance (Fig. 3a). To quantify this further, we measured the area under the ablation curve for each
of the 200 networks and plotted it as a function of generalization error (Fig. 3b). Interestingly, net-
works appeared to undergo a discrete regime shift in their reliance upon single directions; however,
this effect might have been caused by degeneracy in the set of solutions found by the optimization
procedure, and we note that there was also a negative correlation present within clusters (e.g., top
left cluster). These results demonstrate that the relationship between generalization performance and
single direction reliance is not merely a side-effect of training with corrupted labels, but is instead
present even among sets networks with identical training data.

3.2 RELIANCE ON SINGLE DIRECTIONS AS A SIGNAL FOR MODEL SELECTION

This relationship raises an intriguing question: can single direction reliance be used to estimate
generalization performance without the need for a held-out test set? And if so, might it be used
as a signal for early stopping or hyperpameter selection? As a proof-of-principle experiment for
early stopping, we trained an MLP on MNIST and measured the area under the cumulative ablation
curve (AUC) over the course of training along with the train and test loss. Interestingly, we found
that the point in training at which the AUC began to drop was the same point that the train and test
loss started to diverge (Fig. 4a). Furthermore, we found that AUC and test loss were negatively
correlated (Spearman’s correlation: -0.728; Fig. 4b).

As a proof-of-principle experiment for hyperparameter selection, we trained 192 CIFAR-10 models
with different hyperparemeter settings (96 hyperparameters with 2 repeats each; see Appendix A.2).
We found that AUC and test accuracy were highly correlated (Spearman’s correlation: 0.914; Fig.
4c), and by performing random subselections of 48 hyperparameter settings, AUC selected one of
the top 1, 5, and 10 settings 13%, 83%, and 98% of the time, respectively, with an average difference
in test accuracy between the best model selected by AUC and the optimal model of only 1 ± 1.1%
(mean ± std). These results suggest that single direction reliance may serve as a good proxy for
hyperparameter selection and early stopping, but further work will be necessary to evaluate whether
these results hold in more complicated datasets.

3.3 RELATIONSHIP TO DROPOUT AND BATCH NORMALIZATION

Dropout Our experiments are reminiscent of using dropout at training time, and upon first inspec-
tion, dropout may appear to discourage networks’ reliance on single directions (Srivastava et al.,
2014). However, while dropout encourages networks to be robust to cumulative ablations up until
the dropout fraction used in training, it should not discourage reliance on single directions past that
point. Given enough capacity, a memorizing network could effectively guard against dropout by
merely copying the information stored in a given direction to several other directions. However, the
network will only be encouraged to make the minimum number of copies necessary to guard against
the dropout fraction used in training, and no more. In such a case, the network would be robust
to dropout so long as all redundant directions were not simultaneously removed, yet still be highly
reliant on single directions past the dropout fraction used in training.

To test whether this intuition holds, we trained MLPs on MNIST with dropout probabilities
∈ {0.1, 0.2, 0.3} on both corrupted and unmodified labels. Consistent with the observation in Arpit
et al. (2017), we found that networks with dropout trained on randomized labels required more
epochs to converge and converged to worse solutions at higher dropout probabilities, suggesting that
dropout does indeed discourage memorization. However, while networks trained on both corrupted
and unmodified labels exhibited minimal loss in training accuracy as single directions were removed
up to the dropout fraction used in training, past this point, networks trained on randomized labels
were much more sensitive to cumulative ablations than those trained on unmodified labels (Fig.
5a). Interestingly, networks trained on unmodified labels with different dropout fractions were all
similarly robust to cumulative ablations. These results suggest that while dropout may serve as an

3The learning rate was varied to ensure diverse generalization performance.
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a b

c

Figure 4: Single direction reliance as a signal for hyperparameter selection and early stopping.
a, Train (blue) and test (purple) loss, along with the normalized area under the cumulative ablation
curve (AUC; green) over the course of training for an MNIST MLP. Loss y-axis has been cropped
to make train/test divergence visible. b, AUC and test loss for a CIFAR-10 ConvNet are negatively
correlated over the course of training. c, AUC and test accuracy are positively corrleated across a
hyperparameter sweep (96 hyperparameters with 2 repeats for each).

a b

Figure 5: Impact of regularizers on networks’ reliance upon single directions. a, Cumulative
ablation curves for MLPs trained on unmodified and fully corrupted MNIST with dropout fractions
∈ {0.1, 0.2, 0.3}. Colored dashed lines indicate number of units ablated equivalent to the dropout
fraction used in training. Note that curves for networks trained on corrupted MNIST begin to drop
soon past the dropout fraction with which they were trained. b, Cumulative ablation curves for
networks trained on CIFAR-10 with and without batch normalization. Error bars represent standard
deviation across 4 model instances and 10 random orderings of feature maps per model.

effective regularizer to prevent memorization of randomized labels, it does not prevent over-reliance
on single directions past the dropout fraction used in training.

Batch normalization In contrast to dropout, batch normalization does appear to discourage re-
liance upon single directions. To test this, we trained convolutional networks on CIFAR-10 with and
without batch normalization and measured their robustness to cumulative ablation of single direc-
tions. Networks trained with batch normalization were consistently and substantially more robust to
these ablations than those trained without batch normalization (Fig. 5b). This result suggests that in
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a b

Figure 6: Batch normalization decreases class selectivity and increases mutual information.
Distributions of class selectivity (a) and mutual information (b) for networks trained with (blue)
and without batch normalization (purple). Each distribution comprises 4 model instances trained on
uncorrupted CIFAR-10.

addition to reducing covariate shift, as has been proposed previously (Ioffe & Szegedy, 2015), batch
normalization also implicitly discourages reliance upon single directions.

3.4 RELATIONSHIP BETWEEN CLASS SELECTIVITY AND IMPORTANCE

Our results thus far suggest that networks which are less reliant on single directions exhibit better
generalization performance. This result may appear counter-intuitive in light of extensive past work
in both neuroscience and deep learning which highlights single units or feature maps which are
selective for particular features or classes (Le et al., 2011, Zeiler & Fergus, 2014, Coates et al.,
2012, Zhou et al., 2014, Radford et al., 2017). Here, we will test whether the class selectivity of
single directions is related to the importance of these directions to the network’s output.

First, we asked whether batch normalization, which we found to discourage reliance on single di-
rections, also influences the distribution of information about class across single directions. We
used the selectivity index described above (see Section 2.3) to quantify the discriminability between
classes based on the activations of single feature maps across networks trained with and without
batch normalization. Interestingly, we found that while networks trained without batch normaliza-
tion exhibited a large fraction of feature maps with high class selectivity4, the class selectivity of
feature maps in networks trained with batch normalization was substantially lower (Fig. 6a). In con-
trast, we found that batch normalization increases the mutual information present in feature maps
(Fig. 6b). These results suggest that batch normalization actually discourages the presence of fea-
ture maps with concentrated class information and rather encourages the presence of feature maps
with information about multiple classes, raising the question of whether or not such highly selective
feature maps are actually beneficial.

We next asked whether the class selectivity of a given unit was predictive of the impact on the
network’s loss of ablating said unit. Since these experiments were performed on networks trained
on unmodified labels, test loss was used to measure network impact. For MLPs trained on MNIST,
we found that there was a slight, but minor correlation (Spearman’s correlation: 0.095) between
a unit’s class selectivity and the impact of its ablation, and that many highly selective units had
minimal impact when ablated (Fig. 7a). By analyzing convolutional networks trained on CIFAR-10
and ImageNet, we again found that, across layers, the ablation of highly selective feature maps was
no more impactful than the ablation of non-selective feature maps (Figs. 7b and 7d). In fact, in the
CIFAR-10 networks, there was actually a negative correlation between class selectivity and feature
map importance (Spearman’s correlation: -0.428, Fig. 7b). To test whether this relationship was
depth-dependent, we calculated the correlation between class selectivity and importance separately
for each layer, and found that the vast majority of the negative correlation was driven by early
layers, while later layers exhibited no relationship between class selectivity and importance (Figs.
7c and 7e). Interestingly, in all three networks, ablations in early layers were more impactful than
ablations in later layers, consistent with theoretical observations (Raghu et al., 2016). Additionally,
we performed all of the above experiments with mutual information in place of class selectivity, and
found qualitatively similar results (Appendix A.5).

4And dead feature maps. Feature maps with no activity would have a selectivity index of 0.
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a
MNIST MLP

b
CIFAR-10 ConvNet

c

d
ImageNet ResNet

e

Figure 7: Selective and non-selective directions are similarly important. Impact of ablation
as a function of class selectivity for MNIST MLP (a), CIFAR-10 convolutional network (b-c), and
ImageNet ResNet (d-e). c and e show regression lines for each layer separately.

As a final test, we compared the class selectivity to the L1-norm of the filter weights, a metric
which has been found to be a successful predictor of feature map importance in the model pruning
literature (Li et al., 2017). Consistent with our previous observations, we found that class selectivity
was largely unrelated to the L1-norm of the filter weights, and if anything, the two were negatively
correlated (Fig. A3, see Appendix A.4 for details). Taken together, these results suggest that class
selectivity is not a good predictor of importance, and imply that class selectivity may actually be
detrimental to network performance. Further work will be necessary to examine whether class
and/or feature selectivity is harmful or helpful to network performance.

4 RELATED WORK

Much of this work was directly inspired by Zhang et al. (2017), and we replicate their results using
partially corrupted labels on CIFAR-10 and ImageNet. By demonstrating that memorizing networks
are more reliant on single directions, we also provide an answer to one of the questions they posed:
is there an empirical difference between networks which memorize and those which generalize?

Our work is also related to work linking generalization and the sharpness of minima (Hochreiter
& Schmidhuber, 1997, Keskar et al., 2017, Neyshabur et al., 2017). These studies argue that flat
minima generalize better than sharp minima (though Dinh et al. (2017) recently found that sharp
minima can also generalize well). This is consistent with our work, as flat minima should correspond
to solutions in which perturbations along single directions have little impact on the network output.

Another approach to generalization has been to contextualize it in information theory. For exam-
ple, Achille & Soatto (2017) demonstrated that networks trained on randomized labels store more
information in their weights than those trained on unmodfied labels. This notion is also related to
Shwartz-Ziv & Tishby (2017), which argues that during training, networks proceed first through a
loss minimization phase followed by a compression phase. Here again, our work is consistent, as
networks with more information stored in their weights (i.e., less compressed networks) should be
more reliant upon single directions than compressed networks.
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More recently, Arpit et al. (2017) analyzed a variety of properties of networks trained on partially
corrupted labels, relating performance and time-to-convergence to capacity. They also demonstrated
that dropout, when properly tuned, can serve as an effective regularizer to prevent memorization.
However, we found that while dropout may discourage memorization, it does not discourage reliance
on single directions past the dropout probability.

We found that class selectivity is a poor predictor of unit importance. This observation is consistent
with a variety of recent studies in neuroscience. In one line of work, the benefits of neural systems
which are robust to coordinate-aligned noise have been explored (Barrett et al. (2016), Montijn
et al. (2016)). Another set of studies have demonstrated the presence of neurons with multiplexed
information about many stimuli and have shown that task information can be decoded with high
accuracy from populations of these neurons with low individual class selectivity (Averbeck et al.
(2006), Rigotti et al. (2013), Mante et al. (2013), Raposo et al. (2014), Morcos & Harvey (2016),
Zylberberg (2017)).

Perturbation analyses have been performed for a variety of purposes. In the model pruning liter-
ature, many studies have removed units with the goal of generating smaller models with similar
performance (Li et al., 2017, Anwar et al., 2015, Molchanov et al., 2017), and recent work has
explored methods for discovering maximally important directions (Raghu et al. (2017)). Recently,
Cheney et al. (2017) used cumulative ablations to measure network robustness, though the relation-
ship to generalization was not explored. A variety of studies within deep learning have highlighted
single units which are selective for features or classes (Le et al., 2011, Zeiler & Fergus, 2014, Coates
et al., 2012, Zhou et al., 2014, Radford et al., 2017, Agrawal et al., 2014). Additionally, Agrawal
et al. (2014) analyzed the minimum number of sufficient feature maps (sorted by a measure of se-
lectivity) to achieve a given accuracy. However, none of the above studies has tested the relationship
between a unit’s class selectivity or information content and its necessity to the network’s output.

Bau et al. (2017) have quantified a related metric, concept selectivity, across layers and networks,
finding that units get more concept-selective with depth, which is consistent with our own obser-
vations regarding class selectivity (see Appendix A.3). However, they also observed a correlation
between the number of concept-selective units and performance on the action40 dataset across net-
works and architectures. It is difficult to compare these results directly, as the data used are sub-
stantially different as is the method of evaluating selectivity. Nevertheless, we note that Bau et al.
(2017) measured the absolute number of concept-selective units across networks with different total
numbers of units and depths. The relationship between the number of concept-selective units and
network performance may therefore arise as a result of a larger number of total units (if a fixed frac-
tion of units is concept-selective) and increased depth (we both observed that selectivity increases
with depth).

5 DISCUSSION AND FUTURE WORK

In this work, we have taken an empirical approach to understand what differentiates neural net-
works which generalize from those which do not. Our experiments demonstrate that generalization
capability is related to a network’s reliance on single directions, both in networks trained on cor-
rupted and uncorrupted data, and over the course of training for a single network. They also show
that batch normalization, a highly successful regularizer, seems to implicitly discourage reliance on
single directions.

One clear extension of this work is to use these observations to construct a regularizer which more
directly penalizes reliance on single directions. As it happens, the most obvious candidate to regu-
larize single direction reliance is dropout (or its variants), which, as we have shown, does not appear
to regularize for single direction reliance past the dropout fraction used in training (Section 3.3).
Interestingly, these results suggest that one is able to predict a network’s generalization performance
without inspecting a held-out validation or test set. This observation could be used in several inter-
esting ways. First, in situations where labeled training data is sparse, testing networks’ reliance on
single directions may provide a mechanism to assess generalization performance without sacrific-
ing training data to be used as a validation set. Second, by using computationally cheap empirical
measures of single direction reliance, such as evaluating performance at a single ablation point or
sparsely sampling the ablation curve, this metric could be used as a signal for early-stopping or
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hyperparameter selection. We have shown that this metric is viable in simple datasets (Section 3.2),
but further work will be necessary to evaluate viability in more complicated datasets.

Another interesting direction for further research would be to evaluate the relationship between sin-
gle direction reliance and generalization performance across different generalization regimes. In this
work, we evaluate generalization in which train and test data are drawn from the same distribution,
but a more stringent form of generalization is one in which the test set is drawn from a unique, but
overlapping distribution with the train set. The extent to which single direction reliance depends on
the overlap between the train and test distributions is also worth exploring in future research.

This work makes a potentially surprising observation about the role of individually selective units in
DNNs. We found not only that the class selectivity of single directions is largely uncorrelated with
their ultimate importance to the network’s output, but also that batch normalization decreases the
class selectivity of individual feature maps. This result suggests that highly class selective units may
actually be harmful to network performance. In addition, it implies than methods for understanding
neural networks based on analyzing highly selective single units, or finding optimal inputs for single
units, such as activation maximization (Erhan et al., 2009) may be misleading. Importantly, as we
have not measured feature selectivity, it is unclear whether these results will generalize to feature-
selective directions. Further work will be necessary to clarify all of these points.
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A APPENDIX

A.1 COMPARISON OF ABLATION METHODS

To remove the influence of a given direction, its value should be fixed or otherwise modified such
that it is no longer dependent on the input. However, the choice of such a fixed value can have a
substantial impact. For example, if its value were clamped to one which is highly unlikely given
its distribution of activations across the training set, network performance would likely suffer dras-
tically. Here, we compare two methods for ablating directions: ablating to zero and ablating to
the empirical mean over the training set. Using convolutional networks trained on CIFAR-10, we
performed cumulative ablations, either ablating to zero or to the feature map’s mean (means were
calculated independently for each element of the feature map), and found that ablations to zero were
significantly less damaging than ablations to the feature map’s mean (Fig. A1). Interestingly, this
corresponds to the ablation strategies generally used in the model pruning literature (Li et al., 2017,
Anwar et al., 2015, Molchanov et al., 2017).

Figure A1: Ablation to zero vs. ablation to the empirical feature map mean.

A.2 TRAINING DETAILS

MNIST MLPs For class selectivity, generalization, early stopping, and dropout experiments, each
layer contained 128, 512, 2048 and 2048 units, respectively. All networks were trained for 640
epochs, with the exception of dropout networks which were trained for 5000 epochs.

CIFAR-10 ConvNets Convolutional networks were all trained on CIFAR-10 for 100 epochs. Layer
sizes were: 64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512, with strides of 1, 1, 2, 1, 1, 2, 1,
1, 2, 1, 1, respectively. All kernels were 3x3. For the hyperparameter sweep used in Section 3.2,
learning rate and batch size were evaluated using a grid search.

ImageNet ResNet 50-layer residual networks (He et al., 2015) were trained on ImageNet using dis-
tributed training with 32 workers and a batch size of 32 for 200,000 steps. Blocks were structured
as follows (stride, filter sizes, output channels): (1x1, 64, 64, 256) x 2, (2x2, 64, 64, 256), (1x1,
128, 128, 512) x 3, (2x2, 128, 128, 512), (1x1, 256, 256, 1024) x 5, (2x2, 256, 256, 1024), (1x1,
512, 512, 2048) x 3. For training with partially corrupted labels, we did not use any data augmen-
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a

b

Figure A2: Class selectivity increases with depth. Class selectivity distributions as a function of
depth for CIFAR-10 (a) and ImageNet (b).

a b

Figure A3: Class selectivity is uncorrelated with L1-norm. Relationship between class selectiv-
ity and the L1-norm of the filter weights for CIFAR-10 (a) and ImageNet (b).

tation, as it would have dramatically increasing the effective training set size, and hence prevented
memorization.

A.3 DEPTH-DEPENDENCE OF CLASS SELECTIVITY

Here, we evaluate the distribution of class selectivity as a function of depth. In both networks trained
on CIFAR-10 (Fig. A2a) and ImageNet (Fig. A2b), selectivity increased as a function of depth. This
result is consistent with Bau et al. (2017), who show that concept-selectivity increases with depth.
It is also consistent with Alain & Bengio (2016), who show depth increases the linear decodability
of class information (though they evaluate linear decodability based on an entire layer rather than a
single unit).

A.4 RELATIONSHIP BETWEEN CLASS SELECTIVITY AND THE FILTER WEIGHT L1-NORM

Importantly, our results on the lack of relationship between class selectivity and importance do not
suggest that there are not directions which are more or less important to the network’s output, nor
do they suggest that these directions are not predictable; they merely suggest that class selectivity
is not a good predictor of importance. As a final test of this, we compared class selectivity to the
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L1-norm of the filter weights, a metric which has been found to be a strongly correlated with the
impact of removing a filter in the model pruning literature (Li et al., 2017). Since the L1-norm of
the filter weights is predictive of impact of a feature map’s removal, if class selectivity is also a good
predictor, the two metrics should be correlated. In the ImageNet network, we found that there was
no correlation between the L1-norm of the filter weights and the class selectivity (Fig. A3a), while
in the CIFAR-10 network, we found there was actually a negative correlation (Fig. A3b).

A.5 RELATIONSHIP BETWEEN MUTUAL INFORMATION AND IMPORTANCE

a

MNIST MLP
b

CIFAR-10 ConvNet
c

d
ImageNet ResNet

e

Figure A4: Mutual information is not a good predictor of unit importance. Impact of ablation
as a function of mutual information for MNIST MLP (a), CIFAR-10 convolutional network (b-c),
and ImageNet ResNet (d-e). c and e show regression lines for each layer separately.

To examine whether mutual information, which, in contrast to class selectivity, highlights units
with information about multiple classes, is a good predictor of importance, we performed the same
experiments as in Section 3.4 with mutual information in place of class selectivity. We found, that
while the results were a little less consistent (e.g., there appears to be some relationship in very
early and very late layers in CIFAR-10), mutual information was generally a poor predictor of unit
importance (Fig. A4).
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