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ABSTRACT

This work proposes a procedure for designing algorithms for specific adaptive
data collection tasks like active learning and pure-exploration multi-armed ban-
dits. Unlike the design of traditional adaptive algorithms that rely on concentration
of measure and careful analysis to justify the correctness and sample complexity
of the procedure, our adaptive algorithm is learned via adversarial training over
equivalence classes of problems derived from information theoretic lower bounds.
In particular, a single adaptive learning algorithm is learned that competes with the
best adaptive algorithm learned for each equivalence class. Our procedure takes
as input just the available queries, set of hypotheses, loss function, and total query
budget. This is in contrast to existing meta-learning work that learns an adap-
tive algorithm relative to an explicit, user-defined subset or prior distribution over
problems which can be challenging to define and be mismatched to the instance
encountered at test time. This work is particularly focused on the regime when the
total query budget is very small, such as a few dozen, which is much smaller than
those budgets typically considered by theoretically derived algorithms. We per-
form synthetic experiments to justify the stability and effectiveness of the training
procedure, and then evaluate the method on tasks derived from real data including
a noisy 20 Questions game and a joke recommendation task.

1 INTRODUCTION

Closed-loop learning algorithms use previous observations to inform what measurements to take
next in a closed-loop in order to accomplish inference tasks far faster than any fixed measurement
plan set in advance. For example, active learning algorithms for binary classification have been
proposed that under favorable conditions require exponentially fewer labels than passive, random
sampling to identify the optimal classifier (Hanneke et al., 2014). And in the multi-armed bandits
literature, adaptive sampling techniques have demonstrated the ability to identify the “best arm” that
optimizes some metric with far fewer experiments than a fixed design (Garivier & Kaufmann, 2016;
Fiez et al., 2019). Unfortunately, such guarantees often either require simplifying assumptions that
limit robustness and applicability, or appeal to concentration inequalities that are very loose unless
the number of samples is very large (e.g., web-scale).

The aim of this work is a framework that achieves the best of both worlds: algorithms that learn
through simulated experience to be as effective as possible with a tiny measurement budget (e.g.,
20 queries), while remaining robust due to adversarial training. Our work fits into a recent trend
sometimes referred to as learning to actively learn (Konyushkova et al., 2017; Bachman et al., 2017;
Fang et al., 2017; Boutilier et al., 2020; Kveton et al., 2020) which tunes existing algorithms or
learns entirely new active learning algorithms by policy optimization. Previous works in this area
learn a policy by optimizing with respect to data observed through prior experience (e.g., meta-
learning or transfer learning) or an assumed explicit prior distribution of problem parameters (e.g.
the true weight vector for linear regression). In contrast, our approach makes no assumptions about
what parameters are likely to be encountered at test time, and therefore produces algorithms that do
not suffer from a potential mismatch of priors. Instead, our method learns a policy that attempts to
mirror the guarantees of frequentist algorithms with instance dependent sample complexities: if the
problem is hard you will suffer a large loss, if it is easy you will suffer little.

1



Under review as a conference paper at ICLR 2021

The learning framework is general enough to be applied to many active learning settings of interest
and is intended to be used to produce novel and robust high performing algorithms. The difference is
that instead of hand-crafting hard instances that witness the difficulty of the problem, we use adver-
sarial training inspired by the robust reinforcement learning literature to automatically train minimax
policies. Embracing the use of a simulator allows our learned policies to be very aggressive while
maintaining robustness. Indeed, this work is particularly useful in the setting where relatively few
rounds of querying can be made, where concentration inequalities of existing algorithms are vacu-
ous. To demonstrate the efficacy of our approach we implement the framework for the (transductive)
linear bandit problem. This paradigm includes pure-exploration combinatorial bandits (e.g., shortest
path, matchings) as a special case which itself reduces to active binary classification. We empirically
validate our framework on a simple synthetic experiment before turning our attention to datasets de-
rived from real data including a noisy 20 questions game and a joke recommendation task.

2 PROPOSED FRAMEWORK FOR ROBUST LEARNING TO ACTIVELY LEARN

Whether learned or defined by an expert, any algorithm for active learning can be thought of as
a policy from the perspective of reinforcement learning. At time t, based on an internal state st,
the policy takes action xt and receives observation yt, which then updates the state and the process
repeats. In our work, at time t the state st ∈ S is a function of the history {(xi, yi)}t−1

i=1 such
as its sufficient statistics. Without loss of generality, a policy π takes a state as input and defines
a probability distribution over X so that at time t we have xt ∼ π(st). Fix a horizon T . For
t = 1, 2, . . . , T

• state st ∈ S is a function of the history, {(xi, yi)}t−1
i=1 ,

• action xt ∈ X is drawn at random from the distribution π(st) defined over X , and
• next state st+1 ∈ S is constructed by taking action xt in state st and observing yt ∼ f(·|θ∗, st, xt)
until the game terminates at time t = T and the policy receives loss LT . Note that LT is a random
variable that depends on the tuple (π, {(xi, yi)}Ti=1, θ∗). We assume that f is a distribution of known
parameteric form to the policy (e.g., f(·|θ, s, x) ≡ N (〈x, θ〉, 1)) but the parameter θ is unknown to
the policy. Let Pπ,θ,Eπ,θ denote the probability and expectation under the probability law induced
by executing policy π in the game with θ∗ = θ to completion. Note that Pπ,θ includes any internal
randomness of the policy π and the random observations yt ∼ f(·|θ, st, xt). Thus, Pπ,θ assigns a
probability to any trajectory {(xi, yi)}Ti=1. For a given policy π and θ∗ = θ, the metric of interest
we wish to minimize is the expected loss `(π, θ) := Eπ,θ [LT ] where LT as defined above is the
loss observed at the end of the episode. For a fixed policy π, `(π, θ) defines a loss surface over all
possible values of θ. This loss surface captures the fact that some values of θ are just intrinsically
harder than others, but also that a policy may be better suited for some values of θ versus others.

Example: In active binary classification, T is a label budget, X could be a set of images such
that we can query the label of example image xt ∈ X , yt ∈ {−1, 1} is the requested binary
label, and the loss LT is the classification error of a trained classifier on these collected labels.

Figure 1: The r-dependent baseline defines
a different policy for each value of r, thus,
the blue curve may be unachievable with
just a single policy. π∗ is the single policy
that minimizes the maximum gap to this r-
dependent baseline policy.

Finally, θx = p(y = 1|x) for all x ∈ X . More examples
can be found in Appendix A.

2.1 INSTANCE DEPENDENT PERFORMANCE METRIC

We now define the sense in which we wish to evaluate
a particular policy. For any fixed value of θ one could
clearly design an algorithm that would maximize perfor-
mance on θ, but then it might have very poor performance
on some other value θ′ 6= θ. Thus, we would ideally like
π to perform uniformly well over a set of θ’s that are all
equivalent in a certain sense. Define a positive function
C : Θ → (0,∞) that assigns a score to each θ ∈ Θ that
intuitively captures the “difficulty” of a particular θ, and
can be used as a partial ordering of Θ. Ideally, C(θ) is a
monotonic transformation of `(π̃, θ) for some “best” pol-
icy π̃ that we will define shortly. We give the explicit C(θ)
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for the active binary classification example in Section 3, further description of C in Section 2.2, and
more examples in Appendix A. For any set of problem instances Θ define

`(π,Θ) := sup
θ∈Θ

`(π, θ).

And for any r ≥ 0, define
Θ(r) = {θ : C(θ) ≤ r}.

The quantity `(π,Θ(r)) − infπ′ `(π
′,Θ(r)) is then a function of r that describes the sub-optimality

gap of a given policy π relative to an r-dependent baseline policy trained specifically for each r. For
a fixed rk > 0, a policy π that aims to minimize just `(π,Θ(r)) might focus just on the hard instances
(i.e., those with C(θ) close to r) and there may exist a different policy π′ that performs far better
than π on easier instances (i.e., those with C(θ) � r). To avoid this, assuming supr `(π,Θ

(r)) −
infπ′ `(π

′,Θ(r)) <∞, we define

π∗ := arg inf
π

sup
r>0

(
`(π,Θ(r))− inf

π′
`(π′,Θ(r))

)
(1)

as the policy that minimizes the worst case sub-optimality gap over all r > 0. Figure 1 illustrates
these definitions. Instead of computing infπ′ `(π

′,Θ(r)) for all r, in practice we define a grid with
an increasing sequence {rk}Kk=1, to find an approximation to π∗. We are now ready to state the goal
of this work:

Objective: Given an increasing sequence r1 < · · · < rK that indexes nested sets of problem
instances of increasing difficulty, Θ(r1) ⊂ Θ(r2) ⊂ · · · ⊂ Θ(rK), we wish to identify a policy π̂
that minimizes the maximum sub-optimality gap with respect to this sequence. Explicitly, we seek
to learn

π̂ := arginf
π

max
k≤K

(
`(π,Θ(rk))− inf

π′
`(π′,Θ(rk))

)
(2)

where `(π,Θ) := sup
θ∈Θ

`(π, θ) and `(π, θ) is the expected loss incurred by policy π on instance θ.

Note that as K → ∞ and supk
rk+1

rk
→ 1, (1) and (2) are essentially equivalent under benign

smoothness conditions on C(θ), in which case π̂ → π∗. In practice, we choose a finite K where
ΘrK contains all problems that can be solved within the budget T relatively accurately, and a small
ε > 0, where maxk

rk+1

rk
= 1 + ε. Furthermore, the objective in (2) is equivalent with

π̂ = arginf
π

max
k≤K

(
`(π,Θ(rk))− `(πk,Θ(rk))

)
where πk ∈ arg inf

π
sup

θ:C(θ)≤rk
`(π, θ).

We can efficiently solve this objective by first computing πk for all k ∈ [K] to obtain `(πk,Θ(rk))
as benchmarks, and then use these benchmarks to train π̂.

2.2 PICKING THE COMPLEXITY FUNCTION C(θ)

We have defined an optimal policy in terms of a function C(θ) that determines a partial ordering
over instances θ. This function can come from a heuristic that intuitively captures the difficulty of
an instance. Or it can be defined and motivated from information theoretic lower bounds that often
describe a general ordering, but are typically very loose relative to empirical performance. For ex-
ample, consider the standard multi-armed bandit game where an agent has access to K distributions
and in each round t ∈ [T ] she chooses a distribution It ∈ [K] and observes a random variable in
[0, 1] with mean θIt . If her strategy is described by a policy π, once t reaches T she receives loss
LT = maxi∈[K]

∑T
t=1 θi−θIt with expectation `(π, θ) = E[LT ] where the expectation is taken with

respect to the randomness in the observations, and potentially any randomness of the policy. Under
benign conditions, it is known that any policy must suffer `(π, θ) & min{

√
KT,

∑
i 6=∗(θ∗− θi)−1}

where θ∗ = maxi∈[k] θi (Lattimore & Szepesvári, 2018). Such a lower bound is an ideal candi-
date for C(θ). We define a different C(θ) for our particular experiments of interest, and others are
described in Appendix A. The bottom line is that any function C(θ) works, but if it happens to cor-
respond to an information theoretic lower bound, the resulting policy will match the lower bound if
it is achievable.
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2.3 DIFFERENTIABLE POLICY OPTIMIZATION

The first step in learning the policy π̂ defined in Equation 2 is to learn each πk :=
infπ supθ:C(θ)≤rk `(π, θ) for all k = 1, . . . ,K. Once all πk are defined, π̂ of (2) is an optimiza-
tion of the same form after shifting the loss by the scalar `(πk,Θ(rk)). Consequently, to learn π̂
it suffices to develop a training procedure to solve infπ supθ∈Ω `

′(π, θ) for an arbitrary set Ω and
generic loss function `′(π, θ).

To make the optimization problem infπ supθ∈Ω `
′(π, θ) tractable, we parameterize it as follows.

First, to compute the suprema over Θ, we consider a finite set Θ̃ := {θ̃i}Ni=1 ⊂ Ω, weighted by
SOFTMAX(w) where w ∈ RN . In addition, instead of optimizing over all possible policies, we
restrict the policy as the class of neural networks that take state representation as input and output a
probability distribution over actions, parameterized by weights ψ. Mathematically, it could be stated
as the following:

inf
π

sup
θ∈Ω

`(π, θ) = inf
π

sup
θ̃1:N⊂Ω

max
i∈[N ]

`(π, θ̃i) (3)

= inf
π

sup
w∈RN ,θ̃1:N⊂Ω

Ei∼SOFTMAX(w)

[
`(π, θ̃i)

]
(4)

≈ inf
ψ

sup
w∈RN ,θ̃1:N⊂Ω

Ei∼SOFTMAX(w)

[
`(πψ, θ̃i)

]
. (5)

Algorithm 1: Gradient Based Optimization of (5)
1 Input: partition Ω, number of iterations Nit, number of problem samples M , number of

rollouts per problem L, and loss variable LT at horizon T (see beginning of Section 2).
2 Goal: Compute the optimal policy arginfπ supθ∈Ω `(π, θ) = arginfπ supθ∈Ω Eπ,θ[LT ].
3 Initialization: w, finite set Θ̃ and ψ
4 for t = 1, ..., Nit do
5 Collect rollouts of play:
6 Sample M problem indices I1, ..., IM

i.i.d.∼ SOFTMAX(w)
7 for m = 1, ...,M do
8 Collect L independent rollout trajectories, denoted as τm,1:L, by the policy πψ

for problem instant θIm and observe losses ∀1 ≤ l ≤ L,LT (πψ, τm,l, θ̃Im).
9 end

10 Optimize worst cases in Ω:
11 Update the generating distribution by taking ascending steps on gradient estimates:

w ←w +
1

ML

M∑
m=1

∇w log(SOFTMAX(w)Im) · (
L∑
l=1

LT (πψ, τm,l, θ̃Im)) (6)

Θ̃←Θ̃ +
1

ML

M∑
m=1

L∑
l=1

(
∇Θ̃Lbarrier(θ̃Im ,Ω) +∇Θ̃LT (πψ, τm,l, θ̃Im)

+LT (πψ, τm,l, θ̃Im) · ∇Θ̃ log(Pπψ,θ̃Im (τm,l))
)

(7)

where Lbarrier is a differentiable barrier loss that heavily penalizes the θ̃Im ’s outside Ω.
12 Optimize policy:
13 Update the policy by taking descending step on gradient estimate:

ψ ← ψ − 1

ML

M∑
m=1

L∑
l=1

LT (πψ, τm,l, θ̃Im) · ∇ψ log(Pπψ,θ̃Im (τm,l)) (8)

14 end

Note that the objectives in (3) and (4) are indeed equivalent as θ̃1:N are free parameters we optimize
over rather than taking fixed values. Now, to motivate (5), starting from the left hand side of (3),
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observe that a small change in π may result in a large change in argsupθ∈Ω `(π, θ). Therefore,
with the goal of covering the entire Ω, we optimize the N points so that when π changes a bit,
there is at least one θ̃i close to the optimal argsup. In addition, to covering the entire space of Ω,
N is expected to be very large in practice. However, to optimize the objective effectively, we can
only evaluate on M of θ̃’s (M � N ) in each iteration. Therefore, instead of naively sampling M
points uniformly at random from theN points, in (4), we optimize an extra multinomial distribution,
SOFTMAX(w), over theN points so that the points around the argsup are sampled more often. The
final approximation in (5) comes from parameterizing the policy by a neural network.

To solve the saddle point optimization problem in (5), we use an instance of the Gradient Descent
Ascent (GDA) algorithm as shown in Algorithm 1. The gradient estimates are unbiased estimates of
the true gradients with respect to ψ, w and Θ̃ (shown in Appendix B). We choose N large enough to
avoid mode collapse, and M,L as large as possible to reduce variance in gradient estimates while
fitting the memory constraint. We use Adam optimization (Kingma & Ba, 2014) in taking gradient
updates and regularize some of the parameters (an example will be presented in the next section).

Note the decomposition for log(Pπψ,θ′(τ)) in (7) and (8), where rollout τ = {(xt, yt)}Tt=1, and

log(Pπψ,θ′({(xt, yt)}Tt=1)) = log
(
πψ(x1) · f(y1|θ′, s1) ·

∏T
t=2 π

ψ(st, xt) · f(yt|θ′, st, xt)
)
.

Here πψ and f are only dependent on ψ and Θ̃ respectively. During evaluation of a fixed policy π,
we are interested in solving supθ∈Ω `(π, θ) by gradient ascent updates like (7). The decoupling of
πψ and f thus enables us to optimize the objective without differentiating through a policy π, which
could be non-differentiable policies like deterministic algorithms.

Finally, we make a few remarks on the parameterization of (5). As given in (5), we represent the gen-
erating distribution P as a simple finite number of weighted particles, analogous to a particle filter.
Our policy parameterization πψ could be modelled by multi-layer perceptrons, recurrent neural net-
works, etc. We note that when using alternative generator parameterization like GANs (Goodfellow
et al., 2014), an unbiased gradient can also be derived similarly.

3 IMPLEMENTATION FOR LINEAR BANDITS AND CLASSIFICATION

We now apply the general framework of the previous section to a specific problem: transductive
linear bandits. As described in Sections 5 and Appendix A this setting generalizes standard multi-
armed bandits, linear bandits, and all of binary classification through a simple reduction to combi-
natorial bandits. We are particularly motivated to look at classification because the existing agnostic
active learning algorithms are very inefficient (see Section 5). Indeed when applied to our setting of
T = 20 they never get past their first stage of uniform random sampling. Consider the game:

Input: Policy π, X ⊂ Rd, Z ⊂ Rd, time horizon T ∈ T
Initialization: Nature chooses θ∗ ∈ Rd (hidden from policy)
for t = 1, 2, . . . , T
• Policy π selects xt ∈ X using history {(xs, ys)}t−1

s=1
• Nature reveals yt ∼ f(·|θ∗, xt) with E[yt|θ∗, xt] = 〈xt, θ∗〉
Output: Policy π recommends ẑ ∈ Z as an estimate for z?(θ∗) := argmaxz∈Z〈z, θ∗〉 and

suffers loss LT =

{
〈z?(θ∗)− ẑ, θ∗〉 if SIMPLE REGRET

1{z?(θ∗) 6= ẑ} if BEST IDENTIFICATION

The observation distribution f(·|θ, x) is domain specific but typically taken to be either a Bernoulli
distribution for binary data, or Gaussian for real-valued data. We are generally interested in two
objectives: BEST IDENTIFICATION which attempts to exactly identify the vector z? ∈ Z that is
most aligned with θ∗, and SIMPLE REGRET which settles for an approximate maximizer.

Defining C(θ) Recalling the discussion of Section 2.1, C(θ) should ideally be monotonically in-
creasing in the intrinsic difficulty of minimizing the loss with respect to a particular θ. For arbitrary
X ⊂ Rd and Z ⊂ Rd, it is shown in Fiez et al. (2019) that the sample complexity of identify-
ing z?(θ) = arg maxz∈Z〈z, θ〉 with high probability is proportional to a quantity ρ?(θ), the value
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obtained by an optimization program. Another complexity term that appears in the combinatorial
bandits literature (Cao & Krishnamurthy, 2017) where X = {ei : i ∈ [d]} and Z ⊂ {0, 1}d is

ρ̃(θ) =

d∑
i=1

max
z:zi 6=z?i (θ)

‖z − z?(θ)‖22
〈z − z?(θ), θ〉2

. (9)

One can show ρ?(θ) ≤ ρ̃(θ) and in many cases track each other. Because ρ̃(θ) can be computed
much more efficiently compared to ρ?(θ), we use C(θ) = ρ̃(θ) in our experiments.

Algorithm 2: Training Workflow

1 Input: sequence {rk}Kk=1, complexity function C, and obj ∈ {SIMPLE REGRET, BEST
IDENTIFICATION}.

2 Define k(θ) ∈ [K] such that rk(θ)−1 < C(θ) ≤ rk(θ) for all θ with C(θ) ≤ rK
3 For each k ∈ [K], obtain policy π̃k by Algorithm 1 with Ω = Θ(rk) and SIMPLE REGRET

loss
4 if obj is SIMPLE REGRET then
5 For each k ∈ [K], compute `(π̃k, rk) // In this case, πk = π̃k.

6 Warm start π̂ = π̃bK/2c; optimize π̂ by Algorithm 1 with Ω = Θ(rK) and objective in (2),
i.e., LT = 〈z?(θ)− ẑ, θ〉 − `(π̃k(θ),Θ

(rk(θ)))
7 else if obj is BEST IDENTIFICATION then
8 For each k ∈ [K], warm start πk = π̃k; optimize πk by Algorithm 1 with Ω = Θ(rk) and

BEST IDENTIFICATION loss; compute `(πk,Θ(rk))
9 Warm start π̃ = πbK/2c; optimize π̃ by Algorithm 1 with Ω = Θ(rK) and objective in (2),

i.e., LT = 1{z?(θ) 6= ẑ} − `(πk(θ),Θ
(rk(θ)))

10 end
11 Output: π̂ (an approximate solution to (2))

Training. When training our policies, we follow the following procedure in Algorithm 2. Note
that even when we are training for BEST IDENTIFICATION, we still warm start the training with
optimizing SIMPLE REGRET. This is because a random initialized policy performs so poorly that
BEST IDENTIFICATION is nearly always 1, making it difficult to improve the policy. In addition,
our generating distribution parameterizations exactly follows from Section 2.3, while detailed state
representations, policy parametrization and hyperparamters can be found in Appendix C, D.

Loss functions. Instead of optimizing the approximated quantity from (5) directly, we add regu-
larizers to the losses for both the policy and generator. First, we choose the Lbarrier in (7) to be
λbarrier ·max{0, log(C(X ,Z, θ))− log(rk)}, for some large constant λbarrier. To discourage the pol-
icy from over committing to a certain action and/or the generating distribution from covering only a
small subset of particles (i.e., mode collapse), we also add negative entropy penalties to both policy’s
output distributions and SOFTMAX(w) with scaling factors λPol-reg and λGen-reg.

4 EXPERIMENTS

We now evaluate the approach described in the previous section for combinatorial bandits with
X = {ei : i ∈ [d]} and Z ⊂ {0, 1}d. We stress that the framework implemented here can be
applied to any X , Z ⊂ Rd and any appropriate f–just plug and play to learn a new policy. In our
experiments we take particular instances of combinatorial bandits with Bernoulli observations. We
evaluated based on two criterion: instance-dependent worst-case and average-case. For instance-
dependent worst-case, we measure, for each rk and policy π, `(π,Θ(rk)) := max

θ∈Θ(rk)
`(π, θ) and

plot this value as a function of rk. We note that our algorithm is designed to optimize for such
metric. For the secondary average-case metric, we instead measure, for policy π and some collected
set Θ, 1

|Θ|
∑
θ∈Θ `(π, θ). Performances of instance-dependent worst-case metric are reported in

Figures 2, 3, 4, 6, and 7 below while the average case performances are reported in the tables and
Figure 5. Full scale of the figures can also be found in Appendix F.
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Algorithms. We compare against a number of baseline active learning algorithms (see Section 5
for a review). UNCERTAINTY SAMPLING at time t computes the empirical maximizer of 〈z, θ̂〉 and
the runner-up, and samples an index uniformly from their symmetric difference; if either are not
unique, an index is sampled from the region of disagreement of the winners (see Appendix G for
details). The greedy methods are represented by soft generalized binary search (SGBS) (Nowak,
2011) which maintains a posterior distribution over Z and samples to maximize information gain.
A hyperparameter β ∈ (0, 1/2) of SGBS determines the strength of the likelihood update. We
plot or report a range of performance over β ∈ {.01, .03, .1, .2, .3, .4}. The agnostic algorithms for
classification (Dasgupta, 2006; Hanneke, 2007b;a; Dasgupta et al., 2008; Huang et al., 2015; Jain &
Jamieson, 2019) or combinatorial bandits (Chen et al., 2014; Gabillon et al., 2016; Chen et al., 2017;
Cao & Krishnamurthy, 2017; Fiez et al., 2019; Jain & Jamieson, 2019) are so conservative that given
just T = 20 samples, they are all exactly equivalent to uniform sampling and hence represented by
UNIFORM. To represent a policy based on learning to actively learn (LAL), we employ the method
of Kveton et al. (2020) with a fixed prior P̃ constructed by drawing a z uniformly at random from
Z and defining θ = 2z − 1 ∈ [−1, 1]d (details in Appendix H). When evaluating each policy, we
use the successive halving algorithm (Li et al., 2017; 2018) for optimizing our non-convex objective
with randomly initialized gradient descent and restarts (details in Appendix E).

Figure 2: Learned policies,
lower is better

Figure 3: Sub-optimality of
individual policies, lower is
better

Figure 4: Max {θ : ρ̃(θ) ≤
r}, lower is better

Figure 5: Average Eθ∼Ph [·],
lower is better

Thresholds. We begin with a
very simple instance to demonstrate
the instance-dependent performance
achieved by our learned policy. For
d = 25 let X = {ei : i ∈ [d]}, Z =

{0 +
∑k
i=1 ei : k = 0, 1, . . . , d},

and f(·|θ, x) is a Bernoulli distribu-
tion over {−1, 1} with mean 〈x, θ〉 ∈
[−1, 1]. Note this is a binary classi-
fication task in one-dimension where
the set of classifiers are thresholds on
a line. We trained baseline policies
{πk}9k=1 for the BEST IDENTIFICA-
TION metric with C(θ) = ρ̃(X ,Z, θ)
and rk = 23+i/2 for i ∈ {0, . . . , 8}.
First we compare the base poli-
cies πk to π̂. Figure 2 presents
`(π,Θ(r)) = supθ:ρ̃(θ)≤r `(π, θ) =

supθ:ρ̃(θ)≤r Pπ,θ(ẑ 6= z?(θ)) as a
function of r for our base policies
{πk}k and the global policy π∗, each
as an individual curve. Figure 3 plots
the same information in terms of gap: `(π,Θ(r))− min

k:rk−1<r≤rk
`(πk,Θ

(rk)). We observe that each

πk performs best in a particular region and π∗ performs almost as well as the r-dependent baseline
policies over the range of r. This plot confirms that our optimization objective of (2) was successful.
Under the same conditions as Figure 2, Figure 4 compares the performance of π∗ to the algorithm
benchmarks. Since SGBS and LAL are deterministic, the adversarial training finds a θ that tricks
them into catastrophic failure. Figure 5 trades adversarial evaluation for evaluating with respect to a
parameterized prior: For each h ∈ {0.5, 0.6, . . . , 1}, θ ∼ Ph is defined by drawing a z uniformly at
random from Z and then setting θi = (2zi− 1)(2αi− 1) where αi ∼ Bernoulli(h). Thus, each sign
of 2z−1 is flipped with probability h. We then compute Eθ∼Ph [Pπ,θ(ẑ = z?(θ))] = Eθ∼Ph [`(π, θ)].
While SGBS now performs much better than uniform and uncertainty sampling, our policy π∗ is still
superior to these policies. However, LAL is best overall which is expected since the support of Ph
is basically a rescaled version of the prior used in LAL.

20 Questions. We now address an instance constructed from the real data of Hu et al. (2018).
Summarizing how we used the data from Hu et al. (2018) (see Appendix I for details), 100 yes/no
questions were considered for 1000 celebrities. Each question i ∈ [100] for each person j ∈ [1000]

was answered by several annotators to construct an empirical probability p̄(j)
i ∈ [0, 1] denoting the
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proportion of annotators that answered “yes.” To construct our instance, we take X = {ei : i ∈
[100]} and Z = {z(j) : [z

(j)
i ] = 1{p̄(j)

i > 1/2}} ⊂ {0, 1}1000. Just as before, we trained {πk}4k=1

for the BEST IDENTIFICATION metric with C(θ) = ρ̃(X ,Z, θ) and ri = 23+i/2 for i ∈ {1, . . . , 4}.

Figure 6: Max {θ : ρ̃(θ) ≤ r}

Table 1: Average Eθ∼P̂ [·]

Method Accuracy (%)
π∗ (Ours) 17.9
SGBS {26.5, 26.2,

27.2, 26.5,
21.4, 12.8}

Uncertainty 14.3
LAL 4.1
Uniform 6.9

Figure 6 is analogous to Fig-
ure 4 but for this 20 questions
instance. Uncertainty sampling
performs remarkably well on this
instance. A potential explana-
tion is that on a noiseless instance
(e.g., θ = 2z − 1 for some z ∈
Z), our implementation of uncer-
tainty sampling is equivalent to
CAL (Cohn et al., 1994) and is
known to have near-optimal sample complexity (Hanneke et al., 2014). Uncertainty sampling even
outperforms our r-dependent baseline by a bit which in theory should not occur–we conjecture this
is due to insufficient convergence of our policies or local minima. Our second experiment constructs
a distribution P̂ based on the dataset: to draw a θ ∼ P̂ we uniformly at random select a j ∈ [1000]

and sets θi = 2p̄
(j)
i − 1 for all i ∈ [d]. As shown in Table 1, SGBS and π∗ are the winners. LAL

performs much worse in this case, potentially because of the distribution shift from P̃ (prior we
train on) to P̂ (prior at test time). The strong performance of SGBS may be due to the fact that
sign(θi) = 2z?(θ)i − 1 for all i and θ ∼ P̂ , a realizability condition under which SGBS has strong
guarantees (Nowak, 2011).

Figure 7: Max {θ : ρ̃(θ) ≤ r}

Table 2: Average Eθ∼P̂ [·]

Method Average Regret
π∗ (Ours) 3.209
SGBS {3.180, 3.224,

3.278, 3.263,
3.153, 3.090}

Uncertainty 3.027
LAL 3.610
Uniform 3.877

Jester Joke Recommendation
We now turn our attention away
from best identification of the
last two experiments `(π, θ) =
Pπ,θ(ẑ 6= z?(θ)), to simple re-
gret `(π, θ) = Eπ,θ[〈z?(θ) −
ẑ, θ〉]. We consider the Jester
jokes dataset of Goldberg et al.
(2001) that contains jokes rang-
ing innocent puns to grossly of-
fensive jokes. We filter the dataset to only contain users that rated all 100 jokes, resulting in 14116
users. A rating of each joke was provided on a [−10, 10] scale which was rescaled to [−1, 1] and
observations were simulated as Bernoulli’s like above. We then clustered the ratings of these users
(see Appendix J for details) to 10 groups to obtain Z = {z(k) : k ∈ [10], z(k) ∈ {0, 1}100} where
z

(k)
i = 1 corresponds to recommending the ith joke in user cluster z(k) ∈ Z . Figure 7 shows the

same style plot as Figures 4,6 but for this jokes dataset, with our policy alone nearly achieving the
r-dependent baseline for all r. Mirroring the construction of the 20Q prior, we construct P̂ by uni-
formly sampling a user and employing their θ to answer queries. Table 2 shows that despite our
policy not being trained for this setting, its performance is still among the top.

5 RELATED WORK

Learning to actively learn. Previous works vary in how the parameterize the policy, ranging from
parameterized mixtures of existing expertly designed active learning algorithms (Baram et al., 2004;
Hsu & Lin, 2015; Agarwal et al., 2016), parameterizing hyperparameters (e.g., learning rate, rate of
forced exploration, etc.) in an existing popular algorithm (e.g, EXP3) (Konyushkova et al., 2017;
Bachman et al., 2017; Cella et al., 2020), and the most ambitious, policies parameterized end-to-end
like in this work (Boutilier et al., 2020; Kveton et al., 2020; Sharaf & Daumé III, 2019; Fang et al.,
2017; Woodward & Finn, 2017). These works take an approach of defining a prior distribution
either through past experience (meta-learning) or expert created (e.g., θ ∼ N (0,Σ)), and then
evaluate their policy with respect to this prior distribution. Defining this prior can be difficult, and
moreover, if the θ encountered at test time did not follow this prior distribution, performance could
suffer significantly. Our approach, on the other hand, takes an adversarial training approach and can
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be interpreted as learning a parameterized least favorable prior (Wasserman, 2013), thus gaining a
much more robust policy as an end result.

Robust and Safe Reinforcement Learning: Our work is also highly related to the field of robust
and safe reinforcement learning, where our objective can be considered as an instance of minimax
criterion under parameter uncertainty (Garcıa & Fernández, 2015). Widely applied in applications
such as robotics (Mordatch et al., 2015; Rajeswaran et al., 2016), these methods train a policy in a
simulator like Mujoco (Todorov et al., 2012) to minimize a defined loss objective while remaining
robust to uncertainties and perturbations to the environment (Mordatch et al., 2015; Rajeswaran
et al., 2016). Ranges of these uncertainty parameters are chosen based on potential values that could
be encountered when deploying the robot in the real world. In our setting, however, defining the set
of environments is far less straightforward and is overcome by the adoption of the C(θ) function.

Active Binary Classification Algorithms. The literature on active learning algorithms can be
partitioned into model-based heuristics like uncertainty sampling, query by committee, or model-
change sampling (Settles, 2009), greedy binary-search like algorithms that typically rely on a form
of bounded noise for correctness (Dasgupta, 2005; Kääriäinen, 2006; Golovin & Krause, 2011;
Nowak, 2011), and agnostic algorithms that make no assumptions on the probabilistic model (Das-
gupta, 2006; Hanneke, 2007b;a; Dasgupta et al., 2008; Huang et al., 2015; Jain & Jamieson, 2019).
Though the heuristics and greedy methods can perform very well for some problems, it is typically
easy to construct counter-examples (e.g., outside the assumptions) in which they catastrophically
fail (as demonstrated in our experiments). The agnostic algorithms have strong robustness guaran-
tees but rely on concentration inequalities, and consequently require at least hundreds of labels to
observe any deviation from random sampling (see Huang et al. (2015) for comparison). Therefore,
they were not included in our experiments explicitly but were represented by uniform.

Pure-exploration Multi-armed Bandit Algorithms. In the linear structure setting, for sets
X ,Z ⊂ Rd known to the player, pulling an “arm” x ∈ X results in an observation 〈x, θ∗〉+ zero-
mean noise, and the objective is to identify arg maxz∈Z〈z, θ∗〉 for a vector θ∗ unknown to the player
(Soare et al., 2014; Karnin, 2016; Tao et al., 2018; Xu et al., 2017; Fiez et al., 2019). A special case
of linear bandits is combinatorial bandits where X = {ei : i ∈ [d]} and Z ⊂ {0, 1}d (Chen et al.,
2014; Gabillon et al., 2016; Chen et al., 2017; Cao & Krishnamurthy, 2017; Fiez et al., 2019; Jain
& Jamieson, 2019). Active binary classification is a special case of combinatorial pure-exploration
multi-armed bandits (Jain & Jamieson, 2019), which we exploit in the threshold experiments. While
the above works have made great theoretical advances in deriving algorithms and information theo-
retic lower bounds that match up to constants, the constants are so large that these algorithms only
behave well when the number of measurements is very large. When applied to the instances of our
paper (only 20 queries are made), these algorithms behave no differently than random sampling.

6 DISCUSSION AND FUTURE DIRECTIONS

We see this work as an exciting but preliminary step towards realizing the full potential of this
general approach. From a practical perspective, training a π∗ can take many hours of computational
resources for even these small instances. Scaling these methods to larger instances is an important
next step. While training time scales linearly with the horizon length T , we note that one can take
multiple samples per time step with minimal computational overhead enabling problems that require
larger sample complexities. In our implementation we hard-coded the decision rule for ẑ given sT ,
while it could also be learned as in (Luedtke et al., 2020). Likewise, the parameterization of the
policy and generator worked well for our purposes but was chosen somewhat arbitrarily–are there
more natural choices? Finally, while we focused on stochastic settings, this work naturally extends
to constrained fully adaptive adversarial sequences which is an interesting direction of future work.
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A INSTANCE DEPENDENT SAMPLE COMPLEXITY

Identifying forms of C(θ) is not as difficult a task as one might think due to the proliferation of tools
for proving lower bounds for active learning (Mannor & Tsitsiklis, 2004; Tsybakov, 2008; Garivier
& Kaufmann, 2016; Carpentier & Locatelli, 2016; Simchowitz et al., 2017; Chen et al., 2014). One
can directly extract values of C(θ) from the literature for regret minimization of linear or other
structured bandits (Lattimore & Szepesvari, 2016; Van Parys & Golrezaei, 2020), contextual bandits
(Hao et al., 2019), and tabular as well as structured MDPs (Simchowitz & Jamieson, 2019; Ok et al.,
2018). Moreover, we believe that even reasonable surrogates of C(θ) should result in a high quality
policy π∗.

We review some canonical examples:

• Multi-armed bandits. In the best-arm identification problem, there are d ∈ N Gaussian distri-
butions where the ith distribution has mean θi ∈ R for i = 1, . . . , d. In the above formulation,
this problem is encoded as action xt = it results in observation yt ∼ Bernoulli(θit) and the loss
`(π, θ) := Eπ,θ[1{̂i 6= i?(θ)}] where î is π’s recommended index and i?(θ) = arg maxi θi. It’s
been shown that there exists a constant c0 > 0 such that for any sufficiently large ν > 0 we have

inf
π

sup
θ:CMAB(θ)≤ν

`(π, θ) ≥ exp(−c0T/ν) where CMAB(θ) :=
∑

i 6=i?(θ)

(θi?(θ) − θi)−2

Moreover, for any θ ∈ Rd there exists a policy π̃ that achieves `(π̃, θ) ≤ c1 exp(−c2T/CMAB(θ))
where c1, c2 capture constant and low-order terms (Carpentier & Locatelli, 2016; Karnin et al.,
2013; Simchowitz et al., 2017; Garivier & Kaufmann, 2016).

The above correspondence between the lower bound and the upper bound suggests that CMAB(θ)
plays a critical role in determining the difficult of identifying i?(θ) for any θ. This exercise extends
to more structured settings as well:

• Content recommendation / active search. Consider n items (e.g., movies, proteins) where the
ith item is represented by a feature vector xi ∈ X ⊂ Rd and a measurement xt = xi (e.g.,
preference rating, binding affinity to a target) is modeled as a linear response model such that
yt ∼ N (〈xi, θ〉, 1) for some unknown θ ∈ Rd. If `(π, θ) := Eπ,θ[1{̂i 6= i?(θ)}] as above then
nearly identical results to that of above hold for an analogous function of CMAB(θ) (Soare et al.,
2014; Karnin, 2016; Fiez et al., 2019).

• Active binary classification. For i = 1, . . . , d let φi ∈ Rp be a feature vector of an unlabeled
item (e.g., image) that can be queried for its binary label yi ∈ {−1, 1} where yi ∼ Bernoulli(θi)
for some θ ∈ Rd. Let H be an arbitrary set of classifiers (e.g., neural nets, random forest, etc.)
such that each h ∈ H assigns a label {−1, 1} to each of the items {φi}di=1 in the pool. If items
are chosen sequentially to observe their labels, the objective is to identify the true risk minimizer
h?(θ) = arg minh∈H

∑d
i=1 Eθ[1{h(φi) 6= yi}] using as few requested labels as possible and

`(π, θ) := Eπ,θ[1{ĥ 6= h?(θ)}] where ĥ ∈ H is π’s recommended classifier. Many candi-
dates for C(θ) have been proposed from the agnostic active learning literature (Dasgupta, 2006;
Hanneke, 2007b;a; Dasgupta et al., 2008; Huang et al., 2015; Jain & Jamieson, 2019) but we
believe the most granular candidates come from the combinatorial bandit literature (Chen et al.,
2017; Fiez et al., 2019; Cao & Krishnamurthy, 2017; Jain & Jamieson, 2019). To make the re-
duction, for each h ∈ H assign a z(h) ∈ {0, 1}d such that [z(h)]i := 1{h(φi) = 1} for all
i = 1, . . . , d and set Z = {z(h) : h ∈ H}. It is easy to check that z?(θ) := arg maxz∈Z〈z, θ〉
satisfies z?(θ) = z(h?(θ)). Thus, requesting the label of example i is equivalent to sam-
pling from Bernoulli(〈ei, θ〉) ∈ {−1, 1}, completing the reduction to combinatorial bandits:
X = {ei : i ∈ [d]}, Z ⊂ {0, 1}d. We then apply the exact same C(θ) as above for linear
bandits.

B GRADIENT ESTIMATE DERIVATION

Here we derive the unbiased gradient estimates (6), (7) and (8) in Algorithm 1. Since each the
gradient estimates in the above averages overM ·L identically distributed trajectories, it is therefore
sufficient to show that our gradient estimate is unbiased for a single problem θ̃i and its rollout
trajectory {(xt, yt)}Tt=1.
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For a feasible w, using the score-function identity (Aleksandrov et al., 1968)

∇wEi∼SOFTMAX(w)

[
`(πψ, θ̃i)

]
= Ei∼SOFTMAX(w)

[
`(πψ, θ̃i) · ∇w log(SOFTMAX(w)i)

]
.

Observe that if i ∼ SOFTMAX(w) and {(xt, yt)}Tt=1 is the result of rolling out a policy πψ on θ̃i
then

gw := LT (πψ, {(xt, yt)}Tt=1, θ̃i) · ∇w log(SOFTMAX(w)i)

is an unbiased estimate of∇wEi∼SOFTMAX(w)

[
`(πψ, θ̃i)

]
.

For a feasible set Θ̃, by definition of `(π, θ),

∇Θ̃Ei∼SOFTMAX(w)

[
`(πψ, θ̃i)

]
=Ei∼SOFTMAX(w)

[
∇Θ̃Eπ,θ̃i

[
LT (π, {(xt, yt)}Tt=1, θ̃i)

]]
=Ei∼SOFTMAX(w)

[
Eπ,θ̃i

[
∇Θ̃LT (π, {(xt, yt)}Tt=1, θ̃i) (10)

+ LT (π, {(xt, yt)}Tt=1, θ̃i) · ∇Θ̃ log(Pπψ,θ̃i({(xt, yt)}
T
t=1))

]]
where the last equality follows from chain rule and the score-function identity (Aleksan-
drov et al., 1968). The quantity inside the expectations, call it gΘ̃, is then an unbiased
estimator of ∇Θ̃Ei∼SOFTMAX(w)

[
`(πψ, θ̃i)

]
given i and {(xt, yt)}Tt=1 are rolled out accord-

ingly. Note that if Lbarrier 6= 0, ∇Θ̃Lbarrier(θ̃i,Ω) is clearly an unbiased gradient estimator of
Ei∼SOFTMAX(w)[Eπ,θ̃i [Lbarrier(θ̃i,Ω)]] given i and rollout are sampled accordingly.

Likewise, for policy,

gψ := LT (πψ, {(xt, yt)}Tt=1, θ̃i) · ∇ψ log(Pπψ,θ̃i({(xt, yt)}
T
t=1))

is an unbiased estimate of∇ψEi∼SOFTMAX(w)

[
`(πψ, θ̃i)

]
.

C LINEAR BANDIT PARAMETERIZATION

C.1 STATE REPRESENTATION

We parameterize our state space S as a flattened |X |×3 matrix where each row represents a distinct
x ∈ X . Specifically, at time t the row of st corresponding to some x ∈ X records the number of
times that action x has been taken

∑t−1
s=1 1{xs = x}, its inverse (

∑t−1
s=1 1{xs = x})−1, and the sum

of the observations
∑t−1
s=1 1{xs = x}ys.

C.2 POLICY MLP ARCHITECTURE

Our policy πψ is a multi-layer perceptron with weights ψ. The policy take a 3|X | sized state as
input and outputs a vector of size |X | which is then pushed through a soft-max to create a prob-
ability distribution over X . At the end of the game, regardless of the policy’s weights, we set
ẑ = argmaxz∈Z〈z, θ̂〉 where θ̂ is the minimum `2 norm solution to argminθ

∑T
s=1(ys − 〈xs, θ〉)2.

Our policy network is a simple 6-layer MLP, with layer sizes {3|X |, 256, 256, 256, 256, |X |} where
3|X | corresponds to the input layer and |X | is the size of the output layer, which is then pushed
through a Softmax function to create a probability over arms. In addition, all intermediate layers
are activated with the leaky ReLU activation units with negative slopes of .01. For the experiments
for 1D thresholds and 20 Questions, they share the same network structure as mentioned above with
|X | = 25 and |X | = 100 respectively.

D HYPER-PARAMETERS

In this section, we list our hyperparameters. First we define λbinary to be a coefficient that gets
multiplied to binary loses, so instead of 1{z?(θ∗) 6= ẑ}, we receive loss λbinary ·1{z?(θ∗) 6= ẑ}. We
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choose λbinary so that the recieved rewards are approximately at the same scale as SIMPLE REGRET.
During our experiments, all of the optimizers are Adam. All budget sizes are T = 20. For fairness
of evaluation, during each experiment (1D thresholds or 20 Questions), all parameters below are
shared for evaluating all of the policies. To elaborate on training strategy proposed in Algorithm 2
more, we divide our training into four procedures, as indicated in Table 3:

• Init. The initialization procedure takes up a rather small portion of iterations primarily for the
purpose of optimizing for Lbarrier so that the particles converge into the constrained difficulty
sets. In addition, during the initialization process we initialize and freeze w = ~0, thus putting an
uniform distribution over the particles. This allows us to utilize the entire set of particles without
w converge to only a few particles early on. To initialize Θ̃, we sample 2/3 of the N particles
uniformly from [−1, 1]|X | and the rest 1/3 of the particles by sampling, for each i ∈ [|Z|], N

3|Z|
particles uniformly from {θ : argmaxj〈θ, zj〉 = i}. We initialize our policy weights by Xavier
initialization with weights sampled from normal distribution and scaled by .01.

• Regret Training, π̃i Training with SIMPLE REGRET objective usually takes the longest among
the Procedures. The primary purpose for this process is to let the policy converge to a reasonable
warm start that already captures some essence of the task.

• Fine-tune πi. Training with BEST IDENTIFICATION objective run multiple times for each πi with
their corresponding complexity set Θi. During each run, we start with a warm started policy, and
reinitialize the rest of the models by running the initialization procedure followed by optimizing
the BEST IDENTIFICATION objective.

• Fine-tune π̂ This procedure optimizes (2), with baselines mink `(πk,Θ
(rk)) evaluated based on

each πi learned from the previous procedure. Similar to fine-tuning each individual πi, we warm
start a policy πbK/2c and reinitialize w and Θ by running the initialization procedure again.

Experiment

Procedure Hyper-parameter
1D Threshold
|X | = 25

20 Questions
|X | = 100

Jester Joke
|X | = 100

Init

Nit 20000 (all)
ψ learning rate 10−4 (all)
Θ̃ learning rate 10−3 (all)
w learning rate 0 (all)

Regret Training

Nit 480000 (all)
ψ learning rate 10−4 (all)
Θ̃ learning rate 10−3 (all)
w learning rate 10−3 (all)

Fine-tune πi

Nit 200000 (all)
ψ learning rate 10−4 (all)
Θ̃ learning rate 10−3 (all)
w learning rate 10−3 (all)

Fine-tune π∗

Nit 500000 300000 500000
ψ learning rate 10−4 (all)
Θ̃ learning rate 10−3 (all)
w learning rate 10−3 (all)

Adam Optimizer β1 .9 (all)
β2 .999 (all)

Table 3: Number of Iterations and Learning Rates
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Experiment

Procedure Hyper-parameter
1D Threshold
|X | = 25

20 Questions
|X | = 100

Jester Joke
|X | = 100

Init +
Train +

Fine-tune

N 1000× |Z| 300× |Z| 2000× |Z|
M 1000 500 500
L 10 30 30
λbinary 7.5 30 30
λPol-reg(regret) .2 .8 .8
λPol-reg(fine-tune) .3 .8 .8
λGen-reg .05 .1 .05
λbarrier 103 (all)

Table 4: Parallel Sizes and Regularization coefficients

To provide a general strategy of choosing hyper-parameters, we note that L, firstly, λbinary, λPol-reg
are primarily parameters tuned for |X | as the noisiness and scale of the gradients, and entropy over
the arms X grows with the size |X |. Secondly, λGen-reg is primarily tuned for |Z| as it penalizes
the entropy over the N arms, which is a multiple of |Z|. Thirdly, learning rate of θ is primarily
tuned for the convergence of constraint ρ∗ into the restricted class, thus Lbarrier becoming 0 after
the specified number of iterations during initialization is a good indicator. Finally, we choose N
and M by memory constraint of our GPU. The hyper-parameters for each experiment was tuned
with less than 20 hyper-parameter assignments, some metrics to look at while tuning these hyper-
parameters includes but are not limited to: gradient magnitudes of each component, convergence of
each loss and entropy losses for each regularization term (how close it is to the entropy of a uniform
probability), etc.

E POLICY EVALUATION

When evaluating a policy, we are essentially solving the following objective for a fixed policy π:

max
θ∈Ω

`(π, θ)

where Ω is a set of problems. However, due to non-concavity of this loss function, gradient descent
initialized randomly may converge to a local maxima. To reduce this possibility, we randomly
initialize many initial iterates and take gradient steps round-robin, eliminating poorly performing
trajectories. To do this with a fixed amount of computational resource, we apply the successive
halving algorithm from Li et al. (2018). Specifically, we choose hyperparamters: η = 4, r = 100,
R = 1600 and s = 0. This translates to:

• Initialize |Θ̃| = 1600, optimize for 100 iterations for each θ̃i ∈ Θ̃
• Take the top 400 of them and optimize for another 400 iterations
• Take the top 100 of the remaining 400 and optimize for an additional 1600 iterations

We take gradient steps with the Adam optimizer (Kingma & Ba, 2014) with learning rate of 10−3

β1 = .9 and β2 = .999.
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F FIGURES AT FULL SCALE

Figure 8: Full scale of Figure 2

Figure 9: Full scale of Figure 3

17



Under review as a conference paper at ICLR 2021

Figure 10: Full scale of Figure 4

Figure 11: Full scale of Figure 5
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Figure 12: Full scale of Figure 6

Figure 13: Full scale of Figure 7
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G UNCERTAINTY SAMPLING

We define the symmetric difference of a set of binary vectors, SymDiff({z1, ..., zn}) = {i : ∃j, k ∈
[n] s.t., z

(i)
j = 1 ∧ z(i)

k = 0}, as the dimensions where inconsistencies exist.

Algorithm 3: Uncertainty sampling in very small budget setting
1 Input: X ,Z
2 for t = 1, ..., T do
3 θ̂t−1 = argminθ

∑T
s=1(ys − 〈xs, θ〉)2

4 Ẑ = {z ∈ Z : maxz′∈Z〈z′, θ̂t−1〉 = 〈z, θ̂t−1〉}
5 if |Ẑ| = 1 then
6 Ẑt = Ẑ

⋃
{z ∈ Z : maxz′∈(Z\Ẑ)〈z

′, θ̂t−1〉 = 〈z, θ̂t−1〉}
7 else
8 Ẑt = Ẑ
9 end

10 Uniformly sample It from SymDiff(Ẑt)
11 Pull xIt and observe yt
12 end

H LEARNING TO ACTIVELY LEARN ALGORITHM

To train a policy under the learning to actively learn setting, we aim to solve for the objective

min
ψ

Eθ∼P̂ [`(πψ, θ)]

where our policy and states are parameterized the same way as Appendix C for a fair comparison.
To optimize for the parameter, we take gradient steps like (8) but with the new sampling and rollout
where θ̃i ∼ P̂ . This gradient step follows from both the classical policy gradient algorithm in
reinforcement learning as well as from recent LAL work by Kveton et al. (2020).

Moreover, note that the optimal policy for the objective must be deterministic as justified by deter-
ministic policies being optimal for MDPs. Therefore, it is clear that, under our experiment setting,
the deterministic LAL policy will perform poorly in the adversarial setting (for the same reason why
SGBS performs poorly).

I 20 QUESTIONS SETUP

Hu et al. (2018) collected a dataset of 1000 celebrities and 500 possible questions to ask about each
celebrity. We chose 100 questions out of the 500 by first constructing p̄′, X ′ and Z ′ for the 500
dimensions data, and sampling without replacement 100 of the 500 dimensions from a distribution
derived from a static allocation. We down-sampled the number of questions so our training can run
with sufficient M and L to de-noise the gradients while being prototyped with a single GPU.

Specifically, the dataset from Hu et al. (2018) consists of probabilities of people answering Yes /
No / Unknown to each celebrity-question pair collected from some population. To better fit the
linear bandit scenario, we re-normalize the probability of getting Yes / No, conditioning on the event
that these people did not answer Unknown. The probability of answering Yes to all 500 questions for
each celebrity then constitutes vectors p̄′(1), ..., p̄′(1000) ∈ R500, where each dimension of a give p̄′(j)i
represents the probability of yes to the ith question about the jth person. The action set X ′ is then
constructed as X ′ = {ei : i ∈ [500]}, while Z ′ = {z(j) : [z

(j)
i ] = 1{p̄(j)

i > 1/2}} ⊂ {0, 1}1000 are
binary vectors taking the majority votes.

To sub-sample 100 questions from the 500, we could have uniformly at random selected the ques-
tions, but many of these questions are not very discriminative. Thus, we chose a “good” set of
queries based on the design recommended by ρ? of Fiez et al. (2019). If questions were being an-
swered noiselessly in response to a particular z ∈ Z ′, then equivalently we have that for this setting
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θ = 2z − 1. Since ρ? optimizes allocations λ over X ′ that would reduce the number of required
queries as much as possible (according to the information theoretic bound of (Fiez et al., 2019)) if
we want to find a single allocation for all z′ ∈ Z simultaneously, we can perform the optimization
problem

min
λ∈∆(|X|−1)

max
z′∈Z′

max
z 6=z′

‖z′ − z‖2
(
∑
i λixix

T
i )−1

((z′ − z)T (2z′ − 1))2
.

We then sample elements from X ′ according to this optimal λ without replacement and add them to
X until |X | = 100.

J JESTER JOKE RECOMMENDATION SETUP

We consider the Jester jokes dataset of Goldberg et al. (2001) that contains jokes ranging from pun-
based jokes to grossly offensive. We filter the dataset to only contain users that rated all 100 jokes,
resulting in 14116 users. A rating of each joke was provided on a [−10, 10] scale which was shrunk
to [−1, 1]. Denote this set of ratings as Θ̂ = {θi : i ∈ [14116], θi ∈ [−1, 1]100}, where θi encodes
the ratings of all 100 jokes by user i. To construct the set of arms Z , we then clustered the ratings of
these users to 10 groups to obtain Z = {zi : i ∈ [10], zi ∈ {0, 1}100} by minimizing the following
metric:

min
Z:|Z|=10

14116∑
i=1

max
z∗∈{0,1}100

〈z∗, θi〉 −max
z∈Z
〈z, θi〉.

To solve for Z , we adapt the k−means algorithm, with the metric above instead of the L−2 metric
used traditionally.
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