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ABSTRACT

Auto-encoders compress input data into a latent-space representation and recon-
struct the original data from the representation. This latent representation is not
easily interpreted by humans. In this paper, we propose training an auto-encoder
that encodes input text into human-readable sentences. The auto-encoder is com-
posed of a generator and a reconstructor. The generator encodes the input text into
a shorter word sequence, and the reconstructor recovers the generator input from
the generator output. To make the generator output human-readable, a discrimina-
tor restricts the output of the generator to resemble human-written sentences. By
taking the generator output as the summary of the input text, abstractive summa-
rization is achieved without document-summary pairs as training data. Promising
results are shown on both English and Chinese corpora.

1 INTRODUCTION

When it comes to learning data representations, a popular approach involves the auto-encoder archi-
tecture, which compresses the data into a latent representation without supervision. In this paper we
focus on learning text representations. Because text is a sequence of words, to encode a sequence,
a sequence-to-sequence (seq2seq) auto-encoder (Li et al., 2015; Kiros et al., 2015) is usually used,
in which a RNN is used to encode the input sequence into a fixed-length representation, after which
another RNN is used to decode the original input sequence given this representation.
Although the latent representation learned by the auto-encoder can be used in downstream applica-
tions, they are usually not human-readable. In this work, we use comprehensible natural language as
a latent representation of the input source text in an auto-encoder model. This human-readable latent
representation is shorter than the source text; in order to reconstruct the source text, it must reflect
the core idea of the source text. Intuitively, the latent representation can be considered a summary
of the text.

The idea that using human comprehensible representation as a latent representation has been ex-
plored on text summarization (Miao & Blunsom, 2016), but only in a semi-supervised scenario.
Previous work uses a prior distribution from a pre-trained language model to constrain the generated
sequence to natural language. However, to teach the compressor network to generate text sum-
maries, the model is trained using labeled data. In contrast, in this work we need no labeled data to
learn the representations.
The proposed model is inspired from cycle consistency (Zhu et al., 2017; He et al., 2016). As shown
in Fig. 1, the proposed model is composed of three components: a generator, a discriminator, and a
reconstructor. Together, the generator and reconstructor form a text auto-encoder. The generator acts
as an encoder in generating the latent representation from the input text. Instead of using a vector
as latent representation, however, the generator generates a word sequence much shorter than the
input text. From the shorter text, the reconstructor reconstructs the original input of the generator.
By minimizing the reconstruction errors, the generator learns to generate short text segments that
contain the main information in the original input. We use the seq2seq model in modeling the
generator and reconstructor because both have input and output sequences with different lengths.

However, it is very possible that the generator’s output word sequence can be processed by the
reconstructor but is not readable by humans. Here, instead of regularizing the generator output
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with a pre-trained language model (Miao & Blunsom, 2016), we borrow from adversarial auto-
encoders (Makhzani et al., 2015) and introduce a third component – the discriminator – to regularize
the generator’s output word sequence.

Figure 1: Proposed model. Given long text, the generator produces a shorter text as a summary.
The generator is learned by minimizing the reconstruction loss together with the reconstructor and
making discriminator regard its output as human-written text.

The discriminator and the generator form a generative adversarial network (GAN) (Goodfellow
et al., 2014). GANs are generative models composed of a generator and a discriminator. The dis-
criminator discriminates between the generator output and real data, and the generator produces
output as similar as possible to real data to confuse the discriminator. Here, we only have to feed
human-written sentences to the discriminator as real data. With the GAN framework, the discrimi-
nator teaches the generator how to create human-like summary sentences as a latent representation;
however, this only guarantees that the generator produces grammatically correct sentences – not
necessarily sentences that represent the input text. It is the reconstructor that teaches the generator
how to produce a sentence that captures the core idea of the source text.
However, generating discrete distributions with GAN is challenging, since it is difficult to evaluate
the distance between the continuous distribution from the generator and the discrete distribution of
the real sample. In addition, if we feed sampled words from the generator output distribution to
the discriminator, the process of word selection is non-differentiable, which yields a discriminator
gradient that precludes back-propagation to the generator. With GAN, there are two ways to generate
language: (1) by training with a policy gradient, which regards words as actions, or (2) by directly
feeding the generator’s output layer to the discriminator, which yields a gradient suited to back-
propagation to the generator. In this work, we propose new kind of method on training with policy
gradient in which the discriminator evaluates the output of generator every time steps. On language
generation with GAN, we conduct experiments using both (1) and (2) methods and evaluate their
results.
We evaluate the results on an abstractive text summarization task in which the machine generates a
text summary in its own words. The model is learned from a set of unpaired documents and sum-
maries1. We use the sentences in the summaries as real data for discriminator2. As the summaries
can come from another set of documents not related to the training documents, training is unsuper-
vised. We use the output word sequence of the generator as the summaries of the input text. The
results show that the generator generates summaries with reasonable quality on both English and
Chinese corpora.

2 RELATED WORK

GAN FOR LANGUAGE GENERATION

The major challenge in applying GAN to sentence generation is the discrete nature of natural lan-
guage. To generate a word sequence, the generator usually has non-differential parts such as argmax

1Here the titles of the documents are considered as the summaries. This is a typical setup in the study of
summarization.

2Instead of using general sentences as real data for discriminator, we here choose sentences from summaries
because they have their own unique distribution. For example, the structure of a summary sentence is concise;
they usually contain specific words such as country or person names, or key verbs from the source text. Because
the following application is document summarization, using document summaries as real data is helpful. It is
possible to use text from different styles as real data for the discriminator to produce output from the generator
in different styles.
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or other sample functions which cause the original GAN to fail. Therefore, new kinds of GANs have
been proposed for sentence generation.
SeqGAN (Yu et al., 2017) tackles the sequence generation problem with reinforcement learning.
Here, we refer to this approach as adversarial REINFORCE, in which the generator is regarded
as an agent, the generated sequence of words is viewed as a sequence of actions, and the current
state is defined as the generated sequence to date and the prior input. However, the discriminator
only measures the quality of whole sentences, and thus the rewards are extremely sparse and the
rewards assigned to all actions in sequence are all the same. To tackle this problem, they propose
MC search to evaluate approximate rewards at each time step, but this method suffers from high time
complexity. Following this idea, (Li et al., 2017) proposes another approach to evaluate the expected
reward at each time step. They break both the generated and real sequences into partial sequences,
and the discriminator discriminates between the generated and real partial sequences. Inspired by
this idea, we propose the self-critical adversarial REINFORCE algorithm as another way to evaluate
the expected reward at each time step.
In (Gulrajani et al., 2017), instead of feeding a discrete word sequence, the authors directly feed the
generator output layer to the discriminator. This method works because they use the earth mover’s
distance on GAN as proposed in (Arjovsky et al., 2017), which is able to evaluate the distance
between a discrete and a continuous distribution. In order to satisfy the requirement of the earth
mover’s distance, they use a gradient penalty trick to confine the complexity of discriminator func-
tion. Their method achieves an amazing result: it is the first work on GAN training that performs
language generation without pre-training. In our work, we also conduct experiments on this method
with discriminator settings almost the same as the original paper.

ABSTRACTIVE TEXT SUMMARIZATION

Recent model architectures for abstractive text summarization basically use the sequence-to-
sequence (Sutskever et al., 2014) framework in combination with various novel mechanisms. One
popular mechanism is attention (Bahdanau et al., 2015), which has been shown helpful for summa-
rization (Nallapati et al., 2016; Rush et al., 2015). It is also possible to directly optimize evaluation
metrics such as ROUGE (Lin, 2004) with reinforcement learning (Ranzato et al., 2016; Paulus et al.,
2017; Bahdanau et al., 2016). The hybrid pointer-generator network (See et al., 2017) selects words
from the original text with a pointer (Vinyals et al., 2015) or from the whole vocabulary with a
trained weight. In order to eliminate repetition, a coverage vector (Tu et al., 2016) can be used to
keep track of attended words and coverage loss (See et al., 2017) can be used to encourage model
focus on diverse words. While most papers focus on supervised learning with novel mechanisms,
we explore unsupervised training models.

3 PROPOSED METHOD

The overview of the proposed model is shown in Fig. 2. The model is composed of three com-
ponents: generator G, discriminator D, and reconstructor R. Both G and R are seq2seq hybrid
pointer-generator networks (See et al., 2017) which can decide to copy words from encoder input
text via pointing or generate from vocabulary.They both take a word sequence as input and output a
sequence of word distributions. Discriminator D, on the other hand, takes a sequence as input and
outputs a scalar. The model is learned from a set of documents x and human-written sentences yreal.
Although in real implementation, yreal are the sentences in summaries, we note that the documents
and summaries are unpaired.
To train the model, a training document x = {x1, x2, ..., xt, ..., xT }, where xt represents a word,
is fed to G, which outputs a sequence of word distributions G(x) = {y1, y2, ..., yn, ..., yN}, where
yn is a distribution over all words in the lexicon. Then we sample a word ysn from each distribution
yn, and a word sequence ys = {ys1, ys2, ..., ysN} is obtained according to G(x). We feed the sampled
word sequence ys to reconstructor R, which outputs another sequence of word distributions x̂. The
reconstructor R reconstructs the original text x from ys. That is, we seek an output of reconstructor
x̂ that is as close to the original text x as possible; hence the loss for training the reconstructor R,
Rloss, is defined as

Rloss =

K∑
k=1

ls(x, x̂), (1)
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Figure 2: Architecture of proposed model. The generator network and reconstructor network are a
seq2seq hybrid pointer-generator network, but for simplicity, we omit the pointer and the attention
parts.

where the reconstruction loss ls(x, x̂) is the cross-entropy loss computed between the reconstructor
output sequence x̂ and the source text x, or the negative conditional log-likelihood of source text x
given word sequence ys sampled from G(x). The reconstructor output sequence x̂ is teacher-forced
by source text x. The subscript s in ls(x, x̂) indicates that x̂ is reconstructed from ys. K is the
number of training examples (documents), and (1) is the summation of the cross-entropy loss over
all the training documents x.
In the proposed model, the generator G and reconstructor R form an auto-encoder. However, the
reconstructor R does not directly take the generator output distribution G(x) as input 3. Instead, the
reconstructor takes a sampled discrete sequence ys as input. Due to the non-differentiable property
of discrete sequences, we apply the REINFORCE algorithm, which is described in Section 4.
In addition to reconstruction, we need the discriminatorD to discriminate between the real sequence
yreal and the generated sequence ys to regularize the generated sequence satisfying the summary
distribution. D learns to give yreal higher scores while giving ys lower scores. The loss for training
the discriminator D is denoted as Dloss; this is further described in Section 5.

G learns to minimize the reconstruction error Rloss, while maximizing the loss of the discriminator
D by generating a summary sequence ys that cannot be differentiated by D from the real thing. The
loss when training the generator G, Gloss, is

Gloss = αRloss −D′loss (2)

where D′loss is highly related to Dloss – but not necessary the same – and α is a hyper-parameter.
After obtaining the optimal generator by minimizing (2), we use it to generate summaries.

Generator G and discriminator D together form a GAN. We use two different adversarial training
methods to train D and G; as shown in Fig. 2, these two methods have their own discriminators
1 and 2. Discriminator 1 takes the generator output layer G(x) as input, whereas discriminator 2
takes the sampled discrete word sequence ys as input. The two methods are described respectively
in Sections 5.1 and 5.2.

3We found that if the reconstructor R directly takes G(x) as input, the generator G learns to put the infor-
mation about the input text in the distribution of G(x), making it difficult to sample meaningful sentences from
G(x).
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4 MINIMIZING RECONSTRUCTION ERROR

Because discrete sequences are non-differentiable, we use the REINFORCE algorithm. The gener-
ator is seen as an agent whose reward given the source text x is −ls(x, x̂). Maximizing the reward
is equivalent to minimizing the reconstruction loss Rloss in (1). However, the reconstruction loss
varies widely from sample to sample, and thus the rewards to the generator are not stable either.
Hence we add a baseline to reduce their difference. We apply self-critical sequence training (Rennie
et al., 2017); the modified reward rR(x, x̂) from reconstructor R with the baseline for the generator
is

rR(x, x̂) = −ls(x, x̂)− (−la(x, x̂)− b) (3)

where −la(x, x̂) − b is the baseline. la(x, x̂) is also the same cross-entropy reconstruction
loss as ls(x, x̂), except that x̂ is obtained from ya instead of ys. ya is a word sequence
{ya1 , ya2 , ..., yan, ..., yaN}, where yan is selected using the argmax function from the output distribu-
tion of generator yn. As in the early training stage, the sequence ys barely yields higher reward than
sequence ya, to encourage exploration we introduce the second baseline score b, which gradually
decreases to zero. Then, the generator is updated using the REINFORCE algorithm with reward
rR(x, x̂) to minimize Rloss.

5 GAN TRAINING

With adversarial training, the generator learns to produce sentences as similar to the human-written
sentences as possible. Here, we conduct experiments on two kinds of methods of language genera-
tion with GAN. In Section 5.1 we directly feed the generator output probability distributions to the
discriminator and use a Wasserstein GAN (WGAN) with a gradient penalty. In Section 5.2, we ex-
plore adversarial REINFORCE, which feeds sampled discrete word sequences to the discriminator
and evaluates the quality of the sequence from the discriminator for use as a reward signal to the
generator.

5.1 DISCRIMINATOR 1: WASSERSTEIN GAN

In the lower left of Fig. 2, the discriminator model is shown as discriminator1. The discriminator
loss Dloss is

Dloss =
1

K

K∑
k=1

D(ys(k))− 1

K

K∑
k=1

D(yreal(k)) + β(∆yi(k)D(yi(k))− 1)2, (4)

where K denotes the number of training examples in a batch, and k denotes the k-th example. The
last term in (4) is the gradient penalty (Gulrajani et al., 2017). We interpolate the generator output
layer G(x) and the real sample yreal, and apply the gradient penalty to the interpolated sequence
yi. β determines the gradient penalty scale. In Equation (2), for WGAN, D′loss is the score of the
generated example:

D′loss =
1

K

K∑
k=1

D(G(x(k))).

5.2 SELF-CRITIC ADVERSARIAL REINFORCE

In this section, we describe in detail the proposed adversarial REINFORCE method. The core
idea is we use the LSTM discriminator to evaluate the current quality of the generated sequence
{ys1, ys2, ..., ysi } at each time step i. Hence, the generator knows that compared to the last time step,
as the generated sentence either improves or worsens, it can easily find the problematic generation
step in a long sequence, and thus fix the problem easily.

5.2.1 DISCRIMINATOR 2

As shown in Fig. 2, the discriminator2 is a one-way LSTM network which takes a discrete word
sequence as input. At time step i, given input word ysi it predicts the current score si based on the
sequence {y1, y2, ..., yi}. The score is viewed as the quality of the current sequence.
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In order to compute the discriminator loss Dloss , we sum the scores {s1, s2, ..., sN} of the whole
sequence ys to yield

D(ys) =
1

N

N∑
n=1

sn.

Dloss =
1

K

K∑
k=1

D(ys(k))− 1

K

K∑
k=1

D(yreal(k)),

where K and N denote the number of training examples and the generated sequence length re-
spectively. With the loss mentioned above, the discriminator attempts to quickly determine whether
the current sequence is real or fake. The earlier the timestep discriminator determines whether the
current sequence is real or fake, the lower its loss. An example is shown in Fig. 3.

Figure 3: When the second arrested appears, the discriminator determines that this example came
from the generator. Hence, after this time-step, it outputs low scores.

5.2.2 SELF-CRITICAL GENERATOR

Since we feed a discrete sequence ys to the discriminator, the gradient from the discriminator cannot
directly back-propagate to the generator. Here, we use the policy gradient method. At timestep i,
we use the i− 1 timestep score si−1 from the discriminator as its self-critical baseline. The reward
rDi evaluates whether the quality of sequence in timestep i is better or worse than that in timestep
i− 1. The generator reward rDi from D is

rDi =

{
si if i = 1
si − si−1 otherwise.

However, some sentences may be judged as bad sentences at the previous timestep, but at later
timesteps judged as good sentences, and vice versa. Hence we use the discounted expected reward
d with discount factor γ to calculate the discounted reward di at time step i as

di =

N∑
j=i

γj−irDj .

The adversarial REINFORCE score related to discriminator D′loss in (2) is

D′loss = Eys
i∼pG(ys

i |ys
1,...,y

s
i−1,x)

[di].

We use the likelihood ratio trick to approximate the gradient.

6 IMPLEMENTATION

Network Architecture. The model architecture of generator and reconstructor is almost same ex-
cept the length of input and output sequence. We adapt model architecture for our generator and
reconstructor from See et al. (2017) who used hybrid-pointer network with coverage vector for text
summarization. The hybrid-pointer networks of generator and reconstructor are all composed of two
one-layer LSTMs as its encoder and decoder, respectively, with a hidden layer size of 600. Since
we use two kinds of methods on adversarial training, there are two discriminators with different
model architecture. In the Section 5.1, the discriminator is composed of four residual blocks with
512 hidden dimensions. While in Section 5.2, we use only one hidden-layer one-way LSTM with a
hidden size of 512 as our discriminator.

Details of Training. We set the weight α in (2) controlling Rloss to 10 if not specified. We find
that the if the value of α is too large, generator will start to generate output unlike human-written
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sentences. On the other hand, if the value of α is too small, the sentences generated by generator
will sometimes become unrelated to input text of generator. For all the experiments, the baseline b
in (3) gradually decreases from 0.25 to zero within 10000 updates on generator.

In Section 5.1, we set the weight β of the gradient penalty to 10, and used RMSPropOptimizer with
a learning rate of 0.00001 and 0.001 on the generator and discriminator, respectively. In Section 5.2,
we clip the value of the weights of discriminator to ±0.15, and used RMSPropOptimizer with a
learning rate of 0.0001 and 0.001 on the generator and discriminator, respectively. It’s also feasible
to apply gradient penalty trick in this method to satisfy requirement of Wasserstein distance. How-
ever, in this method, the performance of gradient penalty trick and weights clipping trick is close.

7 EXPERIMENT

We evaluate our model on the Chinese Gigaword and English Gigaword datasets. Before jointly
training the whole model, we pre-trained the three major components – generator, discriminator,
and reconstructor – separately. First, we pre-trained the generator in an unsupervised manner so
that the generator would be able to somewhat grasp the semantic meaning of the source text. The
details of the pre-training are in Appendix A. We pre-trained the discriminator and reconstructor
respectively with the pre-trained generator’s output to ensure that these two critic networks provide
good feedback to the generator. During testing, when using the generator to generate summaries, we
simply selected the words in a greedy fashion without beam-search, and we eliminated repetition.

7.1 CHINESE GIGAWORD

Methods ROUGE-1 ROUGE-2 ROUGE-L
(A) Training with paired data (supervised) 48.664 33.907 45.685
(B) Trivial baselines: lead - 15 30.077 18.237 27.736

(C) Unsupervised
(C-1) Pretrained generator 28.122 16.656 26.227
(C-2) WGAN 37.803 24.460 35.116
(C-3) Adversarial REINFORCE 40.053 26.126 37.118

Table 1: Results on Chinese Gigaword. In row (B), we select the article’s first fifteen words as its
summary. Part (C) are the results obtained without paired data.

The Chinese Gigaword corpus is composed of 2.2M paired data of headlines and news. We prepro-
cessed the raw data as following. First, we selected the 4000 most frequent Chinese characters as our
vocabulary. We filtered out headline-news pairs with excessively long or short news segments, or
that contained too many out-of-vocabulary Chinese characters, yielding 1.1M headline-news pairs
from which we randomly selected 5K headline-news pairs as our testing set, 5K headline-news pairs
as our validation set, and the remaining pairs as our training set. During training and testing, the
generator took only the first 80 Chinese characters of the source text as input.
The results are shown in Table 1. Row (A) lists the results using 1.1 million document-summary
pairs to directly train the generator without the reconstructor and discriminator: this is the upper
bound of the proposed approach. In row (B), we simply took the first fifteen words in a document
as its summary. The number of words was chosen to optimize the evaluation metrics. Part (C)
are the results obtained in the unsupervised scenario without paired data. We show the results
of the pre-trained generator in row (C-1); rows (C-2) and (C-3) are the results for the two GAN
training methods respectively. We find that despite the performance gap between the unsupervised
and supervised methods (rows (C-2), (C-3) v.s. (A)), the proposed method yielded much better
performance than the trivial baselines (rows (C-2), (C-3) v.s. (B)).

7.2 ENGLISH GIGAWORD

On English Gigaword, we set our vocabulary size to 15k, and used the dataset preprocessed by (Rush
et al., 2015) for training and testing. We used 3.8M unpaired training data for our training, and we
used the whole 200k filtered data in validation set for testing.
The results on English Gigaword are shown in Table 2. In row (B-1), we simply took the first eight
words in a document as its summary. Row (B-2) is another trivial baseline. With unpaired documents
and summaries, we matched documents to the most relevant summaries with unsupervised method.
Each document and each summary were represented as tf-idf (term frequency & inverse document
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Methods ROUGE-1 ROUGE-2 ROUGE-L
(A) Training with paired data (supervised) 37.469 16.272 35.175

(B) Trivial baselines (B-1) Lead-8 27.663 10.246 25.852
(B-2) Unsupervised matching 29.900 10.442 27.379

(C) Unsupervised
(C-1) Pre-trained generator 21.269 5.608 18.896
(C-2) WGAN 33.043 12.222 30.121
(C-3) Adversarial REINFORCE 32.826 9.332 28.727

(D) Transfer learning (D-1) Pre-trained generator 22.540 6.652 20.879
(Pre-train) (D-2) WGAN 32.405 12.313 29.689

(D-3) Adversarial REINFORCE 31.487 10.495 28.248
(E) Transfer learning (E-1) WGAN 29.912 10.695 27.324

(Pre-train+Discriminator) (E-2) Adversarial REINFORCE 27.755 9.280 24.860

Table 2: Results on English Gigaword: In row (B-1), we select the article’s first eight words as its
summary. In row (B-2), we match the documents to their most relevant summaries with unsuper-
vised method. Part (C) are the results obtained without paired data. In part (D), we pre-trained
the generator on CNN/Diary. In part (E), we not only pre-trained on CNN/Diary but also used the
summaries from CNN/Diary as real data for the discriminator.

frequency) vectors. The summary whose vector maximized cosine similarity of a document vector
was retrieved as summary of the document. With paired data from unsupervised matching, given
documents as generator input, the generator was trained to predict retrieved summaries.

The results for the pre-trained generator is shown in row (C-1). Compared with the trivial baselines
(part (B)), the proposed approach (rows (C-2) and (C-3)) showed good improvement in terms of
ROUGE-1. As shown in Fig. 4, the unsupervised method selects key words in the source text and
generates the text summary. However, as shown in Table 2, although both unsupervised methods
yield ROUGE-1 scores close to that of supervised training, they achieve lower scores on ROUGE-2,
especially when training GAN with reinforcement learning. This is because they are extracting the
key words from the source text, despite sometimes failing to arrange these words in the correct order.
As shown in part (C-3) of Fig. 5, the words in the sentence generated in an unsupervised manner are
not arranged correctly: the Italian prime minister, Berlusconi, should not be visiting himself.

7.3 TRANSFER LEARNING

In this subsection, we study transfer learning. We used the CNN/Daily Mail dataset (Hermann et al.,
2015; Nallapati et al., 2016) preprocessed by the script provided by (See et al., 2017) as our source
domain S, and English Gigaword as our target domain T . The data distributions among the two
datasets are quite different. In English Gigaword, the articles consist of 32 words on average and the
summaries consist of one sentence with 8 words on average, whereas the CNN/Daily Mail dataset is
composed of 790-word articles and multi-sentence summaries. We took only the first 30 to 45 words
in the original source domain articles as our new source articles Sa. There are 50K source articles
in Sa. The 50K source summaries of the source articles are St. In contrast to English Gigaword,
the summaries in CNN/Daily Mail dataset are composed of more than one sentence. We split the
summary of each article into several sentences, and obtained 240K sentences Sr in this way.

Transfer learning was applied in two directions. In the first direction, we pre-trained our generator
on the data from the source dataset: we pre-trained the generator with Sa as input, and the generator
predicted St. We pre-trained the generator in this manner in all of the transfer learning experiments.
Then, after pre-training, the generator was further learned jointly with the reconstructor and discrim-
inator on the data from the target domain. The results are shown in part (D) of Table 2. We found that
pre-training on the source data set did not degrade performance, and even improved performance in
some cases (parts (D) v.s. (C)).
In the second direction, we used the summary from the source domain as our real data. The exper-
iments conducted up to this point required unpaired summary and text data in the target domain.
In this experiment, the task was more challenging in that we used summaries Sr from the source
domain S as the real data for the discriminator; the generator took the target domain text as input.
However, the summaries in each summarization task dataset had a different distribution in terms of
the writing style, or in terms of the preferred summary words. To prevent overfitting to Sr, we set
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the weight α to 50 which was larger than other experiments. With small weight of α, as training
progressed, the generator summary diverged more and more from the article, and the ROUGE scores
became lower and lower.
The results without using summaries in the target domain are shown in part (E). We find that using
sentences Sr from another dataset yields lower ROUGE scores on the target testing set (parts (E)
v.s. (D)) due to the mismatch between the summaries of the source and target domains. However,
the discriminator still roughly regularizes the language model of generated word sequence. After
training, the model still greatly enhanced the ROUGE score of the pre-trained model (rows (E-1),
(E-2) v.s. (D-1)).Although the results in part (E) are comparable with the trivial baselines in part
(B), in inspecting the real examples, we found that the results in part (E) were in fact better; this is
not reflected in the ROUGE scores. In Fig. 4, the results in part (E) are better than the leading 8
words and the pre-trained generator results. To support this idea, we provide more examples in the
Appendix C.

Figure 4: Real example from our model in English Gigaword. The proposed method generates
summaries that capture the core idea of the article.

Figure 5: In part (C-3), some words in the summary sentences are arranged in incorrect order.

7.4 SEMI-SUPERVISED LEARNING

In semi-supervised training, generator was pre-trained with few available labeled data, and during
unsupervised training, we conducted teacher-forcing with labeled data on generator every several
unsupervised updates. In teacher forcing, given source text as input, the generator was teacher-
forced to predict the human-written summary of source text. Teacher-forcing can be regarded as
regularization of unsupervised training that prevents generator from producing unreasonable sum-
maries of source text. We found that if we teacher-forced generator too frequently, generator would
overfit on training data since we only use very few labeled data on semi-supervised training.
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The performance of semi-supervised model in English Gigaword regarding available labeled data
is shown in Fig. 6. The horizontal axis is the number of labeled documents used in the experi-
ments, while the vertical axis for Fig. 6 (a) and (b) are ROUGE-1 and ROUGE-2 respectively. The
green curve is the results of supervised learning, and the red and blue curves are semi-supervised
learning with different approaches. With the same amounts of labeled data, the performances of
semi-supervised training are always better than supervised training. With only 100K labeled data,
the ROUGE score of semi-supervised training using adversarial REINFORCE even slightly outper-
formed supervised training with whole labeled data. This shows that with the proposed approach,
we need only 2.6% of labeled data to achieve the same performance as before (100K v.s. 3.8M).
The complete results for semi-supervised learning in both datasets are shown in Appendix B.

(a) ROUGE-1 (b) ROUGE-2

Figure 6: Semi-supervised results in English Gigaword. With the same amount of labeled data, the
performances of semi-supervised training are always better than supervised training.

7.5 GAN TRAINING

Corpus Method ROUGE-1 ROUGE-2 ROUGE-L

Chinese with self-critic 40.053 26.126 37.118
without self-critic 37.549 24.181 35.160

English with self-critic 32.826 9.332 28.727
without self-critic 31.104 9.249 28.592

Table 3: Adversarial REINFORCE with/without self-critic with unsupervised training.

The two GAN training methods are not comparable as their settings are quite different, but we can
still discuss the advantages and disadvantages of these two methods. When training with feeding
output layer to discriminator, convergence is faster. This method sharpens the distribution at an
early stage in training because it directly evaluates the distance between the generator’s continuous
distribution and the real data’s discrete distribution data. However, this cause generator to converge
to a not very good place.

In fact, adversarial REINFORCE is sensitive to initialization parameters. Adversarial REINFORCE
requires better initialization for exploration; otherwise, with so many actions whose number is equal
to vocabulary size to choose, it is extremely difficult to train generator from scratch. In semi-
supervised training, since we pre-trained generator with labeled data, the generator was better ini-
tialized, therefore adversarial REINFORCE performed better. To support this idea, in Fig. 6, we
compare the performance of two methods regarding labeled data. The result implies that with more
labeled data, our proposed adversarial REINFORCE method performs better. In order to evaluate
the performance of proposed self-critic baseline trick mentioned in Section 5.2.2, we compared the
performance of our model with and without this baseline trick in Table 3. For the experiments with-
out the self-critic baseline trick, we replaced si − si−1 in Section 5.2.2 with si. We found that the
performance degraded without self-critic.

8 CONCLUSION AND FUTURE WORK

Using GAN, we propose a model that encodes text as a human-readable summary, learned without
document-summary pairs. Promising results are obtained on both Chinese and English corpora.
In future work, we hope to explore more techniques for natural language generation using GAN.
Moreover, we hope to use extra discriminators to control the style and sentiment of the generated
summaries.
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A MODEL PRE-TRAINING

As we found that the different pre-training methods for the generator influenced final performance
dramatically in all of the experiments, we felt it was important to find a proper unsupervised pre-
training method to help the machine grasp semantic meaning. We used the different pre-training
strategies described below.

• Chinese Gigaword: Given the previous i− 1 sentences sent0, sent1, ..., senti−1 from the
source text, the generator predicted the next sentence senti in the source text as its pre-
training target. If more than 50% of the words in sentence senti did not appear in the given
text, we filtered out this pre-training sample pair. This pre-training method allowed the
generator to capture the important semantic meanings of the source text.

• English Gigaword: As the length of the source texts in English Gigaword dataset is compar-
atively short, it is difficult to split the last sentence from the source text; hence the previous
pre-training method on Chinese Gigaword is not appropriate for this dataset. To properly
initialize the set, we randomly selected 6 to 11 consecutive words in the source text, after
which we randomly swapped 70% of the words in the source text. Given text with incorrect
word arrangements, the generator predicted the selected words in the correct arrangement.
We pre-trained in this way because we expect the generator to initialize with a rough lan-
guage model. In Chinese Gigaword we also conducted experiments on pre-training in this
manner, but the results were not as good as those shown in the part (C) of Table 1. We
also used the retrieved paired data in row (B-1) in Table 2 to pre-train generator. However,
pre-training generator with this method doesn’t yield results better than those in Table 2.
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B SEMI-SUPERVISED LEARNING

Semi-supervised learning experiments were conducted with 10K, 50K, 100K labeled data in both
datasets. We conducted teacher-forcing on generator every 30, 12, 7 unsupervised updates with 10K,
50K, 100K labeled data respectively. The complete results for semi-supervised learning are shown
in Tables 4 and 5.

ROUGE-1 ROUGE-2 ROUGE-L

Unsupervised WGAN 37.803 24.460 35.116
Adversarial REINFORCE 40.053 26.126 37.118

Semi-supervised WGAN 42.359 27.192 38.467
(10K labeled) Adversarial REINFORCE 43.109 28.626 40.202
Semi-supervised WGAN 43.989 29.012 40.764
(50K labeled) Adversarial REINFORCE 44.706 29.872 41.737
Semi-supervised WGAN 45.642 31.475 42.711
(100K labeled) Adversarial REINFORCE 46.216 31.980 43.522

Supervised 48.664 33.907 45.685

Table 4: Semi-supervised learning in Chinese Gigaword with different amounts of labeled data
(10K, 50K, 100K).

ROUGE-1 ROUGE-2 ROUGE-L

Unsupervised WGAN 33.043 12.222 30.121
Adversarial REINFORCE 32.826 9.332 28.727

Semi-supervised WGAN 34.127 13.087 31.451
(10K labeled) Adversarial REINFORCE 34.239 12.570 31.834
Semi-supervised WGAN 34.937 13.838 32.372
(50K labeled) Adversarial REINFORCE 35.642 14.057 32.983
Semi-supervised WGAN 36.615 15.363 33.682
(100K labeled) Adversarial REINFORCE 38.213 16.279 35.137

Supervised 37.469 16.272 35.175

Table 5: Semi-supervised learning in English Gigaword with different amounts of labeled data (10K,
50K, 100K).
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C EXAMPLES

From Fig. 7 to 12, we show more examples.

Figure 7: Real example from our model in English Gigaword. In part (E-2), due to transfer learning,
the summary sentence begins with word he, which never appears in the English Gigaword summary
sentences.

Figure 8: Real example from our model in English Gigaword. The sentence grammar in part (C-3)
is correct, but the semantics are incorrect.
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Figure 9: Real example from our model in English Gigaword.

Figure 10: Real example from our model in English Gigaword.
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Figure 11: Real example from our model in English Gigaword.

Figure 12: Real example from our model in English Gigaword.
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