
Published as a conference paper at ICLR 2025

NEXTCODER: ROBUST ADAPTATION OF CODE LMS TO
DIVERSE CODE EDITS

Tushar Aggarwal*, Swayam Singh*, Abhijeet Awasthi, Aditya Kanade, Nagarajan Natarajan
Microsoft Research India

ABSTRACT

Software engineering activities frequently involve edits to existing code. However,
contemporary code language models (LMs) lack the ability to handle diverse types
of code-edit requirements. In this work, we attempt to overcome this shortcoming
through (1) a novel synthetic data generation pipeline and (2) a robust model
adaptation algorithm. Starting with seed code examples and diverse editing criteria,
our pipeline generates high-quality samples comprising original and modified
code, along with natural language instructions in different styles and verbosity.
Today’s code LMs come bundled with strong abilities, such as code generation
and instruction following, which should not be lost due to fine-tuning. To ensure
this, we propose a novel adaptation algorithm, SeleKT, that (a) leverages a dense
gradient-based step to identify the weights that are most important for code editing,
and (b) does a sparse projection onto the base model to avoid overfitting. Using our
approach, we obtain a new series of models NextCoder (adapted from QwenCoder-
2.5) that achieves strong results on five code-editing benchmarks, outperforming
comparable size models and even several larger ones. We show the generality of
our approach on two model families (DeepSeekCoder and QwenCoder), compare
against other fine-tuning approaches, and demonstrate robustness by showing
retention of code generation abilities post adaptation.

1 INTRODUCTION

Code editing is a fundamental ability with pervasive use in automating software engineering activities.
Recent benchmarks reveal that contemporary code language models (LMs), particularly the smaller
and open-weight LMs, struggle to edit code based on natural language instructions (Muennighoff
et al., 2023; Guo et al., 2024b; Cassano et al., 2023; Singhal et al., 2024). This is despite many of
them incorporating commit-data from GitHub in pre-training (Li et al., 2023; Lozhkov et al., 2024)
or fine-tuning (Muennighoff et al., 2023; Cassano et al., 2023; Xie et al., 2025).

We aim to enhance the ability of code LMs to handle diverse types of code-edit requirements. This
poses two challenges: (1) lack of high-quality fine-tuning data and (2) the risk of losing the strong
and general abilities (such as code generation, comprehension, and instruction following, acquired
during pre-training and instruction tuning) due to catastrophic forgetting Goodfellow et al. (2013).

We address both these challenges in this paper. We propose (1) a synthetic data generation pipeline
which starts with seed code examples and diverse code editing aspects to generate samples comprising
original and modified code, along with natural language instructions. The code editing aspects are at
a high-level and simply state dimensions along which samples should be generated (e.g., bug fixing,
runtime improvement, etc.). Our multi-stage pipeline generates original code which is intentionally
deficient in some dimension so that a meaningful edit that addresses the deficiency can be generated.
Inspired by (Wei et al., 2024b), seed code is used to ensure diversity in the generated code and its
scale (ranging from functions, classes, to files). It is important to support diversity in prompting styles
as well. Our instruction generation stage samples code-edit instructions, that are well-fitted to the
change from the original to the modified code, in different styles (instruction vs. conversation) and
verbosity (concise vs. detailed). We generate synthetic data using GPT-4o and Llama-3.3-70B models,
and use it together with high-quality commit data from CommitPackFT (Muennighoff et al., 2023).

*equal contribution.
Corresponding authors: tushar.aggarwal53@gmail.com, {t-swsingh,abawasthi,kanadeaditya,nagarajn}@microsoft.com

1

Published as a conference paper at ICLR 2025

We observe that supervised fine-tuning on the curated data hampers pre-learned abilities of code
LMs like code generation. We therefore (2) devise a robust adaptation algorithm, called "selective
knowledge transfer" (SeleKT), which selectively adjusts the base model weights with respect to a
subset of fine-tuned model weights. Unlike existing model adaptation techniques (Nguyen et al.,
2024a) which select the updatable weights a priori, we select the weights periodically based on
their magnitude of change during fine-tuning. (3) We experimentally show superiority of our model
adaptation algorithm over existing methods.

Figure 1: Performance of state-of-the-
art code LMs, in the parameter range
6.7B-16B, on code editing benchmarks.
NextCoder is our code-editing model
with Qwen2.5-Coder-7B as the base, fine-
tuned using the proposed SeleKT algo-
rithm on synthetic and real code edit-
ing tasks. For NoFunEval, we consider
instances with binary oracles to ensure
consistency with other benchmarks. We
present detailed results in Section 5.2.

Putting all of these together, (4) we construct a new se-
ries of models NextCoder, adapted from QwenCoder-2.5
instruct variants fine-tuned on 8 programming languages,
that achieves strong results on five code-editing bench-
marks. These benchmarks cover multiple programming
languages and test a variety of scenarios, including func-
tion, class or file level edits, code improvements, and
bug fixing. As shown in Figure 1, NextCoder-7B con-
sistently outperforms models of comparable size. On
several tasks, it even outperforms larger models such
as DeepSeekCoder-V2-16B, DeepSeekCoder-33B and
Llama-3-70B. We further show that (5) our approach gen-
eralizes to other model families by improving the code
editing performance of DeepSeekCoder-6.7B. To illus-
trate the robustness of our SeleKT approach, (6) we show
that unlike full fine-tuning (SFT), LoRA Hu et al. (2021)
or a model merging approach TIES (Yadav et al., 2024),
the performance of models fine-tuned using our method
does not degrade their code generation abilities. (7) We
demonstrate the effectiveness of our approach on different
model sizes by finetuning 3B, 14B, and 32B variants of
the QwenCoder-2.5 instruct model.

In summary, we make the following contributions:
1. Synthetic pipeline for diverse code-editing exam-
ples: We present a multi-stage pipeline and sample 127K
high-quality, diverse code editing examples (comprising
229M tokens), where the diversity comes from multiple
dimensions: (a) granularity of code, (b) types of code-editing requirements, (c) the style and verbosity
of natural language instructions, and (d) choice of programming language.
2. Robust adaptation algorithm: To prevent catastrophic forgetting due to fine-tuning, we propose
an algorithm, SeleKT, which only selectively updates model weights. We demonstrate that this helps
retain the code generation abilities after fine-tuning on code-editing data.
3. Strong code-editing models: We demonstrate significant improvements in code-editing perfor-
mance for models like QwenCoder-2.5 and DeepSeekCoder, showing that SeleKT outperforms full
and parameter-efficient finetuning methods across four code-editing benchmarks. Our NextCoder-7B
derived from Qwen2.5-Coder-7B, outperforms other models of comparable size and even matches
larger models across multiple tasks (Figure 1). On the popular Aider and Aider Polyglot benchmarks,
NextCoder-32B is SOTA against open-source models up to 236B parameters.

2 RELATED WORK

Language Models for Code Editing Language models of code demonstrate varying levels of profi-
ciency in following code-editing instructions, as measured by benchmarks such as CanItEdit Cassano
et al. (2023), NoFunEval Singhal et al. (2024), SWE-Bench Jimenez et al. (2023), Aider Gauthier
(2024a), CodeEditorBench Guo et al. (2024b), EditEval Hu et al. (2023), and RES-Q LaBash et al.
(2024). Prior research has explored ways to specialize language models for code editing. For
example, StarCoder (Li et al., 2023), OctoCoder (Muennighoff et al., 2023), and EditCoder (Cas-
sano et al., 2023) leverage git commits as part of their pre-training (Li et al., 2023) or fine-tuning
datasets (Muennighoff et al., 2023; Cassano et al., 2023) to enable models to edit source files based
on natural language commit messages. Similarly, StarCoder2 Lozhkov et al. (2024) incorporates

2

Published as a conference paper at ICLR 2025

Model

Seed Code

Problem and Source Code Gen Target-Code Gen Instructions Quality-Filtering

Function/Class/File

Aspects

Problem

Source Code

Metadata

Model

Target Code

Explanation

Model
Concise

Human

Conversational

Model Approved or Not

Detailed

Figure 2: Our synthetic data generation pipeline: The input to the pipeline is a seed code snippet,
modularities (function, class or file) which defines the scope of the output code and aspects to
improve up on (latency, resource utilization, runtime efficiency, maintainability, security, and general
improvements along with bug fixing). The output is a synthetic example, approved by the final quality
checker, consisting of problem statement, source code, target code, and instructions in different
styles and verbosity (detailed, concise, human-like, conversational).

GitHub issues, pull requests, and associated files containing code edits, potentially equipping the
model with code-editing capabilities during pre-training. SWE-Fixer (Xie et al., 2025) specializes
the Qwen2.5-72B model for code editing by fine-tuning it on GitHub issues. We focus on generating
synthetic data that samples diverse code edits and on robust adaptation of pre-trained models through
fine-tuning on such data.

Synthetic Generation of Coding Data Generating synthetic instruction-response pairs has become
a standard approach for post-training alignment of models to follow instructions Wei et al. (2024a);
Wang et al. (2023); Xu et al. (2023); Luo et al. (2023); Zhao et al. (2024); Li et al. (2024). These
methods have been extended to code LMs. For example, WizardCoder Luo et al. (2023) employs the
EvolInstruct framework Xu et al. (2023) to enhance the complexity of instructions in the CodeAlpaca
dataset Chaudhary (2023), creating a more challenging instruction-following dataset. The CodeAlpaca
dataset itself was synthetically generated using the Alpaca Taori et al. (2023) and Self-Instruct Wang
et al. (2023) pipelines. Both EvolInstruct and CodeAlpaca primarily focus on function-level coding
tasks, with limited coverage of code-editing problems.

A more recent class of methods condition the example generation process on seed-code derived from
real code files. Methods such as Self-CodeAlign Wei et al. (2024a), WaveCoder Yu et al. (2024),
and OSS-Instruct Wei et al. (2024b) belong to this category. These approaches significantly improve
task and instruction diversity by leveraging diverse seed codes. However, they remain untested for
generating file-level coding examples that include multiple classes or functions, and they do not
emphasize code-editing tasks. To the best of our knowledge, InstructCoder Hu et al. (2023) is the only
method explicitly designed to generate diverse synthetic data for code-editing tasks by conditioning
on seed examples. Nevertheless, the examples produced by the InstructCoder pipeline are limited
to short, function-level code snippets and are restricted to Python. In contrast, our method supports
the generation of both function/class-level and file-level code-editing examples across multiple task
categories and programming languages.

Overcoming Catastrophic Forgetting and Robust Finetuning We find that fine-tuning LMs
on code-editing examples worsen their performance on code-generation tasks, in line with the
catastrophic forgetting phenomenon Goodfellow et al. (2013); Kirkpatrick et al. (2017). Model-
merging Xiao et al. (2023); Morrison et al. (2024); Yadav et al. (2024) has recently emerged as a
method for learning new tasks while avoiding catastrophic forgetting of knowledge acquired during
pre-training. The sparse adaptation technique of Nguyen et al. (2024b) selects the parameters to be
fine-tuned based on the top-k components of the task vector, similar to our method. However, they do
this a priori, and then only fine-tune the selected parameters (i.e., sparse gradients only). In contrast,
our algorithm periodically re-assesses the parameters, and performs full fine-tuning of the entire
model (Dense Gradients step in Algorithm 1).

3 SYNTHESIZING A DIVERSE CODE EDITING DATASET

Git commits promise to be a readily available source of supervision for adapting models for file-level
code editing, as also explored by OctoCoder Muennighoff et al. (2023). However, in our preliminary
experiments (Table 6), we find that fine-tuning on source-target file pairs from CommitPackFT Muen-
nighoff et al. (2023), a dataset derived from GitHub commits, with commit messages as instructions,

3

Published as a conference paper at ICLR 2025

yields limited improvements in code editing. We attribute this to the generally limited quality and
diversity of data on GitHub and the lack of informative commit messages.

Language GPT-4o Llama-3.3-70B Total Tokens(M)
Python 8406 6963 15369 29.87

C 7039 10114 17153 33.48
C++ 6272 11065 17337 30.93
Java 6447 9881 16328 27.61
JS 7367 8663 16030 25.92

Rust 4701 11737 16438 30.43
Go 4503 10701 15204 28.56

Kotlin 3470 9802 13272 22.16
Total 48205 78926 127131 228.96

Table 1: Number of synthetic examples and tokens
generated per programming language and model.

Thus, in addition to using CommitPackFT as
a source of supervision, we propose a novel
method for generating high-quality code-editing
examples starting with real seed data from
GitHub using large and medium LMs, such as
GPT-4o and the instruct version of Llama-3.3-
70B. Our method provides greater diversity by
offering explicit control over varying levels of
granularity (function, class, and file-level code
edits), a wide range of code edit types (e.g., bug
fixing, latency and runtime improvements, ad-
dressing security vulnerabilities, optimizing re-
source utilization, and enhancing maintainability), diversity in programming languages, and varying
levels of instruction complexity (both concise and verbose, and single-turn as well as multi-turn style
conversations). Table 1 provides statistics of the code editing data generated using our method across
eight programming languages. We generate approximately 127K examples and 229M tokens, with
48K examples using GPT-4o. Figure 2 illustrates our data generation pipeline and Figure 9 shows an
example seed code passed through GPT-4o in our pipeline, which comprises four main components:
(i) Problem and Source Code Generation, (ii) Target Code Generation, (iii) Instruction Generation,
and (iv) Quality-Based Filtering. Each component is described below.

i) Problem and Source Code Generation The LLM used for synthetic-data generation is prompted
to generate the problem description and source code as solution, which is conditioned on required
code modularity (function-level/class-level/file-level) and the provided seed code sampled from the
StarCoder dataset Kocetkov et al. (2022); Li et al. (2023), where we sample only from files that have
more than 10 lines and contains logic like loop, functions, conditional statements or classes. The
generated source code contains flaws that align with the identified improvement areas (e.g., Bug
Fixing, Improving Latency, Optimizing Resource Utilization) in the prompt. Additionally, the LLM
generates metadata that outlines the specific flaws present in the code. Each instance of the synthetic
data is generated using a single seed code. The prompt used for this step is given in Figure 5.

ii) Target-Code Generation Next, we prompt the LLM to generate the target code conditioned on
the problem description, source code and the metadata produced in the previous step. We design this
prompt to also output an explanation of the edits made by the model to source code to obtain target
code. The prompt used for this step is given in Figure 6.

iii) Instruction Generation In the subsequent step, we prompt the LLM to generate code-editing
instructions using the source code, target code, and the editing explanation generated in previous
steps as input. A parameter in the prompt specifies whether the instruction should be in Concise,
Detailed, Human, or Conversational format. Concise instructions are high-level, often under-specified,
three-line descriptions that do not explicitly detail the required changes. Detailed instructions are
more verbose and provide specific information about the required changes, such as specifying the
exact function to be modified for improved runtime. Human instructions are very brief, informal,
and natural-language-based messages that are typically 1-2 sentences long and provide a high-level
overview of the necessary changes without going into technical detail (e.g., "Hey modify the given
code to improve its runtime"). Conversational instructions represent a user-assistant interaction in a
chat format, where the user sequentially specifies the required changes. Each instance therefore offers
four fine-tuning examples, one for each format. The prompt used for this step is given in Figure 7.

iv) Quality-based Filtering Finally, to ensure high quality of generated examples, we prompt the
LLM to verify whether the target file is a correctly edited version of the source file, consistent with
the instructions generated in the previous step. The model evaluates the instance by assigning a
score from 0 to 10 across five criteria: (1) Correctness of edits w.r.t. requested improvements (e.g.
latency), (2) adherence of the edits to the instructions, (3) code quality, (4) instruction quality, and
(5) the usefulness of the example for fine-tuning small models. An instance is deemed valid if its
average score is at least 7, and all individual scores exceed 5. The prompt used for this step is given
in Figure 8.

4

Published as a conference paper at ICLR 2025

4 ROBUST MODEL ADAPTATION

Pre-training LMs on large amounts of data followed by fine-tuning them on relatively smaller amounts
of data from downstream scenarios is now a standard practice. But naïve fine-tuning can result in
poor generalization performance.

The state-of-the-art code LMs such as DeepSeekCoder and Qwen already have gone through a
rigorous pipeline of pre-training and instruction-tuning, on vast amounts of code and text tokens
(as many as 5.5T tokens (Hui et al., 2024), in the case of Qwen-2.5). At the same time, these
pre-trained LMs find several code-editing scenarios challenging (as we show in Section 5.2). So, the
key question is how we can strike a good balance between task-specific (i.e., code editing scenarios)
performance and the generalization abilities of the pre-trained model (i.e., code comprehension,
instruction-following, code generation, etc.). In this section, we present our technique for robustly
adapting code LMs to diverse code editing tasks.

Robust Adaptation Problem Formally, we want to fine-tune a given code LM, denoted by θbase,
such that: (a) the resulting LM θFT, has improved code editing abilities, as determined by the training
loss on the data presented in the previous section, (b) while preserving the generalization abilities
of the base LM (as determined by the performance on real-world code benchmarks). The robust
adaptation problem Wortsman et al. (2022); Tian et al. (2023) can be posed as:

argmin
θ
L(θ) s.t. ∥θ − θbase∥ ≤ c , (1)

where L denotes the next-token prediction loss on train set, ∥ · ∥ is a suitable norm, and c is a constant.

Inadequacy of Existing Solutions State-of-the-art techniques for adaptation (robust or otherwise)
largely follow the parameter-efficient fine-tuning (PEFT) paradigm. That is, fine-tuning is localized to
a small fraction of the parameters of the base model. For instance, the widely-used LoRA technique
Hu et al. (2021) fine-tunes a small number of parameters added to the base LM, keeping the entirety
of the base LM frozen otherwise. More recent techniques carefully select the parameters to fine-tune,
e.g., a few layers Lee et al. (2023) or a few parameters across the layers Nguyen et al. (2024b). The
crux of these techniques seems to be that: (A1) focus on fine-tuning a small number of parameters to
avoid overfitting on a small amount of training data, and (A2) fix the parameters to be fine-tuned a
priori, before the training even begins. Although the design choice (A1) is reasonable and is arguably
prudent, we question the design choice (A2) of these techniques.

While recent robust adaptation techniques try to achieve the model accuracy-efficiency trade-off using
sparse gradients in their updates, the appeal for efficiency during fine-tuning seems to be at cross
with the desire to also achieve low generalization error and out-of-domain robustness. We show this
empirically in our experiments (Table 4); Hu et al. (2021) also observe that there is some degradation
in performance due to the choices made in LoRA.

Our key insights are simple:
(1) What parameters need to be fine-tuned for the task(s) at hand should be continuously re-assessed
conditioned on the difficulty of the downstream scenario as dictated by the fine-tuning data and the
training loss.
(2) (Dense Gradients) We can update all the model parameters to determine the direction of parameter
changes that best minimizes the training loss on the code editing tasks, unlike PEFT methods, and
then (Sparse Projection) compute a suitable projection to ensure that the parameters are guaranteed
to be close to the base model (Figure 3).

Proposed Solution To implement the two insights above, we choose the L0-norm in equation 1,
i.e., we want the updates to be localized to a small set of parameters of the base model. The L0-
norm makes the projection step computationally easy: we first compute dense gradients by doing
full fine-tuning of the model θ, and the compute the top-k non-zero entries (by magnitude) on the
(accumulated) gradient vector or the “task vector” θ − θbase. This also ensures that the parameter
selection is global and not confined to specific layers or other heuristics employed in earlier robust
fine-tuning strategies Lee et al. (2023). The resulting “selective knowledge transfer” problem is:

argmin
θ
L(θ) s.t. ∥θ − θbase∥0 ≤ c . (2)

5

Published as a conference paper at ICLR 2025

Base Model
θ

Finetune for
M steps

Checkpoint
θ

Checkpoint
θ

SeleKT Operation

 base M FT

...Finetune for

M steps

...

Figure 3: Proposed adaptive fine-tuning technique SeleKT.

Algorithm 1 SeleKT: Selective Knowledge Transfer
Require: Base LM weights θbase, training data D, epochs

E, periodicity M , sparsity α.
Ensure: Final fine-tuned weights θFT.

1: Initialize θ ← θbase.
2: for epoch e = 1 to E do
3: for each minibatch D[s] do
4: θ ← TrainStep(θ,D[s]) ▷ Dense Gradients
5: if s mod M = 0 then
6: Compute task vector: τ ← θ − θbase
7: Select top-αN parameters:

γ[i] =

{
1, i ∈ top-k(|τ |, ⌊α ·N⌋)
0, otherwise

8: θ ← θbase + γ ⊙ τ ▷ Sparse Projection
9: end if

10: end for
11: end for

Our algorithm, SeleKT, short for
Selective Knowledge Transfer, is pre-
sented in Algorithm 1. It is parameter-
ized by (i) sparsity α, or the fraction of
the total number of model parameters
N to be updated, and (ii) periodicity
M , or how often the projection step
needs to be performed.

Choice of Training Loss L in equa-
tion 2 We use cross-entropy loss
for next token prediction as the objec-
tive function in our experiments. For
examples formatted as (instruction, re-
sponse) pairs, we apply the loss on the
entire example. For examples format-
ted as multi-turn conversations (Sec-
tion 3), we apply the loss only to the
final response generated by the model
and not on the conversations.
Lemma 1. For any given base LM
θbase, and for the setting α = c/N ,
where N is the model size, the fine-
tuned model θFT satisfies the con-
straint in the objective equation 2.

The proof is straight-forward as (i)
in Step 6 of Algorithm 1, we always
compute the task vector with respect to the base model, (ii) the mask vector computed in Step 7
selects c coordinates. Together with the update in Step 8, the constraint is guaranteed to satisfy.
Remark 1 (Efficiency). While the projection step itself is straight-forward, computation of dense
gradients can be more expensive. The cost is mitigated to some extent by doing mini-batching and
restricting the total number of epochs to a few. We show in Sections 5.2 and 5.3 that the resulting
improvements in generalization accuracy are significant.
Remark 2 (Alternative Update). An alternative style of update in Algorithm 1 is to periodically
also update the base model, i.e. θbase ← θ after Step 8. So the future task vector (in Step 6) will be
computed w.r.t. the updated base model. This update style also guarantees that the final θFT will be
close to the base model in the L0-norm sense. To be precise, we can show, an albeit weak bound,
∥θFT− θbase∥0 ≤ c ·E · |{D[s]}|/M , where |{D[s]}| is the number of mini-batches, M is periodicity,
for a sufficiently small choice of α. We also find that this style (denoted by “Update θbase”) performs
worse empirically, from Table 2 (details of fine-tuning and benchmarks in Section 5.1).

5 EXPERIMENTS
Method HumanEvalFix CanItEdit Aider
Update θbase 79.5 48.0 55.6
Fix θbase 81.1 50.5 65.7

Table 2: Performance of SeleKT with and
without periodically updating the base model
QwenCoder-2.5-7B as in Remark 2.

We present the details of our experimental setup, fol-
lowed by a discussion of the main results and an
ablation study.

5.1 EXPERIMENTAL SETUP

Fine-tuning Dataset In addition to the synthetic data (Table 1), we used 127K instances from
CommitPackFT to fine-tune our models. CommitPackFT, restricted to the eight languages (Table 1),
consists of 153K real GitHub commits. We filtered out the examples from the dataset which do not
have source code (e.g., edits only to config files) to retain only code-editing instances (Table A.1).

Our Models and Baselines For fine-tuning, we consider the instruct versions of DeepSeekCoder-
6.7B Guo et al. (2024a) and Qwen2.5-Coder-7B Hui et al. (2024). To demonstrate effectiveness of our
approach across model sizes, we also fine-tuned the 3B, 14B, and 32B variants of the QwenCoder-2.5

6

Published as a conference paper at ICLR 2025

instruct model. We compare our fine-tuned models against models from DeepSeekCoder, Llama,
and Qwen families in the range 6.7B to 70B parameters. We also compare with GPT-4o (Hurst et al.,
2024) and the Qwen-7B distilled from the latest, reasoning-enhanced DeepSeek-R1 model (Guo et al.,
2025). For Aider Polyglot, we compare against leading models from their public leaderboard.

Hardware For fine-tuning and inference, we use 8 NVIDIA H100 GPUs, each with 80GB of VRAM.
For data generation using GPT-4o (version 2024-05-13), we use the OpenAI API. Fine-tuning takes
about six hours per epoch of wall-clock time. Following Singhal et al. (2024), we perform run-time
evaluations for NoFunEval on an Azure NC16 VM NC16.

Implementation We fine-tune for 3 epochs, across all our experiments, using AdamW opti-
mizer Loshchilov & Hutter (2017) with a learning rate of 10−5, and a WarmupLR scheduler Kim
et al. (2021) with a warmup ratio of 0.1. For efficient memory management, we use sample packing
with a maximum sequence length of 8192 tokens for DeepSeekCoder-6.7B and 16384 tokens for
QwenCoder variants. We initialize the models from their respective pre-trained checkpoints (instruct
versions), and fine-tune them on their respective chat templates HuggingFace (2025). Appendix A.1.2
provides additional implementation details.

Hyperparameters (i) We used a temperature of 0.6 for data generation for both Llama-3.3-70B and
GPT-4o. (ii) We fix the periodicity to 1 epoch in the SeleKT algorithm unless specified otherwise, i.e.,
M = total number of mini-batches. We set sparsity α = 0.05 per layer. We selected these values
based on initial experiments. In Section 5.5, we show ablations on these choices.

Evaluation Datasets and Metrics Table 3 presents the diverse datasets we use for evaluating our and
baseline models. Specifically, we use CanItEdit Cassano et al. (2023), HumanEvalFix Muennighoff
et al. (2023), NoFunEval Singhal et al. (2024), Aider Gauthier (2024a) and Aider Polyglot Gauthier
(2024b) to evaluate on code-editing tasks.

Benchmark Description Examples
CanItEdit Bug fixing (class-level) 210
HumanEvalFix Bug fixing (function-level) 164
NoFunEval Code improvements (file-level) 397
Aider Bug fixing (conversational, file-level) 133
Aider Polyglot Bug fixing (conversational, file-level) 225
HumanEval+ Code generation (function-level) 164
MBPP+ Code generation (function-level) 378

Table 3: Evaluation datasets: We use five
diverse code editing benchmarks with vary-
ing input granularity and code-editing criteria.
Additionally, we also evaluate on two code
generation tasks.

We choose these datasets to ensure diversity in terms
of (a) scale (class, function or file level), (b) require-
ments (functional improvements such as bug fixing
and non-functional improvements such as runtime
efficiency, etc.), (c) instruction details (terse vs. de-
tailed), and (d) scenarios (standard vs. chat-based).
Each dataset comes with its own metrics to automati-
cally evaluate the model outputs. While the common
metric is execution accuracy on test cases, the NoFu-
nEval benchmark also utilizes runtime improvements,
static analysis checks, and DiffBLEU scores Bairi et al. (2023) for evaluation. We also evaluate the
larger 14B and 32B model variants on Aider Polyglot benchmark Gauthier (2024b), TA: as shown in
Figure 4.

Additionally, we evaluate the models on standard code generation benchmarks, HumanEval+ and
MBPP+ Liu et al. (2023) (Table 3, rows 6–7), to measure the extent to which models fine-tuned for
code editing still retain their code generation and instruction following abilities. These benchmarks
require a model to complete a function given its signature and description. The evaluation metric is
execution accuracy on test cases. Appendix A.1.3 provides additional details on the benchmarks.

5.2 PERFORMANCE ON CODE-EDITING BENCHMARKS

Table 4 presents the main results of our experiments covering four well-known benchmarks for code
editing. We compare (i) our adapted models with existing language models for code (ii) SeleKT,
our adaptation method, with standard model adaptation methods like supervised fine-tuning (SFT),
LoRA Hu et al. (2021) and TIES Yadav et al. (2024). In Table 4, our SeleKT based adaptations
(DeepSeekCoder-6.7B-SeleKT and QwenCoder-2.5-7B-SeleKT) are highlighted in blue . Rows in
Table 4 highlighted in gray refer to various similarly sized models in the parameter range 6.7B to
8B. Our main observations can be summarized as follows.

i) SeleKT provides consistent gains over the original instruct models. For example,
DeepSeekCoder-6.7B-SeleKT outperforms DeepSeekCoder-6.7B on all tasks except the run-time im-
provement task in NoFunEval. Interestingly, on CanItEdit benchmark, DeepSeekCoder-6.7B-SeleKT

7

https://aider.chat/docs/leaderboards/
https://huggingface.co/datasets/nuprl/CanItEdit
https://huggingface.co/datasets/bigcode/humanevalpack
https://huggingface.co/datasets/ManavSinghal157/NoFunEval
https://aider.chat/docs/benchmarks.html#the-benchmark
https://aider.chat/docs/leaderboards/
https://huggingface.co/datasets/evalplus/humanevalplus
https://huggingface.co/datasets/evalplus/mbppplus

Published as a conference paper at ICLR 2025

Models NoFunEval HumanEvalFix Aider CanItEdit
Latency Res. Util. Runtime Eff. Maintain. Security

GPT-4o 45.6⋆ 39.3⋆ 3.389⋆ 57.6 55.1 90.2⋆ 74.4 59.5
Llama-3-70B-Inst 34.4 28.3 2.816 43.7 58.1 77.4 51.1 56.7
DeepSeekCoder-33B 30.0 24.0 2.589 38.0 53.9 74.4 58.6 49.5
DeepSeekCoder-V2-16B 23.6 21.4 2.274 37.5 54.7 72.0 48.1 42.8
QwenCoder-2.5-32B 42.1 36.9 3.006 64.0⋆ 58.6 90.2⋆ 75.2⋆ 60.9⋆
QwenCoder-2.5-14B 38.1 32.2 2.597 50.7 55.8 87.8 66.9 58.1
Llama-3-8B-Inst 22.5 18.7 1.255 20.6 55.1 56.7 39.8 29.0
DeepSeek-R1-Qwen-7B 14.4 8.8 1.185 9.6 41.2 67.7 13.5 33.3
DeepSeekCoder-6.7B 20.5 21.0 2.275 35.3 61.8 71.3 43.6 38.1
DeepSeekCoder-6.7B-LoRA 21.0 18.0 1.245 28.3 54.0 70.7 41.4 37.2
DeepSeekCoder-6.7B-SFT 22.4 15.0 1.359 23.8 57.2 65.2 30.8 41.4
DeepSeekCoder-6.7B-TIES 22.1 25.3 2.166 37.6 62.9 73.8 48.1 45.7
DeepSeekCoder-6.7B-SeleKT 24.8 22.0 2.150 40.0 63.6 76.0 47.1 49.6
QwenCoder-2.5-7B 26.5 24.7 2.190 39.3 58.7 73.8 59.4 48.1
QwenCoder-2.5-7B-LoRA 26.9 21.7 2.133 38.2 55.0 70.7 40.6 44.3
QwenCoder-2.5-7B-SFT 25.1 22.5 1.387 30.6 54.8 70.1 48.9 36.7
QwenCoder-2.5-7B-TIES 27.8 24.9 2.180 44.4 60.1 79.5 60.2 47.0
QwenCoder-2.5-7B-SeleKT (NextCoder) 26.4 23.2 2.286 46.1 65.3⋆ 81.1 65.7 50.5

Table 4: Performance of baseline and fine-tuned code LMs on code-editing benchmarks: The
numbers (the higher the better) denote score for NoFunEval, and % accuracy for all others. For
NoFunEval, we considered the scores for the best (Max) performing prompt. The rows shaded blue
are the models obtained using our approach; the rows shaded gray are baseline models of comparable
sizes. Best number in the comparable group is in bold, and overall best is indicated by star ⋆.

provides 11.5 point gains in accuracy over DeepSeekCoder-6.7B. Similarly, NextCoder-7B outper-
forms QwenCoder-2.5-7B on all tasks except for Latency and Resource Utilization in NoFunEval.
ii) SeleKT frequently outperforms the standard model adaptation methods. Surprisingly,

supervised fine-tuning of models like QwenCoder-2.5-7B frequently resulted in worse performance
across various benchmarks w.r.t. the original model (QwenCoder-2.5-7B-SFT vs QwenCoder-2.5-7B
in Table 4), indicating overfitting. To address this problem, we designed SeleKT (Section 4), for
robust model adaptation. We see that SeleKT outperforms parameter-efficient fine-tuning methods
like LoRA Hu et al. (2021) and model-merging methods like TIES Yadav et al. (2024), often used for
adapting models while limiting loss in prior knowledge (NextCoder-7B vs QwenCoder-2.5-7B-LoRA
vs QwenCoder-2.5-7B-TIES in Table 4).
iii) SeleKT provides best code-editing performance among models of its size. Baseline models

of comparable size include a reasoning based DeepSeek-R1-Qwen-7B Guo et al. (2025), Llama-3-8B-
Inst Dubey et al. (2024), DeepSeekCoder-6.7B Guo et al. (2024a) and its adaptations, QwenCoder-
2.5-7B Hui et al. (2024) and its adaptations. We observe that our model NextCoder-7B, has the best
overall performance across all models in this parameter range.
iv) Performance of adapted SeleKT models depends on the performance of their un-

adapted versions. We observe that QwenCoder-2.5-7B and NextCoder-7B generally outperform
DeepSeekCoder-6.7B and DeepSeekCoder-6.7B-SeleKT, respectively. This suggests that higher-
performing models lead to more accurate adaptations, even when model sizes are similar.
v) Comparison with larger models. Notably, NextCoder-7B matches or even surpasses larger
models on many tasks. For instance, it outperforms DeepSeekCoder-V2-16B on all tasks. Similarly,
NextCoder-7B clearly outperforms Llama-3-70B-Inst and DeepSeekCoder-33B on HumanEvalFix,
Aider, and the Maintainability and Security splits of NoFunEval. As expected, much stronger models
like GPT-4o and QwenCoder-2.5-32B substantially outperform smaller models.

In Appendix C, we present qualitative examples comparing the base model and our fine-tuned version.
We also show the effectiveness of SeleKT on different model sizes in Section A.2).

5.3 PRESERVING PRE-LEARNED KNOWLEDGE Models HumanEval+ MBPP+
DeepSeekCoder-6.7B 71.3 65.6
DeepSeekCoder-6.7B-LoRA 64.6 64.3
DeepSeekCoder-6.7B-SFT 70.1 59.5
DeepSeekCoder-6.7B-TIES 70.1 64.0
DeepSeekCoder-6.7B-SeleKT 73.2 65.3
QwenCoder-2.5-7B 85.4 72.5
QwenCoder-2.5-7B-LoRA 81.7 70.9
QwenCoder-2.5-7B-SFT 79.3 67.2
QwenCoder-2.5-7B-TIES 82.3 71.7
NextCoder-7B 84.8 72.0

Table 5: Comparing accuracy of base and fine-
tuned models on code gen. benchmarks.

The results in Table 5 show that our SeleKT method
largely preserves the code generation capabilities of
the original models, as evaluated on the HumanEval+
and MBPP+ Liu et al. (2023) benchmarks. For both
DeepSeekCoder-6.7B and Qwen2.5-Coder-7B, full
fine-tuning (SFT) and LoRA lead to performance
drops of up to 6.7 accuracy points. In contrast, model
merging using TIES helps mitigate these drops signifi-
cantly. Notably, our method consistently outperforms
TIES, further reducing performance degradation.

8

Published as a conference paper at ICLR 2025

5.4 EFFECTIVENESS OF SYNTHETIC DATA

Data HumanEvalFix CanItEdit Aider
CommitPackFT 59.8 37.6 21.1
Synthetic 68.3 41.4 33.8

Table 6: Comparison of synthetic data and CommitPackFT data when used for fine-tuning the
DeepSeekCoder-6.7B.

Table 6 compares the performance of
DeepSeekCoder-6.7B fine-tuned separately on CommitPackFT and on the synthetic data
generated by our pipeline. While synthetic data offers a performance advantage over Commit-
PackFT, the latter represents a high-quality sample of real-world developer commits. To enhance
generalizability, we incorporate both datasets in our fine-tuning process.

5.5 ABLATION OF CHOICES IN SELEKT

α HumanEvalFix CanItEdit Aider
0.05 81.1 50.5 65.7
0.2 76.8 45.7 53.4
0.5 81.7 43.3 54.9

Table 7: Ablation of sparsity factor in SeleKT used
with Qwen2.5-Coder-7B.

Effectiveness of Sparsity To investigate the
impact of sparsity parameter α in the SeleKT
algorithm, we fine-tune the Qwen2.5-Coder-7B
model with different α values: 0.05, 0.2, and 0.5.
We fix the periodicity M to the epoch boundary
which is our default setting, and the number of
epochs to 3. As seen in Table 7, with α = 0.05
(most sparse, selecting only 5% of parameters to
be updated), the model achieves the best overall
performance. This is in agreement with our motivation that the updates remain tightly close to the
base model in the L0 sense to avoid overfitting, while selecting the parameters to be updated globally
and periodically.

M HumanEvalFix CanItEdit Aider
0.1 Epoch 80.5 37.1 51.1
0.5 Epoch 83.5 50.4 59.4
1.0 Epoch 81.1 50.5 65.7
At the end 84.2 50.0 53.2

Table 8: Performance comparison for different val-
ues of M in SeleKT using Qwen2.5-Coder-7B.

Effectiveness of Periodicity To examine the
impact of the periodicity parameter M in Se-
leKT, we fine-tune Qwen2.5-Coder-7B using dif-
ferent values of M (0.1, 0.5, and 1.0 times the
number of mini-batches in an epoch) while keep-
ing the sparsity parameter α = 0.05. Addition-
ally, we compare against a baseline that follows
full fine-tuning (without sparse updates) but ap-
plies a single SeleKT operation at the end, mim-
icking model merging techniques. As shown in
Table 8, aligning periodicity with epoch boundaries yields the best results for CanItEdit and Aider,
whereas lower periodicity leads to worse performance. Performing a single SeleKT operation at the
end, similar to model merging, achieves the high accuracy only on HumanEvalFix. These findings
indicate that sparse updates are essential for robust fine-tuning, but excessive frequency may not be
beneficial.

6 CONCLUSIONS

The ability of code LMs to accurately edit code at different scales and based on diverse instructions
is central to their use in software engineering. In this paper, we present the next step in enhancing
the code-editing ability of code LMs by developing a synthetic data pipeline and a robust adaptation
algorithm SeleKT. Our pipeline produces diverse data that improves model performance and the
adaptation algorithm ensures that the general, pre-learned abilities of the models are not lost during
fine-tuning. We comprehensively evaluate our method on multiple code editing and generation
benchmarks to establish these claims. In future, we want to extend our pipeline to cover more
scenarios and evaluate SeleKT in tasks other than code-editing.

9

Published as a conference paper at ICLR 2025

REFERENCES

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms
and planning, 2023.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Anton Lozhkov, Car-
olyn Jane Anderson, and Arjun Guha. Can it edit? evaluating the ability of large language models
to follow code editing instructions. In The First International Workshop on Large Language Model
for Code, 2023. URL https://arxiv.org/abs/2312.12450.

Sahil Chaudhary. Code alpaca. GitHub - sahil280114/codealpaca — github.com. https://
github.com/sahil280114/codealpaca, 2023. [Accessed 21-01-2025].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Paul Gauthier. GPT code editing benchmarks — aider.chat. https://aider.chat/docs/
benchmarks.html#the-benchmark, 2024a. [Accessed 21-01-2025].

Paul Gauthier. GPT code editing benchmarks — aider.chat. https://aider.chat/docs/
leaderboards/#polyglot-leaderboard, 2024b. [Accessed 28-01-2025].

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma, Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi
Li, Ruibo Liu, Yue Wang, et al. Codeeditorbench: Evaluating code editing capability of large
language models. arXiv preprint arXiv:2404.03543, 2024b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Qisheng Hu, Kaixin Li, Xu Zhao, Yuxi Xie, Tiedong Liu, Hui Chen, Qizhe Xie, and Junxian He.
Instructcoder: Empowering language models for code editing, 2023.

HuggingFace. Chat Templates — huggingface.co. https://huggingface.co/docs/
transformers/main/en/chat_templating, 2025. [Accessed 30-01-2025].

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2023.

Chiheon Kim, Saehoon Kim, Jongmin Kim, Donghoon Lee, and Sungwoong Kim. Automated
learning rate scheduler for large-batch training, 2021. URL https://arxiv.org/abs/
2107.05855.

10

https://arxiv.org/abs/2312.12450
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://aider.chat/docs/benchmarks.html#the-benchmark
https://aider.chat/docs/benchmarks.html#the-benchmark
https://aider.chat/docs/leaderboards/#polyglot-leaderboard
https://aider.chat/docs/leaderboards/#polyglot-leaderboard
https://huggingface.co/docs/transformers/main/en/chat_templating
https://huggingface.co/docs/transformers/main/en/chat_templating
https://arxiv.org/abs/2107.05855
https://arxiv.org/abs/2107.05855

Published as a conference paper at ICLR 2025

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The Stack: 3 TB of permissively licensed source code, 2022. _eprint:
2211.15533.

Beck LaBash, August Rosedale, Alex Reents, Lucas Negritto, and Colin Wiel. Res-q: Evaluating
code-editing large language model systems at the repository scale, 2024.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. Surgical fine-tuning improves adaptation to distribution shifts. In The Eleventh International
Conference on Learning Representations, 2023.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang, Shao-
han Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data (almost) from
scratch: Generalized instruction tuning for language models. arXiv preprint arXiv:2402.13064,
2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Jacob Morrison, Noah A Smith, Hannaneh Hajishirzi, Pang Wei Koh, Jesse Dodge, and Pradeep
Dasigi. Merge to learn: Efficiently adding skills to language models with model merging. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 15604–15621, 2024.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models, 2023.

NC16. Standard_NC16as_T4_v3 Azure VM. https://learn.microsoft.com/en-us/
azure/virtual-machines/nct4-v3-series.

Bac Nguyen, Stefan Uhlich, Fabien Cardinaux, Lukas Mauch, Marzieh Edraki, and Aaron Courville.
Saft: Towards out-of-distribution generalization in fine-tuning, 2024a. URL https://arxiv.
org/abs/2407.03036.

Bac Nguyen, Stefan Uhlich, Fabien Cardinaux, Lukas Mauch, Marzieh Edraki, and Aaron C Courville.
Saft: Towards out-of-distribution generalization in fine-tuning. CoRR, 2024b.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

11

https://learn.microsoft.com/en-us/azure/virtual-machines/nct4-v3-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nct4-v3-series
https://arxiv.org/abs/2407.03036
https://arxiv.org/abs/2407.03036
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054

Published as a conference paper at ICLR 2025

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and Aditya Kanade.
Nofuneval: Funny how code lms falter on requirements beyond functional correctness. arXiv
preprint arXiv:2401.15963, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Junjiao Tian, Zecheng He, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu, and Zsolt Kira. Trainable
projected gradient method for robust fine-tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7836–7845, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
for code generation, 2024a. URL https://arxiv.org/abs/2410.24198.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct, 2024b. URL https://arxiv.org/abs/2312.02120.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xingrun Xing. Lm-cocktail: Resilient tuning of language
models via model merging. arXiv preprint arXiv:2311.13534, 2023.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023. URL
https://arxiv.org/abs/2304.12244.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. WaveCoder: Widespread and versatile enhancement for code large language models
by instruction tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 5140–5153, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.280. URL https://aclanthology.org/2024.acl-long.
280/.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Graham Neubig, and Tongshuang Wu. Self-guide:
Better task-specific instruction following via self-synthetic finetuning. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=Dt6qXZsgaU.

12

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2023.acl-long.754/
https://arxiv.org/abs/2410.24198
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2304.12244
https://aclanthology.org/2024.acl-long.280/
https://aclanthology.org/2024.acl-long.280/
https://openreview.net/forum?id=Dt6qXZsgaU

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL DETAILS

A.1.1 FINE-TUNING DATASET

Language Instances Tokens(M)
Python 42094 9.50

C 6854 1.50
C++ 3816 0.90
Java 13443 3.25
JS 51704 11.60

Rust 2316 0.51
Go 4950 1.08

Kotlin 1819 0.44
Total 126996 28.78

Table A.1: Number of instances from CommitPackFT after filtration.

For CommitPackFT, we retain only those examples that contain both source and target code for
the code-editing task (see Table A.1). The initial dataset consists of 153K instances across eight
languages, and after filtration, 127K instances remain.

A.1.2 TRAINING SETUP

SFT We finetuned DeepSeekCoder-6.7B model on 4xH100 GPUs and Qwen2.5-Coder-7B model
on 8xH100 GPUs. For efficient memory management, we employed sample packing to a maximum
sequence length of 8192 tokens for DeepSeekCoder-6.7B and 16384 tokens for Qwen2.5-Coder-7B,
with batch sizes of 4 and 1 per GPU, respectively. Gradient accumulation steps were set to 4, resulting
in respective effective batch sizes of 64 and 32. Additionally, DeepSpeed’s ZeRO Stage 3 Rajbhandari
et al. (2020) offloading to CPU, using bfloat16 for memory optimizations, was applied to both models.

LoRA The Qwen2.5-Coder-7B model was fine-tuned using LoRA Hu et al. (2021), with a rank of
64 applied to all linear layers of the base model. The LoRA hyperparameters included an α value of
16 and a dropout rate of 0.05, without training the bias term. Batch size remained the same as in the
SFT setup.

SeleKT The models were fine-tuned on 8xH100 GPUs. Sample packing, batch sizes and gradient
accumulation steps were configured as reported for SFT. The samples were packed into a maximum
sequence length of 8192 tokens for Deepseek and 16384 tokens for Qwen, with gradient accumulation
steps of 4 and an effective batch size of 128 for Deepseek and 32 for Qwen. DeepSpeed’s ZeRO Stage
2 offloading to CPU was used for both models with the bfloat16 data type for memory optimization.
Additionally, the SeleKT algorithm was deployed with a sparsity factor of α = 0.05 and a periodicity
factor M set to the epoch boundary.

TIES For the TIES variant of both DeepSeekCoder-6.7b and Qwen2.5-Coder-7b, we performed
model merging by integrating the final third checkpoint into their respective base models. The
merging process was conducted with both density and weight parameters set to 0.5, without applying
normalization or int8 quantization.

A.1.3 BENCHMARKS

We compared all the models on the following well-established benchmarks for code-editing (Table 3).

CanItEdit Cassano et al. (2023) benchmark measures class and function-level code editing abilities of
language models in Python for domains like Data Science, Mathematics, and Language Processing.
Each problem instance is accompanied with descriptive (verbose) and lazy (terse) instructions, and
correctness of edits is measured using execution accuracy over test cases. For this benchmark, we
used a temperature of 0.2, top_p 0.95 and reported pass@1,1 scores.

13

Published as a conference paper at ICLR 2025

NoFunEval Singhal et al. (2024) benchmarks language models for their ability to edit file-level
code in multiple programming languages based on non-functional requirements such as improving
latency, resource utilization, security, and maintainability of existing code. Each problem instance
is associated with four different types of prompts. Correctness of edits is measured using run-time
improvements, static-analysis based tools like CodeQL, or DiffBLEU scores, depending upon the
non-functional requirement. We used greedy sampling for this benchmark and reported pass@1,1
scores.

Aider code-editing benchmark Gauthier (2024a) offers 133 small coding exercises in Python from
Exercism dataset requiring an LM to edit python file for implementing a function or class as per
natural language instructions. For this benchmark, we used a temperature of 0 and a whole-format
setup (prompting the model to rewrite the entire code) and reported pass@2 scores.

HumanEvalFix benchmark Muennighoff et al. (2023) evaluates models on the bug-fixing task, where
models are given a code snippet along with an instruction to fix the code. We used a temperature of
0.2, top_p 0.95 and reported pass@1,1 scores for this task.

We also evaluate the models on standard code generation benchmarks.

HumanEval+ benchmark Liu et al. (2023) tests the models’ performance in generating correct
code based on textual descriptions with high-quality test cases. We used greedy sampling for this
benchmark and reported pass@1,1 scores.

MBPP+ benchmark Liu et al. (2023) focuses on evaluating the models’ ability to solve programming
tasks that require mathematical reasoning and algorithmic thinking. We used greedy sampling for
this benchmark and reported pass@1,1 scores.

A.2 EFFECTIVENESS OF SELEKT ON DIFFERENT MODEL SIZES

Models HumanEvalFix CanItEdit Aider Aider Polyglot
QwenCoder-2.5-3B 73.2 37.1 36.8 -
QwenCoder-2.5-3B-LoRA 64.6 36.2 35.8 -
QwenCoder-2.5-3B-SFT 76.2 32.4 30.1 -
NextCoder-3B 75.6 42.4 37.6 -
QwenCoder-2.5-14B 87.8 58.1 66.9 9.3
QwenCoder-2.5-14B-LoRA 78.0 50.9 66.2 5.3
QwenCoder-2.5-14B-SFT 79.9 42.4 36.8 3.1
NextCoder-14B 89.8 60.2 72.2 12.2
QwenCoder-2.5-32B 90.2 61.0 72.9 16.4
QwenCoder-2.5-32B-LoRA 82.3 52.4 60.2 6.7
QwenCoder-2.5-32B-SFT 81.7 49.5 66.9 8.4
NextCoder-32B 88.9 62.4 74.7 21.9

Table A.2: Comparison of base QwenCoder-2.5 models of different sizes and their SeleKT-enhanced
versions across three code editing benchmarks.

Table A.2 demonstrates the performance of our SeleKT algorithm across various model sizes, includ-
ing multilingual capabilities measured by the Aider Polyglot benchmark. For the smaller 3B model,
NextCoder-3B shows significant improvements over the base model across most benchmarks, with a
substantial gain on the CanItEdit benchmark (+5.3%). Notably, while the QwenCoder-2.5-3B-SFT
achieves slightly better performance on HumanEvalFix, our approach excels on other benchmarks. At
the 14B scale, NextCoder-14B consistently outperforms all baseline variants, achieving gains across
all four benchmarks, with particularly impressive improvements on the Aider Polyglot benchmark
(+2.9% over base model). For the largest 32B model, while there is a slight decrease in HumanEvalFix
performance compared to the base model (-1.3%), NextCoder-32B achieves the highest scores across
all other benchmarks, with a remarkable improvement on Aider Polyglot (+5.5%). These results
demonstrate that our training approach provides consistent gains across model sizes.

14

Published as a conference paper at ICLR 2025

A.3 PERFORMANCE ON AIDER AND AIDER POLYGLOT BENCHMARKS

Figure 4: Performance of state-of-the-art code LMs on Aider and Aider Polyglot benchmarks.
NextCoder-x is our code-editing model with Qwen2.5-Coder-x as the base, fine-tuned using the
proposed SeleKT algorithm on synthetic and real code editing tasks. Baseline scores are sourced
from the official leaderboard (Gauthier, 2024b).

Evaluating code-editing models requires benchmarks that assess both general coding capabilities
and multi-language proficiency. The Aider Polyglot benchmark has gained prominence for evaluating
multilingual coding capabilities, featuring 225 exercises specifically selected as the most challenging
problems from Exercism across multiple programming languages.

NextCoder models demonstrate impressive performance on both Aider and Aider Polyglot bench-
marks compared to state-of-the-art code LMs (Figure 4). NextCoder-32B scores 74.7% on Aider,
outperforming 71.4% of GPT-4o (2024-11-20) and approaching top models like Gemini-exp-1206
(80.5%). It also achieves 21.9% on Aider Polyglot against GPT-4o’s 18.2%. Similarly, NextCoder-
14B matches Deepseek-V2.5 on Aider (72.2%) despite having orders of magnitude fewer parameters.
These results demonstrate that our training pipeline helps smaller, more efficient models to compete
with much larger, more resource-intensive alternatives. The Aider Polyglot benchmark results further
validate our approach, with all NextCoder models achieving relative performance advantages over
comparably sized alternatives. While we demonstrate clear benefits in Aider Polyglot, the generally
lower scores on this benchmark across all models reflect the benchmark’s inherent difficulty with
multi-language challenges. This suggests scope for improvement and line of investigation for our
future work.

A.4 GENERALIZATION OF SELEKT ALGORITHM

This research aims to enhance code-editing capabilities while preserving pre-learned code generation
skills. Our synthetic data generation approach for finetuning (Section 3) reflects specific design
choices optimized for code-editing tasks. Given the significant role of coding models in contemporary
AI, our results demonstrate SeleKT’s substantial potential in this domain. We have deliberately
limited our claims regarding SeleKT’s generalizability beyond our demonstrated results. In the
future work, we will explore SeleKT’s applicability to additional domains, including mathematical
reasoning and natural language tasks.

15

Published as a conference paper at ICLR 2025

A.5 PROMPTS

You are an expert programmer tasked with creating a programming problem and corresponding code based on a given seed code. Your task is to
understand the concepts and patterns in the seed code and create an inspired but different problem with intentionally imperfect code.

CONTEXT:
- Modular Level: {level} (This defines whether you should create a function-level, class-level, or file-level solution)
- Improvement Areas Needed:
 {area1_name}: {area1_desc}
 {area2_name}: {area2_desc}
 {area3_name}: {area3_desc}

 The solution should have deficiencies in these specified areas that can be improved later

Follow these steps:
1. Carefully analyze the given seed code to understand its core concepts and patterns.
2. Create a NEW programming problem that is inspired by these concepts but is not a direct copy.
3. Write a code solution that:
 - Matches the specified modular level
 - Takes inspiration from the seed code but creates a different implementation
 - Contains natural imperfections and inconsistencies
 - Implements core functionality but with flaws
 - May have unimplemented critical sections or clear bugs
 - Mixes different approaches to solving similar problems
 - Looks like code written by someone learning or in a hurry

The code should feel authentic - like something found in a real codebase with organic issues. Do not include comments about potential
improvements or issues. The code should work for basic cases but have natural flaws in its implementation.

IMPORTANT NOTE: Do not add comments pointing out issues or suggesting improvements. The code should stand on its own with its natural
imperfections.

Your output MUST strictly follow this format using the exact delimiters:

###PROBLEM_STATEMENT###
Write a clear, detailed problem statement describing what the code should accomplish.
The problem should be non-trivial and require a substantial solution.
###END_PROBLEM_STATEMENT###

###ORIGINAL_CODE###
Provide the code solution here, including comments.
The code should be functional but contain intentional deficiencies in the specified areas.
###END_ORIGINAL_CODE###

###METADATA###
MODULAR_LEVEL: {level}-level
LANGUAGE: {lang}

IMPROVEMENT_AREA_1: [name of the first improvement area]
LINES: [specific line numbers where improvements can be made, comma-separated or ranges e.g., 1,3,5-8]
DESCRIPTION: [detailed description of what deficiencies exist and how they could be improved]
TYPE: [specific type of issue within this improvement area]

IMPROVEMENT_AREA_2: [name of the second improvement area]
LINES: [affected line numbers]
DESCRIPTION: [detailed description of deficiencies]
TYPE: [specific type of issue]

IMPROVEMENT_AREA_3: [name of the third improvement area]
LINES: [affected line numbers]
DESCRIPTION: [detailed description of deficiencies]
TYPE: [specific type of issue]
###END_METADATA###

IMPORTANT:
- The code should be functional but intentionally suboptimal in the specified improvement areas
- Include comments in the code to help understand the logic
- Do not create trivial problems; ensure the solution has sufficient complexity
- Ensure deficiencies are realistic and improvable
- Follow the exact delimiter format - do not modify the delimiter strings
- Do not include any text outside the delimited sections

Here's the seed code to inspire your problem and solution:

```{lang}
{seed_code}
```

Figure 5: Prompt used for generating a problem and source code conditioned on the given seed code.

16

Published as a conference paper at ICLR 2025

You are an expert programmer tasked with generating three different corrected versions of a code that has specific issues identified in the
metadata. Based on the original improvement areas requested and the issues found, you will generate:
- An improved solution that implement the improvements

Solution should specifically address the improvements requested in the original improvement areas while fixing the issues identified in the
metadata.

CONTEXT:
Problem Statement:
{problem}

Original Code:
```{lang}
{code}
```

Requested Improvement Areas:
{area1_name}: {area1_desc}
{area2_name}: {area2_desc}
{area3_name}: {area3_desc}

Identified Issues (Metadata):
{metadata}

Your task is to generate:
An improved solution that:
 - Fix all identified issues from metadata
 - Follow best coding practices
 - Implement proper error handling
 - Use efficient and maintainable approaches
 - Include clear comments explaining the improvements
 - Include all necessary imports
 - May use good implementation strategies

Your output MUST strictly follow this format using the exact delimiters:

###IMPROVED_SOLUTION_1###
All imports here
[First version of the improved code with detailed comments explaining improvements]
###END_IMPROVED_SOLUTION_1###

###DIFFERENCES_EXPLAINED###
IMPROVED:
[Brief description of the approach and key improvements]

IMPORTANT:
- Solution must be fully functional
- Include descriptive comments explaining the implementation and improvements
- Solution should include ALL required imports
- Solution should be complete and standalone
- Maintain the same interface/API as the original code

Figure 6: Prompt used for generating the target code (improved code).

17

Published as a conference paper at ICLR 2025

You are an expert prompt engineer tasked with generating three different types of instructions that guide an LLM to transform the original code
into the improved version. Use the provided context to generate detailed, human-like, and conversational instructions.

CONTEXT:
Problem Statement:
{problem}

Original Code:
```{lang}
{code}
```

Target Improved Version:
```{lang}
{edited_code}
```

Key Improvements Made:
{explanations}
Generate four different instruction formats and Your output MUST strictly follow this format using the exact delimiters:

###DETAILED_INSTRUCTION###
[Generate a detailed instruction (not exceeding 8-10 lines) that:
- Clearly outlines each improvement needed
- Specifies exactly what changes are required
- Mentions specific functions/areas to modify
- Maintains clarity while being concise
Should provide enough detail for LLM to understand the required changes.]
###END_DETAILED_INSTRUCTION###

###CONCISE_INSTRUCTION###
[Generate a concise instruction (3-4 lines) that:
- Contains essential improvement points
- Covers all necessary changes
- Is clear but not overly detailed
Should provide just enough information to guide the changes.]
###END_CONCISE_INSTRUCTION###

###HUMAN_INSTRUCTION###
[Generate a very brief, human-like instruction that:
- Uses natural language
- Is concise (1-2 lines max)
- Captures core improvements needed
- Sounds like a quick dev chat message]
###END_HUMAN_INSTRUCTION###

###CONVERSATIONAL_INSTRUCTION###
[Generate a natural conversation between user and assistant that follows this flow:

USER: [General opening that naturally leads into code discussion]
ASSISTANT: [Engaging response following the user's direction]

USER: [Introduces the problem and initial code structure, showing interest in getting it right]
ASSISTANT: [Detailed acknowledgment and analysis of the problem/structure]

USER: Here's my current implementation: <code_placeholder> [Don't add the code just put the same place holder there]
ASSISTANT: [Provides clear explanation of code's current structure and functionality]

USER: [Final message containing:
- Moderate level of detail about required changes (between human and detailed)
- Clear instructions about what needs to be improved
- Reference to specific improvements needed
- Natural tone while being specific enough]]
ASSISTANT: [Brief acknowledgment of the requirements and indication that implementation will follow, followed by a
<code_output_placeholder>]
###END_CONVERSATIONAL_INSTRUCTION###

IMPORTANT:
- Each instruction type should guide towards the same end result
- Instructions should be clear and unambiguous
- Maintain natural language appropriate to each format
- Do not include actual code changes in the instructions
- Use the target improved version and key improvements as guide, but don't reference them directly in instructions
- Keep focus on what changes are needed, not how they were implemented

Figure 7: Prompt used for generating different types of instructions.

18

Published as a conference paper at ICLR 2025

You are a quality assurance expert tasked with validating a training sample for code editing. Analyze the following components and provide a
comprehensive assessment:

COMPONENTS TO ANALYZE:
Seed Code:
```{lang}
{seed_code}
```
Generated Data:
Problem Statement: {problem}

Original Code:
```{lang} 
{original_code}
```
Improved Edit:
```{lang}
{improved_edit}
```
Instructions:
- Detailed: {detailed_instruction}
- Human: {human_instruction}
- Conversational:
{conversational_instruction}

Perform the following quality checks and provide scores (0-10) with explanations and Your output MUST strictly follow this format using the
exact delimiters::
###COHERENCE_CHECK###
1. Original-Edit Alignment:
 - Do edits properly address the code's issues?
 - Are improvements meaningful and substantial?
 - Do changes align with requested improvement areas?
Score: [0-10]
Explanation: [Brief analysis]

2. Edit-Instructions Alignment:
 - Do instructions clearly guide towards the implemented changes?
 - Are all significant changes covered in instructions?
 - Is the instruction complexity appropriate for each format?
Score: [0-10]
Explanation: [Brief analysis]
###END_COHERENCE_CHECK###

###QUALITY_CHECK###
1. Code Quality:
 - Original code deficiencies: Are they realistic and fixable?
 - Edit improvements: Are they meaningful and well-implemented?
 - Code structure: Is it clear and maintainable?
Score: [0-10]
Explanation: [Brief analysis]

2. Instruction Quality:
 - Detailed: Clear, specific, and comprehensive?
 - Human: Natural, concise, and effective?
 - Conversational: Logical flow and clear final request?
Score: [0-10]
Explanation: [Brief analysis]

3. Training Value:
 - Will this help SLM learn code editing?
 - Are the examples diverse and meaningful?
 - Is complexity appropriate for training?
Score: [0-10]
Explanation: [Brief analysis]
###END_QUALITY_CHECK###

###FINAL_VERDICT###
Strengths:
- [List key strengths]
Weaknesses:
- [List areas needing improvement]
Recommendations:
- [Specific suggestions if any improvements needed]
###END_FINAL_VERDICT###

Figure 8: Prompt used for assessing the quality of the data generated.

B INSTANCE GENERATED FROM OUR DATA PIPELINE

We present a synthetic data instance generated using our pipeline in Figure 9.

19

Published as a conference paper at ICLR 2025

Model

Model

Model

Add checks for transaction
structure and positive amounts.
Initialize balances only if
missing and skip invalid
transactions ...

<filename>eth2/beacon/chains/base.py

Validate transactions for
correct structure and positive
amount. Initialize user balances
if missing ...

from abc import abstractmethod,
import logging
 ...
class BeaconChain(BaseBeaconChain):
 ...
 def __init__(self, base_db: BaseAtomicDB) :
 ...
 @classmethod
 def get_chaindb_class(cls):
 ...
 @classmethod
 def from_genesis(cls,
 base_db: BaseAtomicDB,
 genesis_state: BeaconState,
 genesis_block: BaseBeaconBlock):
 ...

 def get_block_class(self, block_root:
Hash32):
 ...
 def get_canonical_head(self):
 ... USER: Hey, I've been working

on a function to process user
transactions and update
balances. Could use some help
refining it.
ASSISTANT: Sure, I’d be happy
to help! What specifically are
you looking to improve?
USER: I have a function that ...

Create a function
`process_transactions` that takes a
list of transactions and processes
them to update user balances. Each
transaction is a dictionary
containing a `from_user`, `to_user`,
and `amount`...

user_balances = {}
def
process_transactions(transactions):
 failed_transactions = []
 for transaction in transactions:
 from_user =
transaction['from_user']
 ...
 if from_user not in
user_balances:
 user_balances[from_user] = 0
 if to_user not in user_balances:
 user_balances[to_user] = 0
 ...
 return failed_transactions

user_balances = {}
def process_transactions(transactions):
 failed_transactions = []
 for transaction in transactions:
 if not isinstance(transaction, dict) or
'from_user' not in transaction or 'to_user' not
in transaction or 'amount' not in transaction:

failed_transactions.append(transaction)
 continue
 from_user = transaction['from_user']
 ...
 if not isinstance(amount, (int, float)) or
amount <= 0:

failed_transactions.append(transaction)
 continue
 if from_user not in user_balances:
 user_balances[from_user] = 0
 ...
 return failed_transactions

'Bug Fixes': 'Code should have
multiple layers of significant issues
including:
 - Completely unimplemented
critical functions
'Performance': 'Code has inefficient
algorithms, unnecessary loops,
redundant computations, or poor
data structure choices that impact
execution speed' ...

This solution initializes user balances within
the transaction processing loop only when
necessary, and it validates each transaction
for correct structure and positive amount.
This avoids redundant checks and ensures
the integrity of the data.

Target Code

Explanation

Concise

Human

Conversational

Model

APPROVED

SeedCode

Filename

Problem

Source Code

Metadata

To improve the
`process_transactions`
function, follow these steps:
1. Add validation to ensure each
transaction is a dictionary with
'from_user', 'to_user', and
'amount' keys.
2. Check that the 'amount' is a
positive number ...

Detailed

Figure 9: Figure showing an example passed through the data generation pipeline for GPT-4o.

20

Published as a conference paper at ICLR 2025

C EXAMPLES SHOWING THE QUALITY OF OUR MODEL OUTPUTS

Instruction: In word search puzzles you get a square of letters and have to find specific words in them.
For example:
```text
jefblpepre
camdcimgtc
oivokprjsm
pbwasqroua
rixilelhrs
wolcqlirpc
screeaumgr
alxhpburyi
jalaycalmp
clojurermt
```
There are several programming languages hidden in the above square.
Words can be hidden in all kinds of directions: left-to-right, right-to-left, vertical and diagonal.
Given a puzzle and a list of words return the location of the first and last letter of each word.

Input Code:
class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __eq__(self, other):
 return self.x == other.x and self.y == other.y

class WordSearch:
 def __init__(self, puzzle):
 self.puzzle = puzzle
 self.rows = len(puzzle)
 self.cols = len(puzzle[0])

 def search(self, word):
 directions = [
 (0, 1), # left-to-right
 (0, -1), # right-to-left
 (1, 0), # top-to-bottom
 (-1, 0), # bottom-to-top
 (1, 1), # top-left to bottom-right
 (-1, -1),# bottom-right to top-left
 (1, -1), # top-right to bottom-left
 (-1, 1) # bottom-left to top-right
]

 for row in range(self.rows):
 for col in range(self.cols):
 for dx, dy in directions:
 if self._search_from(row, col, word, dx, dy):
 return (Point(col, row), Point(col + (len(word) - 1) * dx, row + (len(word) - 1) * dy))
 return None

 def _search_from(self, row, col, word, dx, dy):
 for i in range(len(word)):
 if row < 0 or row >= self.rows or col < 0 or col >= self.cols:
 return False
 if self.puzzle[row][col] != word[i]:
 return False
 row += dx
 col += dy
 return True

Qwen Output:
class Point:
 ...
class WordSearch:
 def __init__(self, puzzle):
 ...

 def search(self, word):
 ...

 for row in range(self.rows):
 for col in range(self.cols):
 for dx, dy in directions:
 if self._search_from(row, col, word, dx, dy):
 return (Point(col, row), Point(col + (len(word) - 1) * dx, row + (len(word) - 1) * dy))
 return None

 def _search_from(self, row, col, word, dx, dy):
 for i in range(len(word)):
 if row < 0 or row >= self.rows or col < 0 or col >= self.cols:
 return False
 if self.puzzle[row][col] != word[i]:
 return False
 row += dx
 col += dy
 return True

NextCoder Output:
class Point:
 ...

class WordSearch:
 def __init__(self, puzzle):
 ...

 def search(self, word):
 ...
 for direction in directions:
 for i in range(self.rows):
 for j in range(self.cols):
 if self._search_from_point(word, i, j, direction):
 return (Point(j, i), Point(j + (len(word) - 1) * direction[0], i + (len(word) - 1) * direction[1]))
 return None

 def _search_from_point(self, word, start_row, start_col, direction):
 for k in range(len(word)):
 row = start_row + k * direction[1]
 col = start_col + k * direction[0]
 if row < 0 or row >= self.rows or col < 0 or col >= self.cols or self.puzzle[row][col] != word[k]:
 return False
 return True

Figure 10: Example code-editing task (top) from Aider benchmark. NextCoder (RHS) solves the
task correctly in the first attempt, while Qwen2.5-Coder-7B (LHS) gets it wrong in both the attempts:
The directions are represented by pairs of the form (a,b) where a is the y-coordinate and b is the
x-coordinate. However, Qwen2.5-Coder-7B incorrectly assumes that a and b are respectively x and y
coordinates and generates edited code accordingly. NextCoder interprets the instruction accurately
and generates correct code. The relevant code in NextCoder’s output is highlighted in bold.

21

Published as a conference paper at ICLR 2025

Qwen Output:

def annotate(minefield):
 if not minefield or not all(len(row) == len(minefield[0]) for row in minefield):
 raise ValueError("The board is invalid with current input.")

 def count_mines(x, y):
 ...

 result = []
 for i, row in enumerate(minefield):
 new_row = []
 for j, cell in enumerate(row):
 if cell == '*':
 new_row.append('*')
 else:
 mine_count = count_mines(i, j)
 new_row.append(str(mine_count) if mine_count > 0 else ' ')
 result.append(''.join(new_row))

 return result

NextCoder Output:
def annotate(minefield):
 if not minefield:
 return []

 # Validate the input board
 row_length = len(minefield[0])
 for row in minefield:
 if len(row) != row_length:
 raise ValueError("The board is invalid with current input.")
 for char in row:
 if char not in ' *':
 raise ValueError("The board is invalid with current input.")

 # Function to count mines around a given cell
 def count_mines(x, y):
 ...

 # Create a new board to store the annotated values
 annotated_board = []
 for i in range(len(minefield)):
 new_row = []
 for j in range(len(minefield[0])):
 if minefield[i][j] == '*':
 new_row.append('*')
 else:
 mine_count = count_mines(i, j)
 new_row.append(str(mine_count) if mine_count > 0 else ' ')
 annotated_board.append(''.join(new_row))

 return annotated_board

Instruction: Your task is to add the mine counts to empty squares in a completed Minesweeper board.
The board itself is a rectangle composed of squares that are either empty (`' '`) or a mine (`'*'`).

For each empty square, count the number of mines adjacent to it (horizontally, vertically, diagonally).
If the empty square has no adjacent mines, leave it empty.
Otherwise replace it with the adjacent mines count.

For example, you may receive a 5 x 4 board like this (empty spaces are represented here with the '·' character for display on screen):

```text
·*·*·
··*··
··*··
·····
```

Which your code should transform into this:

```text
1*3*1
13*31
·2*2·
·111·
```

Input Code:
def annotate(minefield):
 if not minefield or not all(len(row) == len(minefield[0]) for row in minefield):
 raise ValueError("The board is invalid with current input.")

 def count_mines(x, y):
 count = 0
 for i in range(max(0, x-1), min(x+2, len(minefield))):
 for j in range(max(0, y-1), min(y+2, len(minefield[0]))):
 if minefield[i][j] == '*':
 count += 1
 return count

 result = []
 for i, row in enumerate(minefield):
 new_row = []
 for j, cell in enumerate(row):
 if cell not in ['*', '.']:
 raise ValueError("The board contains invalid characters.")
 if cell == '*':
 new_row.append('*')
 else:
 mine_count = count_mines(i, j)
 new_row.append(str(mine_count) if mine_count > 0 else ' ')
 result.append(''.join(new_row))

 return result

Figure 11: Example code-editing task (top) from Aider benchmark. NextCoder (RHS) solves the
task correctly in the first attempt: The input can only contain spaces or ‘*’s. However, in the example
in the prompt, ’.’ is used to represent space and the same is explicitly stated. Despite this, Qwen2.5-
Coder-7B accepts inputs which contain characters other than ’*’ and space. This problem is fixed by
NextCoder by rejecting any input which violates this constraint. The relevant code in NextCoder’s
output is highlighted in bold.

22

	Introduction
	Related Work
	Synthesizing a Diverse Code Editing Dataset
	Robust Model Adaptation
	Experiments
	Experimental Setup
	Performance on Code-Editing Benchmarks
	Preserving Pre-learned Knowledge
	Effectiveness of Synthetic Data
	Ablation of Choices in SeleKT

	Conclusions
	Appendix
	Additional Details
	Fine-Tuning Dataset
	Training Setup
	Benchmarks

	Effectiveness of SeleKT on Different Model Sizes
	Performance on Aider and Aider Polyglot Benchmarks
	Generalization of SeleKT Algorithm
	Prompts

	Instance Generated from Our Data Pipeline
	Examples Showing the Quality of Our Model Outputs

