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ABSTRACT

Designing a metric manually for unsupervised sequence generation tasks, such as
text generation, is essentially difficult. In a such situation, learning a metric of a
sequence from data is one possible solution. The previous study, SeqGAN, pro-
posed the framework for unsupervised sequence generation, in which a metric is
learned from data, and a generator is optimized with regard to the learned metric
with policy gradient, inspired by generative adversarial nets (GANs) and rein-
forcement learning. In this paper, we make two proposals to learn better metric
than SeqGAN’s: partial reward function and expert-based reward function train-
ing. The partial reward function is a reward function for a partial sequence of a
certain length. SeqGAN employs a reward function for completed sequence only.
By combining long-scale and short-scale partial reward functions, we expect a
learned metric to be able to evaluate a partial correctness as well as a coherence
of a sequence, as a whole. In expert-based reward function training, a reward
function is trained to discriminate between an expert (or true) sequence and a fake
sequence that is produced by editing an expert sequence. Expert-based reward
function training is not a kind of GAN frameworks. This makes the optimiza-
tion of the generator easier. We examine the effect of the partial reward function
and expert-based reward function training on synthetic data and real text data, and
show improvements over SeqGAN and the model trained with MLE. Specifically,
whereas SeqGAN gains 0.42 improvement of NLL over MLE on synthetic data,
our best model gains 3.02 improvement, and whereas SeqGAN gains 0.029 im-
provement of BLEU over MLE, our best model gains 0.250 improvement.

1 INTRODUCTION

Generating sequential data is one of the main areas of research in machine learning. Recently,
sequential generative model with recurrent neural networks (RNNs) have shown great success in
several sequence generation tasks (Graves, 2013; Sutskever et al., 2011). The most common training
method of RNNs is maximum log likelihood estimation (MLE). Although MLE provides stable
training, a trained RNN generator suffers from the discrepancy of training mode and inference mode,
called exposure bias (Bengio et al., 2015). Exposure bias occurs because, at the inference, the
generator predicts the next token given the tokens that the generator itself has generated so far,
though the generator is trained to predict the next token given previous true tokens. To alleviate
exposure bias, sequence training methods with reinforcement learning (RL) have been proposed
(Ranzato et al., 2016; Bahdanau et al., 2017). By using the methods of RL, the RNN generator can
be optimized w.r.t. a task specific metric such as BLEU (Papineni et al., 2002), rather than the log
likelihood. The application of RL methods to sequence generation tasks is increasing importance
recently (Wu et al., 2016; Li et al., 2016). Throughout this paper, we use the term “metric” as a total
reward for a sequence.

If we have a good metric of a sequence, we can expect that a good sequence generator would be
obtained by using a method of RL. However, as Abbeel & Ng (2004) pointed out, it is generally
difficult to manually specify a task specific metric for RL. It is especially difficult to manually
design a proper metric for unsupervised sequence generation tasks, such as text generation or music
generation (imagine how hard it is to manually design the metric of the naturalness of a sentence, or
the beauty of music). One of the solutions for designing a metric for those tasks is to learn a metric
from data.
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Yu et al. (2017) proposed SeqGAN, which a metric of sequence is learned from data, and a gen-
erator is optimized w.r.t. the metric. Inspired by generative adversarial nets (GANs) (Goodfellow
et al., 2014) and RL, SeqGAN employs a discriminator which is trained to discriminate between
a true sequence and a generated sequence, and a generator is trained with policy gradient (Sutton
et al., 2000) by treating the discriminator as the reward function. Because SeqGAN learns a metric
from data and optimizes a generator in RL manner, we can see SeqGAN as the study of inverse
reinforcement learning (IRL).

In this study, we also consider unsupervised sequence generation as a task of IRL, and we aim to
learn the better metric than SeqGAN’s. We state two proposals for this purpose: partial reward
function and expert-based reward function training.

The partial reward function is the reward function for a partial sequence of a certain length. SeqGAN
only uses a reward function for completed sequence. As a background of its proposal, we have an
assumption that it is too much of a burden on a reward function employed in SeqGAN to evaluate
a coherence of sequence as well as a partial correctness comprehensively. By employing the partial
reward function, we aim to make a metric that can evaluate both a coherence and a partial correctness
of a sequence. Empirically, we show that the partial reward function can correctly evaluate a partial
mistake of a sequence which a reward function for a completed sequence can not evaluate.

In expert-based reward function training, we train the reward function without the generator’s sam-
ples. The reward function is trained to discriminate between an expert sequence and a fake sequence
that is produced by editing expert one. Unlike SeqGAN, expert-based reward function is not a kind
of GAN frameworks. Although GAN framework has an advantage that a reward function is simulta-
neously trained with a generator’s performance, the training of the generator frequently fails because
of an instability of the GAN framework. Expert-based reward function training prioritizes executing
stable training of the generator over taking an advantage of GAN framework.

We conducted experiments based on synthetic data and real text data to investigate the effectiveness
of partial reward function and expert-based reward function training. As an evaluation method, we
employ oracle negative log likelihood (NLL) in synthetic data, and BLEU (Papineni et al., 2002) in
text data. We show that the models with our proposals outperform SeqGAN in both experiments.
Specifically, whereas SeqGAN gains 0.42 improvement of NLL over MLE on synthetic data, our
best model gains 3.02 improvement, and whereas SeqGAN gains 0.029 improvement of BLEU over
MLE, our best model gains 0.250 improvement.

2 BACKGROUND

2.1 RELATED WORK

Recent studies have attempted to use RL for the training of a sequence generator. Ranzato et al.
(2016) introduced policy gradient to sequence generation training. This study uses BLEU score as
a task specific reward, and trains generator to maximize BLEU. Bahdanau et al. (2017) applied the
actor-critic method to a translation task and also uses BLEU as a task specific reward. Although
they show an applicability of RL to sequence generation training, they assume that the task specific
reward is given. Sequence tutor (Jaques et al., 2017) is the study that utilizes the reward function
learned from data. Sequence tutor treats RNN trained with MLE as a reward function, called reward
RNN. When a generator is trained with RL, sequence tutor uses both the log likelihood of the reward
RNN and the task specific reward as the metric. We also employ RL to the sequence generation
training, but we assume that the task specific reward is totally unavailable.

TextGAN is the very recent proposed study of the GAN-based text generation (Zhang et al., 2017).
It assumes that the task specific reward is unavailable, and optimizes the generator by using the
gradient of the loss from the discriminator w.r.t. the outputs by the generator, as original GANs
have done (Goodfellow et al., 2014). As our study argues the importance of training of the metric
in the context of IRL, textGAN argues the importance of the training of the discriminator in the
context of GAN. To prove the effectiveness of our proposals, we focus on comparing our model
with SeqGAN in the experiment. We mention the applicability of our proposals to GAN-based
sequence generation, such as textGAN, in the discussion.

There are several studies that attempted to train a neural network reward function in IRL (Finn et al.,
2016; Ho & Ermon, 2016). However, there is no precedent to use edited expert trajectories for the
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training of a neural network reward function. We assume it is because a dynamics p(st+1|st, at) has
to be known to produce a fake trajectory from an expert one. If a dynamics is not known, the next
state can not be determined when a certain action is changed. In sequence generation task, we have
a lot of expert trajectories, and the dynamics is known, because given the state st and the action
at, the next state is always determined as st+1 = [st, at]. This situation enables the expert-based
reward function training.

2.2 SEQGAN

In SeqGAN, the metric of a sequence is learned from data, and the generator is optimized w.r.t.
the learned metric. SeqGAN employs a GAN framework and RL to achieve it. SeqGAN is the
most relevant study to ours in that both studies learn the metric purely from data, and optimize the
generator in the RL manner.

Given a dataset of real-world sequences, parameterized generator Gθ is trained to produce a se-
quence Y1:T = {y1, ..., yt, ..., yT }, yt ∈ Y , where Y is the vocabulary of candidate tokens. Gθ is
trained to produce a sequence that is similar to real data. SeqGAN considers this problem as RL,
considering Gθ to produce action (next token yt) given state (previously generated tokens Y1:t−1).

SeqGAN trains parameterized discriminator Dφ as well as generator Gθ. Like GAN training, Dφ

is trained to discriminate between real data and generated data from Gθ. At the same time, Gθ
is trained via policy gradient by seeing Dφ as a reward function. SeqGAN iteratively updates the
discriminator and the generator until the convergence.

2.3 POLICY GRADIENT

Policy gradient is the theorem for directly maximizing the reward by ascending the gradient w.r.t.
policy parameters.

The objective of RL can be stated as:

J(θ) = Eπθ [r] =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Q(s, a) (1)

where s is state, a is action, r is reward, d(s) is the probability to encounter the state, π is the policy,
and Q(s, a) is the action-state value. The gradient of Eq.(1) can be defined as:

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇logπθ(s, a)Q(s, a)

= Eπθ [∇θlogπθ(s, a)Q(s, a)]. (2)

In a sequence generation setting, state s denotes the tokens that policy has ever generated so far,
and action a is the next token. In this paper, the term “generator” is identical to policy. In practical
situations of sequence generation, such as text generation, it is important to ensure the variety of
samples that the generator generates. To prevent a generator from becoming deterministic, it is
common to add an entropy regularizer (O’Donoghue et al., 2016) to Eq.(2), that is,

∆θ ∝ Eπθ [∇θlogπθ(s, a)Q(s, a)] + βEπθ [∇θH(s)] (3)

where H(s) = −
∑
a π(s, a)logπ(s, a) denotes the entropy, and β is the hyper parameter.

3 PARTIAL REWARD FUNCTION

The partial reward function returns a reward for a partial sequence of a certain length. The partial
reward function is trained to discriminate between real partial sequence data and fake data. Figure
1 shows the overview of the partial reward function. SeqGAN can be viewed as having only yellow
reward function.

3.1 PARTIAL REWARD FUNCTION SPECIFICATION

We choose the convolutional neural network (CNN) of Kim (2014) as the partial reward function.
The same CNN is employed as the discriminator in SeqGAN and textGAN.
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Figure 1: The overview of partial reward functions. SeqGAN has only the yellow reward function.

I have a apen amIand …

𝑅 𝑅 𝑅

𝑄(𝑠 = 𝑌':)	, 𝑎 = 𝑦.)

𝑅
Averege

𝑌':0 = {𝑦', …𝑦0}

𝑦' 𝑦4 𝑦) 𝑦. 𝑦5 𝑦6 𝑦7 𝑦8

… rollout

Figure 2: How to calculate action-state value with partial reward function. The red token is the
action.

Let wt denote the one-hot vector representation of the t-th token in the sequence, yt. Each wt is em-
bedded into a k-dimensional vector yt = We ·wt, where We ∈ Rk×V is an embedding matrix, and
V is the number of unique tokens. A sequence of embedded tokens of length T , {y1, ...,yt, ...,yT },
is represented as a matrix YT ∈ Rk×T by concatenating a sequence of y over the timesteps.

A partial reward function Di only takes a sequence of certain length LDi as input. Di has several
filters and each filter can be represented as Wch ∈ Rk×h, where h is a window size. The maximum
size of window size is LDi . A filter of window size h is applied to YLDi

to produce a feature map
ch = σ(YLDi

∗Wch + b) ∈ RLDi−h+1, where σ is a nonlinear activation function, b is a bias
vector, and ∗ denotes the convolutional operator. Max-over-time pooling operation (Collobert et al.,
2011) is then applied to the feature map to get the maximum value of ch over the timesteps, i.e.,
ĉh = max{ch}. We get as many ĉh as the number of filters with varying window sizes. Those
ĉh are concatenated to produce ĉ = [..., ĉh, ...], and finally the output Di(YLDi

) = r̂ ∈ [0, 1] is
produced by the fully connected layer. To enhance the performance, we add the highway architecture
(Srivastava et al., 2015) before the final fully connected layer. We specifically describe how r̂ is
produced from ĉ in appendix.

3.2 POLICY GRADIENT WITH PARTIAL REWARD FUNCTION

Given the state s = Y1:t = {y1, ..., yt} and the action a = yt+1, we want to update the generator by
the policy gradient given in Eq.(2). However, we do not know Q(st, yt+1), so we need to estimate
it. Figure 2 shows the overview of how to calculate the action-state value for the partial reward
function.

We estimate the action-state value in the same manner as SeqGAN, that is, we generate the complete
sequence after the generation of yt+1 following the current generator, and observe the actual reward
the generated sequence will receive. It is known as REINFORCE (Williams, 1992). The process to
complete sequence is called rollout. Given the partial reward function Di, the action-state value can
be derived as:

QDi(s = Y1:t, a = yt+1) =
1

N

N∑
n=1

1

T − t

T−t∑
k=1

αDiγ
kDi(Y

n
t+k+1−LDi :t+k

) (4)

where N is the number of roll-out trajectories, αDi is the reward scaler for Di, and γ is the discount
value. The hyperparameter αDi has a role to adjust an importance of a partial reward function with
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Figure 3: Overview of expert-based reward function training. An edited expert is produced from
expert data by editing some tokens to another, and we treat it as fake data. A pseudo reward function
is the negative hamming distance, so it counts the number of tokens that are edited. Then quality
function can be calculated as above.

a certain scale. Practically, we ignore the future partial sequences that do not contain yt+1, and set
the discount value at 1.0. Therefore, Eq.(4) can be re-written as:

QDi(s = Y1:t, a = yt+1) =
1

N

N∑
n=1

1

LDi

LDi∑
k=1

αDiDi(Y
n
t+k+1−LDi :t+k

). (5)

We performed this simplification to reduce the calculation costs. It should not harm the estimation
of QDi(s = Y1:t, a = yt+1) much, because the future partial sequence that does not contain yt+1

would be only slightly influenced by yt+1. Note that at the beginning or the end of the sequence
where we can not take the partial sequence as Eq.(5), we ignore such partial sequences, and the
denominator LDi is subtracted. For example, when we estimate QDi(s = Y1:2, a = y3) and LDi =
4, we can not take the partial sequence Y0:3, so we ignore this partial sequence, and we calculate the
action value from other partial sequences with the denominator LDi−1 instead of LDi . Q(st, yt+1)
is finally calculated by aggregating QDi , that is, Q(st, yt+1) =

∑
iQDi .

4 EXPERT-BASED REWARD FUNCTION TRAINING

4.1 EXPERT-BASED REWARD FUNCTION TRAINING SPECIFICATION

SeqGAN employs a GAN framework. Although GAN has shown great success, it has also been
reported that its training is difficult (Arjovsky & Bottou, 2017). A simple way to alleviate its problem
is not to employ a GAN framework. Although GAN framework is attractive, it is not necessary when
we can compose a good reward function in another way. In expert-based reward function training,
reward functions are trained by discriminating between expert (or true) data and fake data that are
produced by editing expert data. Expert-based reward function training does not use the generator’s
samples at all; therefore, it is not a kind of GAN frameworks.

There are several ways to produce a fake sequence from an expert one. We demonstrate a very simple
approach in this paper. We get the expert sequence from the training dataset and randomly select
some tokens and change them to another. These samples are then used as the fake data to train a
reward function. Figure 3 shows the example of samplings of fake data from expert data. Although it
is a very simple approach, we can expect the reward function not to get overfitted to certain samples,
which frequently occurs when the samples of the trained generator are used, because the reward
function is trained with various fake data. In a binary classification task, a function is commonly
trained to minimize binary cross entropy (BCE):

LD = E[logD(x)]x∼Pexp + E[log(1−D(x′))]x′∼Pexp′ (6)

where Pexp is the distribution of expert data and Pexp′ is the distribution of edited expert data. In
next section, we seek a way to modify BCE to obtain a better reward function.

4.2 MODIFIED BINARY CROSS ENTROPY

We utilize the advantage of expert-based reward function training that we know which part of the
fake sequence is edited from the expert. When we train the generator with a policy gradient, a
smooth reward function is desirable rather than a strict reward function because a smooth reward
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function is considered to be easy to maximize. We use the term “smooth” as the reward function
which gives some reward to a sequence that has some mistakes, and “strict” as the reward function
which gives high reward for the perfect sequences, and gives low reward to other sequences. One of
the ideas to compose a smooth reward is to ease the loss for a edited expert that is actually good to
some extent.

To measure the goodness of edited sequences, we introduce the quality function

q(x) = exp(r′(x)/τ), (7)

where r′(x) ≤ 0 is the pseudo reward function and τ is the temperature parameter. The pseudo
reward function roughly measures how good the edited expert is, and can be any function as long
as r′(x) ≤ 0 is satisfied. In this paper, we chose the negative hamming distance as the pseudo
function. The hamming distance of sequence can be calculated by counting the number of tokens
that are changed to another token. Figure 3 shows the example of the calculation of the quality
function. q(x) = 1 when a given sequence is not different from an expert one, and q(x) becomes
close to 0 as a given sequence gets edited from an expert one. τ controls how fast q(x) decreases as
a given sequence is getting edited from an expert. When τ is small, q(x) rapidly becomes close to
0, and when τ is large, q(x) slowly becomes close to 0. By using the quality function, we formulate
the objective of the reward function as:

LD = E[logD(x)]x∼Pexp + E[w(x′)log(1−D(x′))]x′∼Pexp′ (8)

where w(x′) =
1− q(x′)
1 + q(x′)

When a given sequence is little edited from expert, q(x′) is large and the weight w(x′) becomes
small. On the other hand, when a given sequence is heavily edited from expert, q(x′) is small and
the weight w(x′) becomes close to 1. As we mentioned, τ controls how fast q(x) goes to 0 as a
sequence is getting edited so τ is expected to determine a smoothness of a learned reward function,
because as τ gets larger, a loss for a little edited sequence is eased. When τ ' 0, Eq.(8) is the same
as conventional BCE shown in Eq.(6) for all edited sequences. More explanations of the modified
binary cross entropy are described in the appendix.

We note that the objective Eq.(8) has no theoretical background, and this modification is heuris-
tic. We validate the effectiveness of this modification in the experiment by seeing if the generated
sequence is better when τ is large.

5 EXPERIMENTS

We examine the effect of the partial reward function and expert-based reward function training in
synthetic data and real text data. For synthetic data experiments, we conduct the oracle test, which
was also conducted in Yu et al. (2017). For real text data experiments, we conduct the text generation
with BBC news articles.

5.1 SYNTHETIC SEQUENCE GENERATION

5.1.1 EXPERIMENTAL SETTING

In synthetic sequence generation, we use RNN with long short-term memory (LSTM) (Hochre-
iter & Schmidhuber, 1997) whose parameters are randomly initialized and fixed, as the real data
generator. This model is called the oracle. The oracle model provides the true data distribution
poracle(yt|y1, ..., yt−1), and we train the generator to fit to the oracle.

Let Gθ and Y denote the generator and the generated completed sequence. In the test, the per-
formance of generator can be evaluated as NLLoracle = −EY1:T∼Gθ [

∑T
t=1 logporacle(yt|Y1:t−1)].

The oracle test can evaluate the exact performance of the generative models, which is not possible
with real data. The best way to evaluate the performance of the generator is to show the generator’s
samples and let humans review them, but it takes too much time and effort to review a sufficient
number of samples. Now, if we assume that human has the natural distribution phuman(x) and the
generator’s distribution is q(x), we can realize such an evaluation by the negative log likelihood of
the human natural distribution −Ex∼q[logphuman(x)] (Huszár, 2015). In the oracle test, we use the
oracle data distribution poracle instead of phuman.

As the oracle, we provide RNN with LSTM whose parameters are initialized by the normal distribu-
tionN (0, 1). Then, we generate 10,000 sequences of length 20 from the oracle as the training set S.
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Model Name PG Short R Long R Adversarial or Expert-based Oracle NLL
MLE N - - - 9.03
PG L(SeqGAN) Y N Y Adversarial 8.61 (8.73)
PG S Y Y N Adversarial 8.33
PG SL Y Y Y Adversarial 8.58
PG L exp Y N Y Expert-based 7.50
PG S exp Y Y N Expert-based 6.01
PG SL exp Y Y Y Expert-based 6.69

Table 1: The result of oracle test. PG, R denote the policy gradient and reward function. The top
is the model trained with only MLE. The second top is the original SeqGAN model. The score
in parentheses is the one SeqGAN originally reported. The temperature τ of the proposed training
method is set to be 1.5 for the long-term reward function (Long R), and 0.001 for the short-term
reward function (Short R).

Reward function Given sequence Reward
Long R Y1:20 0.970
Long R Y ′1:20 0.945
Short R Y ′2:5 0.585
Short R Y ′3:6 0.452
Short R Y ′4:7 0.480
Short R Y ′5:8 0.638
Short R Y ′6:9 0.874

Table 2: The output of long-term reward
function (Long R) and short-term reward
function(Short R). Fake sequence Y ′ is
produced from Y by changing y5 to a ran-
dom token. The reward is the average re-
ward of 100 samples.

Model Name τ Oracle NLL
PG S exp 0.001 6.01
PG S exp 0.3 6.55
PG S exp 1.0 6.59
PG L exp 0.01 7.99
PG L exp 1.0 7.85
PG L exp 1.5 7.50
PG L exp 2.0 7.75

Table 3: The performance of PG S exp and
PG L exp with different τ value.

For the reward function, we provide two partial reward functions: the short-term reward function,
which treats the sequence of length 4, and the long-term reward function, which treats the sequence
of length 20. In this experiments, the length of the completed sentences is always 20; therefore, the
latter reward function can be considered as the reward function for the completed sequence, which is
exactly the same as SeqGAN’s reward function. Note that when we employ only a long-term reward
function trained with adversarial training, this experimental setting is exactly the same as Yu et al.
(2017). Window size and kernel numbers for reward function are shown in appendix. We employ L2
regularization to the reward function only when it is trained with adversarial training, and the hyper
parameter for the regularization term λ is set to be 0.01. The number of units of the hidden layer
and embedding layer in the generator and oracle are all set to be 32. Batch size is set to be 40. The
reward scaler α is set to be always 1.0. We do not employ the entropy regularization term for the
objective of the policy gradient in this experiment. The number of rollout trajectories is set to be 10.
We use Adam (Kingma & Ba, 2014) as the optimizer for both generator and reward functions. At
the test, Gθ generates 10,000 samples by stochastically choosing tokens according to the generator’s
output distribution and calculate the average NLLoracle over the samples.

We first pretrain the generator Gθ by MLE with S, then train Gθ by policy gradient. The pretraining
of the generator by MLE is conducted because the generator produces very random sequences at
first, and the training with the policy gradient is difficult in such a situation.

In adversarial training, the reward function is first pretrained with Gθ trained with MLE. Then, the
reward function is iteratively trained with Gθ. In expert-based reward function training, reward
functions are trained with dataset S and the edited expert dataset S′ by discriminating them until
the convergence. Then, the generator Gθ is trained with policy gradient until its convergence. The
reward function is fixed during the training of the generator. When we make the edited expert dataset
S′, we change each token of the expert one to another random token with a 25-percent chance.

5.1.2 RESULT OF SYNTHETIC SEQUENCE GENERATION

Table 1 presents the result of the oracle test. Note that the top is the model trained with only MLE,
and the second top is the same as SeqGAN. We use a word “exp” for the model trained with expert-
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based reward function training. The models with our proposals outperform SeqGAN and MLE, and
PG S exp is the best model in all models.

PG S and PG SL outperform PG L, and PG S exp and PG SL exp outperform PG L exp, indicat-
ing that introducing the partial reward function is effective. To see the actual benefit of the partial
reward function, we conducted further analysis. Table 2 presents the output of the long-term reward
function and short-term reward function when they are given expert sequence Y or edited sequence
Y ′. These reward functions are trained with expert-based reward function training. Y ′ is produced
from Y by changing y5 to a random token. Reward is the average reward of 100 samples. When
we see the output of the long-term reward function, we can observe that it gives a high reward to
both Y and Y ′. However, when we see the output of the short-term reward function, we can observe
that it gives a low reward to fake partial sequence which contains y′5. From those observations, we
can say that the short-term reward function can give correct reward to a sequence, which the long-
term reward function can not, and it is the reason that introducing the short-term reward function
benefits sequence generation. It is noteworthy that using only the short-term partial reward function
outperforms the use of both the long-term and the short-term partial reward function. It indicates
that the partial optimization of the sequence actually causes the optimization of the whole sequence
in the oracle test. We assume this is because the sequence of the oracle model is not structured. In
real data, such as text, the sequence is more structured, and the partial optimization usually does not
cause the whole optimization of a sequence.

PG L exp, PG S exp, and PG SL exp outper-
form PG L, PG S, and PG SL respectively, in-
dicating that expert-based reward function train-
ing is effective. We can see significant improve-
ments over models trained with adversarial train-
ing (PG L exp, PG S exp, and PG SL exp make
1.11, 2.32, and 1.89 improvements over PG L,
PG S, and PG SL respectively). We assume that
an instability of adversarial training causes serious
damage to the training of the generator. We found
that the performance of expert-based reward func-
tion training depends on a temperature τ . Table 3
shows the oracle score and τ values in proposed
training method. For short-term partial reward
function, τ ' 0 gives good performance, indicat-
ing that the generator prefers strict short-term re-
ward function. For long-term partial reward func-
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Figure 4: Plots of reward and NLL during
the generator’s training of PG L exp. We can
see that the generator is properly optimized
w.r.t. the reward function, and as the returned
reward increases, NLL decreases.

tion, τ = 1.5 gives good performance, indicating that the generators prefer a smooth reward func-
tion, which gives reward to some extent when the partial sequence is different from real data. It
also suggests that the adding modification to the BCE is effective for a long-term reward function.
In expert-based reward training, the reward function is fixed during the training of the generator,
so we can visualize a return of the reward function to see if the policy gradient successfully works.
As we can see in Figure 4, the generator is properly optimized w.r.t. the reward function, and NLL
decreases as a returned reward increases, indicating that this metric is proper and easy to optimize
for the generator. Note that NLL is the average negative log likelihood of 10,000 samples from the
generator, and the reward is the average reward of 10,000 samples from the generator.

5.2 TEXT GENERATION

5.2.1 EXPERIMENTAL SETTING

As the dataset for text generation, we use BBC news articles. We use a corpus 1 which is a collection
of articles of two topics, technology and business. The dataset consistes of sentences of length 20.
When a sentence is shorter than 20, we add first some words of the next sentence. When a sentence
is longer than 20, we remove last words. We get an 11,163 training set and a 1,500 test set. Each
sequence is lower-cased. The size of the vocabulary is 18,004.

We compare the model MLE, PG L, PG L exp, PG S exp, and PG SL exp in this experiment. We
use a partial reward function of length 4 and length 20, and they are trained in the same manner as

1http://mlg.ucd.ie/datasets/bbc.html
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Model name BLEU-3 Sentence example generated from the first word “according”
MLE 0.094 according to figures , the new new measures - of course to record . people in childcare strategies in taxes on
PG L(SeqGAN) 0.123 according to the car , and state , affected , carbon of culture - a special card reader to the neat
PG L exp 0.201 according to the decision by phone production services in in the us , it is one of the London stock exchange
PG S exp 0.344 according to the industry is part of the xbox consoles will be used to prevent conflicts . they will be
PG SL exp (αS = 0.3) 0.240 according to the financial times , a new record is expected to go on an announcement on the premiership , an
PG SL exp (αS = 1.0) 0.272 according to the report , the survey showed that it will be able to be recycled up for the two companies

Table 4: The result of text generation. Although PG S exp scores the best BLEU-3, its output
sentence lacks coherence. We can see that models of PG SL exp balance the coherence as well as
partial correctness. To make it easy to see the comparison, sentence example is generated from the
first word “according”.

the oracle test. We note again that the partial reward function of length 20 can be considered as the
reward function for the completed sentence, because we only consider the sequence whose length
is 20. In this experiments, we change the scaler parameter for short-term reward αS in PG SL exp.
The scaler parameter for long-term reward αL is set to be always 1.0. The temperature parameters
of the quality function are set to be 0.001 and 1.5 for the short-term reward function and the long-
term reward function, respectively. The number of units of the hidden layer and embedding layer
in the generator are set to be 200. When we make an edited sequences dataset S′ for expert-based
reward function training, we change each token of the expert with a 15-percent chance. Moreover,
when a token is changed to another token, it is sampled from the distribution of word occurence
in the training dataset, rather than sampled randomly. We did this because, unlike with synthetic
data, the occurence frequency is different for each word. If we train reward function with the same
strategy as synthetic data, the learned reward function gives a low reward to a sentence that has a
rare word, because a rare word appears more often in fake sequences. In this experiment, we add
an entropy regularization term to the objective of the policy gradient to prevent the policy from
becoming deterministic. The hyper parameter β in Eq.(3) is first set to be 0.02, and after 15 epochs,
β is set to be 0.05. This is because, when β is high at the beginning of the training of the generator,
an optimization w.r.t. reward does not occur. Other training settings are the same as the oracle test.

To evaluate the performance of the generator, we calculate the BLEU score of the generated se-
quence. As previous studies of text generation have done (Zhang et al., 2017; Yu et al., 2017), we
use all the test set as the reference for BLEU evaluation. We generate 1,000 samples, and calculate
an average BLEU-3 score.

5.2.2 RESULT OF TEXT GENERATION

Table 4 demonstrates the result of the text generation experiments. To make it easy to see the
comparison, the sentence example in the Table 4 is generated from the first word “according” in
the all models. The models with our proposals outperform SeqGAN and MLE. PG S exp scores
the best in BLEU-3. It is apparent that the PG L exp generates more comprehensible sentence than
SeqGAN and MLE, indicating that expert-based reward training is effective. It is reasonable that
PG S exp gives good scores in BLEU 3, because it prioritizes to generate the sequence, which is
partially correct. This optimization fits to the n-gram-based evaluation. PG S exp, however, fails
to generate a coherent sequence as we can see in Table 4. Unlike the experiment with synthetic
data, partial optimization does not cause whole optimization because text data are well structured.
Although the BLEU score of PG L exp is the fourth best in all models, a coherence of sequence
seems to be maintained. The models of PG SL exp ensure both the partial correctness of sequence
and coherence of sequence. By decreasing the short-term reward scaler αS , we can generate more
coherent sentences. Additional generated samples are in the appendix. They show that a variety of
samples is ensured to some extent.

6 DISCUSSION

We stated two proposals for a learning better metric: partial reward function and expert-based reward
function training. We showed that the partial reward function returns an accurate reward for a partial
sequence, and benefits sequence generation training. By using partial functions of different scales,
one can compose a reward function that can evaluate both coherence and the partial correctness of
a sequence. We also showed that expert-based reward function training is effective compared to
adversarial training. We demonstrated that a generator is well optimized w.r.t. the metric that is
trained with expert-based reward function training.
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The balance of short-term reward and long-term reward is a difficult problem. When prioritizing
short-term reward too much, the generator produces a sequence that is partially correct but not co-
herent, and vice versa. In our study, this balance is tuned by the hyperparameter αDi . Unfortunately,
the tuning of αDi is difficult. Even validating the goodness of selected αDi is difficult because there
is usually no true metric for the generated sequence (except for the special case such as oracle test).
Therefore, we have to validate the selected αDi by seeing the generated sentences. This is a fun-
damental problem of IRL. IRL learns a reward from expert, but a goodness of a learned reward
function can be evaluated by a behavior of policy, and an evaluation of a learned policy is done by
a human (with a bias), or a surrogate manually designed metric. One practical strategy to balance a
partial correctness and a coherence is to separate a generation process into two stages. We first pro-
duce a coherent sequence by using the generator learned with only long-term reward, and then use a
short-term reward function to make a modification to partial mistakes of the produced sequence.

As the generator is improving, it is desirable to update the reward function to a more strict one. A
GAN framework is a good method in this sense, but as experimental results showed, it is difficult to
train. One idea to update the reward function is to decrease a probability to change a token of expert
in expert-based reward function training. If we decrease a probability, the reward function would
become more strict. By decreasing a probability as the generator is improving, the generator might
generate a more sophisticated sequence.

We believe that our proposals in this paper can be applied to GAN-based sequence generation. The
partial reward function can be applied to GAN-based text generator directly. In fact, Shrivastava
et al. (2016) used similar technique in the image generation with GAN. Expert-based reward function
might make GAN training stable. The edited expert sequences have a lot of variety. There is a
technique that uses the past generator’s samples to ensure the variety of the samples for the training
of the discriminator to stabilize GAN training, as we can see in Shrivastava et al. (2016), and the
edited expert can be also applied for this purpose.
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Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. In Proceedings of the 5th international conference on Learning representations, 2017.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. In Proceedings
of the 5th international conference on Learning representations, 2017.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, pp. 1171–1179, 2015.
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Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
els with kl-control. In Proceedings of the 34th international conference on Machine learning, pp.
1645–1654, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
ment learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and q-learning. In Proceedings of the 5th international conference on Learning repre-
sentations, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pp. 311–318. Association for Computational Linguistics, 2002.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. In Proceedings of the 4th international conference on Learn-
ing representations, 2016.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russ Webb.
Learning from simulated and unsupervised images through adversarial training. arXiv preprint
arXiv:1612.07828, 2016.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural net-
works. In Proceedings of the 28th international conference on Machine learning, pp. 1017–1024,
2011.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Infor-
mation Processing Systems, pp. 1057–1063, 2000.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of association for the advancement of artificial intelligence,
pp. 2852–2858, 2017.

Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin. Adversarial feature matching
for text generation. In Proceedings of the 34th international conference on Machine learning,
2017.

11



Under review as a conference paper at ICLR 2018

A GENERATED SENTENCES

Model name Generated sentence
MLE us light sweet crude futures to enter the [crossover] segment ,” said nick ross , daimlerchrysler and damaged property finance

the reserve chairman united said the us sought bankruptcy protection in the us on monday , kill bill: volume 2
his previous two companies holes has been picking up in the past year . ”we are bringing a small third
but the uk has been on hold of many of users to get their hands at least . icstis ,
”if you work i were struggling . ”people’s spending offer have to bring across the uk opened a 5bn) earlier
” the intel researchers have leveraged the company’s ”most affordable media use , reaching the firm , the operating system
unless voluntary fit will fund the animation prices , should remain also in novel ways that p2p is a human
according to the stability pact to rises and confirm that thrives in succession . tourism said this tactic of creating
vedomosti newspaper said mr irish and mark all the caribbean said the ability of the $2 , amid allegations of
the virus-fighting program , updated monthly or just also brings me that had been compressed into recession - are a

PG L(SeqGAN) these are pooled in london , draw about its future while it is the richest part of the digital images
identity theft are being people to jump in sound to the neat business which can walk along at the show
a apple of financial mail messages that has already has got given the chicago data , or or their semi-conductor
after leaving weather , video games in over the third . stuff has telling parliament: level time checking for gadget
there are combining automatic syncing worldwide , and you will give people the state pension age of of large and
just been wiped out . the federal reserve is struggling with treasury and organisations have said you play online in
a hydroelectric-power generator the airline said in the election , you would then its broadcasting attraction ,” said research ,
a number of stagnation and more than 1 million copies of the personal firewalls ,” he said . ”it is
us lawyers claimed that the mac mini and is being piloted by the royal national hi-tech crime unit yuganskneftegas (yugansk)
”it will be disruptive to music , employment for mobile firm , almost three-quarters of job creation , the airline

PG L exp ”a literate and qualified turkish population ,” insisted the year to meet he has been security to be . however
the game on be done in the us in the us - it will play games on the net ,
the success is set to the company’s and court ,” he said , it plans the market by the uk
an ex-chief financial advice , that is the biggest category said a problem in europe was not enough . people
yukos claims that it would the banning of a market . it will make up of work recently about security
there were originally had to be seen in the way . it were also falling demand at 20% of the
however , which will continue to make 50gb of high-quality data , which is one of its investment can come
the game maker you can be done in the year . ”skype’s success at spreading on the launch of sony’s
russian newspapers has been done - its own fuelled by lower prices than up to 100% . ”we will be
mr ghosn will devote 40% of the directive will put up to google’s funds . but on the network is

PG S exp they would retaliate by seeking injunctions in the company , said they had been seen as they will be used
they will be able to add to be used to spot in the world’s largest car maker , said they
they will be able to be recycled at 1 . 4% in october . 3bn . however , he said
however , prices fell as part of the service . they need to invest in the cost of more than
however , he said he would be to raise awareness of the 14 . but it is part of the
this is likely to be seen in the us government , you go from the deal . but he said
however , the company , which is part of the euro last week after new york times on the mobile
they will be able to prevent conflicts to take their office . but they are looking for bargains , which
more than 1 . 4% in the company , which is part of the industry will be able to invest
the deal has been seen as they will be able to prevent conflicts . but they had been sidelined in

PG SL exp (αS = 0.3) at a mere £20 , metal slug 3 is as cheap , but it is not the second time when
the global entertainment industry was more than two to the uk exported , according to the uk-based journal screen that
it is not the firm of england is expected to go on a broadband connection , with a single threat
according to figures to come to meet , it said it would also reduce its customers , according to prevail
if the end of the year , microsoft , which is expected by to $4 . 35bn , said it
two of the most important costs . ” spanish , it would be failed to do a new record for
it is expected to make an advisor to work , said it would allow broadband connections by the trading national
users navigated around the dollar of 572 ,900 points to build the risks , and it is so far ,
it is not about stealing to the growing efforts in new york in the south following an apple ipod ,
”it’s for the most important for us crude oil company in early february , according to the report . at

PG SL exp (αS = 1.0) according to the report , the company has not been being announced it will go from the decision to discuss
one of the two companies will be able to go with other digital entertainment , with other companies like the
it will be able to be part of its efforts . ”we’re on the outlook for its core businesses ,
”we want to go on the technology ,” he said . ”we’re in december , in a europe - on
yukos has been made in december to graphics out of its efforts in 2005 , and paramount will go for
their aim is to launch a new rental subscription service , this proves , the company will be able to
more than 50% of the economy is part of its efforts to transfer files as a threat of the russian
meanwhile , the decision for bt is available in december , the largest us giant earned $630m (£481 . 5m)
the company announced it will see the study of the decision for digital images and technology from two companies ,
people will have to think of the report that it has been working with other carmakers . 5bn in january

Table 5: The examples of generated sentences.
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B THE WINDOW SIZE AND KERNEL NUMBERS OF REWARD FUNCTIONS

Sequence length (window size, kernel numbers)
4 (1,100), (2,200), (3,200), (4,200)

20

(1,100), (2,200), (3,200), (4,200),
(5,200), (6,100), (7,100), (8,100),

(9,100), (10,100), (15, 160), (20,160)

Table 6: Window size and kernel numbers for reward functions

We set window size and kernel numbers as Table 6 in both experiments.

C DETAIL OF PARTIAL REWARD FUNCTION

We describe how to get a feature map containing each filter’s output ĉ in section 3.1. We, then, add
highway architecture as below,

τ = σ(WT · ĉ+ bT ),

Ĉ = τ ·H(ĉ,WH) + (1− τ ) · ĉ,

where WT , bT , and WH are highway layer weights, H denotes an affine transform followed by a
nonlinear activation function such as ReLU, and τ is the “transform gate” with the same dimension-
ality as H(ĉ,WH) and ĉ.

Finally, we get an output of partial reward function as

r̂ = σ(Wo · Ĉ+ bo)

where Wo and bo are the output layer weight and bias, respectively.

D ADDITIONAL EXPLANATION OF MODIFIED BINARY CROSS ENTROPY

We expect the hyperparameter τ to determine the smoothness of the learned reward function. We
describe more specifically how τ determines the smoothness.

When τ is very small, q(x′) ' 0 for all edited sequences, therefore w(x′) ' 1. This makes Eq.(8)
the same as conventional BCE as shown in Eq.(6) for edited sequences. In this case, a learned
reward function would become a strict function because a reward function is learned under the
objective which gives same penalty for an sequence that is edited only a few. This reward function
makes it difficult to be maximized by a policy gradient. The learned reward function, however, is
considered as an accurate reward function.

When τ is large, w(x′) decreases for an edited sequence that is little different from an expert one. In
this case, a learned reward function would become a smooth function. This smooth reward function
is preferable for a policy gradient optimization, but it is also considered as inaccurate reward function
since it could “overlook” a few mistakes in the sequence. We expect a smooth reward function is
effective for a long scale one because generating plausible long sequence by the generator is difficult.
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