Under review as a conference paper at ICLR 2020

S2VG: SOFT STOCHASTIC VALUE GRADIENT
METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) has shown its advantages in sample-
efficiency over model-free reinforcement learning (MFRL). Despite the impres-
sive results it achieves, it still faces a trade-off between the ease of data generation
and model bias. In this paper, we propose a simple and elegant model-based
reinforcement learning algorithm called soft stochastic value gradient method
(S2VG). S2VG combines the merits of the maximum-entropy reinforcement
learning and MBRL, and exploits both real and imaginary data. In particular,
we embed the model in the policy training and learn () and V' functions from the
real (or imaginary) data set. Such embedding enables us to compute an analytic
policy gradient through the back-propagation rather than the likelihood-ratio esti-
mation, which can reduce the variance of the gradient estimation. We name our
algorithm Soft Stochastic Value Gradient method to indicate its connection with
the well-known stochastic value gradient method in (Heess et al.| 2015).

1 INTRODUCTION

Reinforcement learning can be generally classified into two categories: model-free reinforcement
learning (MFRL) and model-based reinforcement learning (MBRL). The last several years have
witnessed the great success of MFRL especially in playing video games, robotic control and motion
animation (Mnih et al.| [2015} [Lillicrap et al., 2015} |Schulman et al.,2017; |Peng et al., |2018). How-
ever, even for some simple tasks, hundreds of millions of samples are required for an agent to learn
a good control policy. In many industry scenarios, such as health care and financial services, the
algorithm requiring tremendous interactions with the environment is not applicable or too expensive
to deploy. To this end, several recent works have advocated the model-based approach, where the
higher sample-efficiency is achieved by leveraging the learned dynamics and reward model (Buck-
man et al.| 2018} [Feinberg et al. 2018)). It generally augments the real data with the data from
dynamics models, uses rollout to improve target for temporal difference learning, or directly incor-
porates the model into the Bellman equation (Luo et al.,2018; Heess et al.,2015). These works have
demonstrated promising results on several benchmarks with a small number of interactions with the
environment.

Despite its recent success, MBRL still faces a challenging problem, i.e., the model-bias, where the
imperfect dynamics model would degrade the performance of the algorithm (Kurutach et al.|[2018).
Unfortunately, such things always happen when the environment is sufficiently complex. There are
a few efforts to mitigate such issue by combining model-based and model-free approaches. |Heess
et al.| (2015) compute the value gradient along real system trajectories instead of planned ones to
avoid the compounded error. [Kalweit & Boedecker (2017) mix the real data and imaginary data
from the model and then train @) function. An ensemble of neural networks can be applied to model
the environment dynamics, which effectively reduces the error of the model (Kurutach et al.| 2018;
Clavera et al., 2018} |Chua et al.,[2018).

We observe that most recent algorithms with promising results apply Dyna-style update (Sutton,
1990; [Kurutach et al.l [2018; [Luo et al., 2018). They collect real data using current policy to train
the dynamics model. Then the policy is improved using state-of-the-art model-free reinforcement
learning algorithms with imagined data generated by the learned model. Our insight is that why
not directly embed the model into the policy improvement? To this end, we derive a model-based
reinforcement learning algorithm in the framework of the maximum entropy reinforcement learning

Under review as a conference paper at ICLR 2020

(Ziebart et al.||2008). Dynamics model and reward model are trained with the real data set collected
from the environment. Then we simply train () and V' function using the real data set with the
update rule derived from the maximum entropy principle (several other advanced ways to include
the imaginary data can also be applied, see details in section[3)). In the policy improvement step, the
stochastic actor samples an action with real state as the input, and then the state switches from s to s’
according to the learned dynamics model. We link the learned dynamics model, reward model, and
policy to compute an analytic policy gradient by the back-propagation. Comparing with likelihood-
ratio estimator usually used in MFRL method, such value gradient method would reduce the variance
of the policy gradient (Heess et al.l 2015). The other merit of S2VG is its computational efficiency.
Several state-of-the-art MBRL algorithms generate hundreds of thousands imaginary data from the
model and a few real samples. Then the huge imaginary data set feeds into MFRL algorithms, which
may be sample-efficient in terms of real samples but not computational-friendly. On the contrary,
our algorithm embeds the model in the policy update. Thus we can implement it efficiently by
computing policy gradient several times in each iteration (see our algorithm [1)) and do not need to
do calculation on the huge imaginary data set.

We name our algorithm soft stochastic value gradient to indicate its connection with SVG (Heess
et al., [2015). Notice there are several differences between S2VG and SVG. Firstly, to alleviate the
issue of the compounded error, SVG proposes a relatively conservative algorithm where just real
data is used to evaluate policy gradients. Thus imaginary data is wasted, even the data from the
short rollouts from the model can be trusted to some extent. In our work, the policy is trained with
the model and imaginary dataset m times in each iteration of the algorithm. Secondly, we derive our
algorithm in the framework of the maximum entropy reinforcement learning. The maximum entropy
updates could improve the robustness under the model estimation error (Ziebart et al., 2010). In
addition, it encourages the exploration, prevents the early convergence to the sub-optimal policies,
and shows state-of-the-art performance in MFRL (Haarnoja et al., 2018)). Thirdly, S2VG avoids the
importance sampling in the off-policy setting by sampling the action from 7 and transition from
f (s, a), which further reduces the variance of the gradient estimation.

CONTRIBUTIONS

We derive an elegant, sample-efficient, and computational-friendly Dyna-style MBRL algorithm in
the framework of the maximum entropy reinforcement learning with a principled way. Different
from the traditional MBRL algorithm, we directly embed the model in the policy improvement,
which could reduce the variance in the gradient estimation and avoid the computation on huge
imaginary dataset. In addition, since the algorithm is off-policy, it is sample-efficient. At the same
time, the maximum entropy principle encourages exploration and improves performance, which has
been observed in MFRL (Haarnoja et al., [2017). We test our algorithm on several benchmark tasks
in Mujoco simulation environment (Todorov et al., 2012) and demonstrate that our algorithm can
achieve state-of-the-art performance

2 PRELIMINARIES

In this section, we first present some backgrounds on the Markov decision process. Then we in-
troduce the knowledge on the maximum entropy reinforcement learning (Ziebart et al., 2008) and
stochastic value gradient (Heess et al., |2015) since parts of them are the building blocks of our
algorithm.

2.1 MDP

Markov Decision Process (MDP) can be described by a S-tuple (S, A, R,P,v): S is the state
space, A is the action space, P = (P(s'|s,a))s,s'es,ac are the transition probabilities, R =
(r(s,a))s,s’cs,aca are the real-valued immediate rewards, and v € (0,1) is the discount factor.
A policy is used to select actions in the MDP. In general, the policy is stochastic and denoted by
m, where 7(a¢|s;) is the conditional probability density at a; associated with the policy. The state
value evaluated on policy 7 could be represented by V™ (s) = E.[> 72 v'7(st,a)|[so = s] on
immediate reward return r = (R(S, a))s,s'es,ac.4 With discount factor v € (0, 1) along the horizon

!Code is submitted anonymously at https://github.com/S2VG-anonymous1/S2VG

Under review as a conference paper at ICLR 2020

t. The state-action value evaluated on policy 7 represent the expected return on the specific action
a: Q™ (s,a) = r(so,a0) + Ex[> o1 ¥'7 (st ai)|s0 = s,a0 = al.

2.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

Maximum entropy reinforcement learning augments the reward with an entropy term, such that the
optimal policy aims to maximize the new reward function at each visited state :

T
max J(m) = Y Es,a,)mp, [1(56ar) + aH(m(:]s1))], (1)

™
t=0

where H(7(+|s¢)) is an entropy term scaled by « (Ziebart et al., [2008). The optimal policy in
equationcan be obtained by the following soft-Q update (Fox et al., 2016),

Q(st,a) «— (s, ar) + YEg, ~p[V (5t41)] and V (s¢) «— alog(/A eXp(éQ(st, az))daz).

Above iterations define the soft Q) operator, which is a contraction. The optimal policy 7*(a|s) can

10 (s . .
be recovered by 7 (a¢|s;) = T :;I;é i g ((S::Z; ; 7a-» Where Q" is the fixed point of the soft-Q update.

We refer readers to the work (Ziebart et al., 2008; [Haarnoja et al., 2017) for more discussions. In
soft actor-critic (Haarnoja et al., 2018), the optimal policy 7*(a¢|s;) is approximated by a neural
network 7y (a|st), which is solved by the following optimization problem

I(Ila‘X) Estwp(st)EatNﬂe(at\St) [Q(Stv at) -« 10g o (at‘st))]'
mo(ag|se

2.3 STOCHASTIC VALUE GRADIENT

Stochastic value gradient method is a model-based algorithm which is designed to avoid the com-
pounded model errors by only using the real-world observation and gradient information from the
model (Heess et al., 2015). The algorithm directly substitutes the dynamics model and reward model
in the Bellman equation and calculates the gradient. To perform the backpropagation in the stochas-
tic Bellman equation, re-parameterization trick is applied to evaluate the gradient on real-world data.
The stochastic policy 7(als;) with parameter 6 could be optimized by the policy gradient in the
following way

vV (s) Or (s, a) O (als) oV'(s") 0f (s,a) On(als)
90 oa o0 oy Toa o P @

where 1 and ¢ are the policy and environment re-parameterization noise which could be directly
sampled from a prior distribution or inferred from a generative model g(7, {|s,a, s’). The f(s,a)
and 7 (s, a) are dynamics model and reward model respectively.

~Epcl

3 SOFT STOCHASTIC VALUE GRADIENT METHOD

In this section, we introduce our algorithm soft stochastic value gradient (S2VG) method. Our ob-
jective is to design an off-policy MBRL algorithm under the maximum entropy framework, which
could improve the exploration, enhance the training robustness through entropy maximization. Par-
ticularly, we optimize the following equation

J(O) =D Ep ([P (se,ar) + H(m(arst))], 3)
t=0

where we omit the regularizer parameter « of the entropy term in the following discussion to ease
the exposition. p,. = p(sg) HtT:O f(st,a)m(ae|se), f(st,a) is the learned dynamics model, and
7 is the reward model. We then derive the update rule following the similar step in the probabilis-
tic reinforcement learning (Levine, 2018), which generally includes policy evaluation and policy
improvement steps.

Under review as a conference paper at ICLR 2020

Similar to the policy evaluation without the entropy term, we have the soft value function update
V(s¢) = Er(ay|s)[P(5¢,a:) — logm(as|ss) + vEsn sV (5¢41)]. For convenience, we define the Q
function in the following,

Q(st,at) = 7(st,at) + VEs, o p [V (S241)]- “4)
The value function update can be reformulated as

V(ss) = E‘n’(adst)[Q(sta at) —log w(az|st)]. (5
The optimal policy (policy improvement step) at each step ¢ is 7(as, 5¢) = %.

The derivation is almost the same with (Levine, [2018; |[Haarnoja et al. [2018), expect
that we use learned dynamics model and reward function here. Notice this optimal
policy can be approximated by a parametric function 7y(as|s;) and obtained by solving
MAX 1, (a,)s0) Esymop(s) Baymrm (ar]s) [@(St, ar) — logmg(as|st))]. However such way used in the
MFRL can not leverage the model information. We leave the our derivation and discussion on
the policy improvement in section 3.3

3.1 MODEL LEARNING

The transition dynamics and rewards could be modeled by non-linear function approximations as
two independent regression tasks which have the same input but different output. Particularly, we
train two independent deep neural networks with parameter w and ¢ to represent the dynamics
model f and reward model 7 respectively. To better represent the stochastic nature of the dynamic
transitions and rewards, we implement re-parameterization trick on both f and # with input noises
(w and (, sampled from Gaussian distribution N(0, 1). Hence, networks would generate mean:
> [, and variance: o, o, separately and compute the result by ji., + 0,(, and i, + 0,Cp,
respectively.

Above two models could be optimized by sampling the data from the (real data) replay buffer D and
minimizing the mean square error:

1 1 R
J(w) = 5Epc.[(f(s,0) = &)%), J(¢) = 5Ep ¢, [(7(s,0) —7)°] (6)
This supervised learning problem could be solved by off-the-shelf optimizers such as Adam opti-
mizer (Kingma & Bal [2014). Other techniques could also be leveraged to reduce the risk of over-
fitting in the limited data set such as adding dropout layers, performing early stopping, and training
through ensemble models.

3.2 VALUE FUNCTION LEARNING

Equation] and equation [5] define model-based and model-free policy evaluation steps respectively.
Equation {| would introduce the model error from the model dynamics into the value estimation and
produce biased results. To avoid this model error, we update @ with the real transition (s, a, r, s’)
from the real data replay buffer. Such update is non-biased but may suffer from high variance under
the low-data regime. Therefore, we leverage the value expansion (Feinberg et al., 2018)) to balance
the bias and variance by using both real-world data and imaginary rollout. If @) function and V'
function are parameterized by ¢ and 1 respectively, they could be updated by minimizing the new
objective function with the value expansion on imaginary rollout:

1 =l o H-1 o s A)
J(@0) =5 ; (CHENDE <kZ P+ ATV (8m))) ()
= =t

where only the initial tuple 7o = (S0, ao, 7o, §1) is sampled from replay buffer D with real-world
data, and later transitions are sampled from the imaginary rollout from the model. H here is the time
step of value expansion using real data. 7 is the training tuple and 7q is the initial training tuple.
Note that when H = 1, it reduces to the case where just real data is used.

The V function is learned by minimizing the following error

T() = B 5 (Vi (1) — EagmrlQols1s a0) — g w(arls)])?] ®)

4

Under review as a conference paper at ICLR 2020

Notice the training of V' function is only on the real data set D. In our experimental section, we
do ablation study on H. Interestingly, we find that the case with H = 1 has the best result. One
possible explanation is that we have already embedded model in the policy update. Hence, including
the imaginary data in value function learning would mislead directions of policy gradients.

3.3 PoLICY LEARNING

Then we consider the policy improvement step, i.e., to calculate the optimal policy at each time step.
One naive way is to optimize the following problem max (4, |s,) Es, ~p(s:)Ea,~r(ar|se) [Q (St ar) —
log (a|s¢))] as that in MFRL (Levine} [2018; [Haarnoja et al., [2018). However, such way cannot
leverage the learned dynamics model and reward model. To incorporate the model information,
notice that V' (s) = Eqr(a,|s,) [Q(5¢, ar) —log m(a¢|s;)], thus the policy improvement step is equal
to
max g,)V (50). 9
m(at|st)

In the following, we connect the dynamics model, reward model, and value function together by
the soft Bellman equation. To begin with, we re-parameterize the dynamics model and policy.
Particularly, we set a = k(s,n;6) and the dynamics model s’ = f(s,a,() for noise variables
1 ~ p(n) and ¢ ~ p(¢), respectively. Now we can write the soft Bellman equation in the following
way.

V(s) =E,[F(s,k(s,m;0)) —logm(als) + vEV'(f(s, k(s,1;0),))] (10)
To optimize equation [9] and leverage gradient information of the model, we sample s from the real
data replay buffer D and take the gradient of V' (s) w.r.t. 6

aV(S) -E [@@_181 7(8‘/’(3/)%%)}
00 s~Dnla, 00— 7 00 ds' 9a 00’

(1)

ESND

The equation[TT|demonstrates an interesting connection between our algorithm and SVG. Compared
with the policy gradient step taken by SVG(1) algorithm (Heess et al., 2015)), equation [TT]includes
one extra term —(1/7)(d7/90) to maximize the entropy of policy. We drop importance sampling
weights by sampling from the current policy. Also notice that the transition from (s,a) to s’ is
sampled from the learned dynamics model f, while the SVG(1) just utilizes the real data. Thus in
the algorithm we can update policy several times in each iteration to fully utilized the model rather
than just use the real transition once.

3.4 S2VG ALGORITHM

We summarize our S2VG in Algorithm[I} At the beginning of each step, we train dynamics model f
and reward model # by minimizing the L, loss shown in equation[6] Then the agent interacts with the
environment and stores the data in the real data replay buffer D. Actor samples s; from D and collect
sk41 according to the dynamics model f(sx,ay). Such imaginary transition is stored in Djp,g.
Then we train @, V and 7 according to the update rule in section [3] Similar to other value-based
RL algorithms, our algorithm also utilizes two () functions to further reduce the overestimation
error by training them simultaneously with the same data but only selecting the minimum target in
value updates (Fujimoto et al.,|2018). We use the target function for V' like that in deep Q-learning
algorithm (Mnih et al, 2015), and update it with an exponential moving average. We train policy
using the gradient in equation Remark that our s’ is sampled from the dynamic model f(s, a),
while in SVG, it uses the true transition. Indeed there is a bias and variance trade-off. True transition
is unbiased but may have high variance due to the small scale of the data set. Here we claim that
one-step rollout of the model is still accurate. Some remarks on the algorithm are in the order. In
our implementation, we choose H = 1 in equation [/| generally, since we find S2VG with H =1
has the best result in our ablation study (see section[5.3)) . In each iteration, we update policy several
times, so that the algorithm can utilize the data generated from the model.

4 RELATED WORK

There are a plethora of works on MBRL. They can be classified into several categories depending
on the way to utilize the model, to search the optimal policy or the function approximator of the

Under review as a conference paper at ICLR 2020

Algorithm 1 Soft Stochastic Value Gradient method

Inputs: Replay buffer D, imaginary replay buffer D;,, 4, policy 7y, value function V, target value
function V;;. Two @ functions with parameters ¢y and ¢, dynamic model f with parameter w,
and reward model 7 with parameter ¢
for each iteration do

1. Train the dynamics model and reward model

Calculate the gradients V,,J (w), V,.J () using equation[6] with D, update w and ¢

2. Interact with environment

Sample a; ~ m(at|st), get reward r¢, and observe the next state ;41

Append the tuple (s, a¢, ¢, S¢41) into D

3. Update the actor, critics m (typically 3 to 5) times

Empty Dimg

Sample (so, ao, 79, 57) ~ D

for each imaginary rollout step k£ do

Sample ay, ~ 7(ag|sk), get reward r, = 7(sg, ax), and sample sx+1 ~ f(sk, ar)
Append the tuple (sk, ag, Tk, Sk+1) into Djpg

end for ~

Calculate the gradient V4J(¢) using equation|7|with 1) and D;y,,

Calculate the gradient V,,.J (1)) using equation [8|with D

Calculate the gradient VyV/ (s) using equation |1 1| with D.

Update ¢, v, and @, update ¢ with Polyak averaging
end for

dynamics model. Iterative Linear Quadratic-Gaussian iILQG) (Tassa et al., |2012)) assumes that the
true dynamics are known to the agent. It approximates the dynamics with linear functions and the
reward function with quadratic functions. Hence the problem can be transferred into the classic
LQR problem. In Guided Policy Search (Levine & Koltun, 2013} |Levine & Abbeel, 2014; Finn
et al.l 2016), the system dynamics are modeled with the time-varying Gaussian-linear model. It
approximated the policy with a neural network 7 by minimizing the KL divergence between iLQG
and 7. A regularization term is augmented into the reward function to avoid the over-confidence on
the policy optimization. Nonlinear function approximator can be leveraged to model more compli-
cated dynamics. |Deisenroth & Rasmussen| (2011)) use Gaussian processes to model the dynamics
of the environment. The policy gradient can be computed analytically along the training trajectory.
However, it may suffer from the curse of dimensionality which hinders its applicability in the real
problem. Recently, more and more works incorporate the deep neural network into MBRL. [Heess
et al.|(2015) model the dynamics and reward with neural networks, and compute the gradient with
the true data. |[Richards| (2005)); Nagabandi et al.| (2018) optimize the action sequence to maximize
the expected planning reward along with the learned dynamics model and then the policy is fine-
tuned with TRPO. Luo et al.[(2018));/Chua et al.|(2018)); |Kurutach et al.|(2018]) use the current policy
to gather the data from the interaction with the environment and then learn the dynamics model. In
the next step, the policy is improved (trained by the model-free reinforcement learning algorithm)
with a large amount of imaginary data generated by the learned model. Ensemble learning can also
be applied to further reduce the model error.

5 EXPERIMENTAL RESULTS

In this section, we would like to answer two questions: (1) How does S2VG perform on some bench-
mark reinforcement learning tasks comparing with other state-of-the-art model-based and model-
free reinforcement learning algorithms? (2) How many imaginary data we should use in the value
function update?

5.1 ENVIRONMENT

To answer these two questions, we do experiment in Mujoco simulation environment (Todorov et al.}
2012): InvertedPendulum-v2, HalfCheetah-v2, Reacher-v2, Hopper-v2, Swimmer-v2,Walker2d-v2.
Each experiment is tested on five trailed using five different random seeds and initialized parameters.
The details of the tasks and experiment implementations can be found in appendix [A]

Under review as a conference paper at ICLR 2020

1200 o

1000

800

600

-40 . — savG
—— DDPG
— SAC
—— SLBO
- SVG

400

Average return
Average return
Average return

200

5 0 15 25 30 35 40 0 25 s0 75 100 125 150 175 200 10

20 20 30
Epochs steps (1e3) steps (1e3)

(a) InvertedPendulum (b) HalfCheetah (c) Reacher

3500

3000 3000

2500 2500

2000

i
1500 1500 Wil

Average return
Average return
Average return

—
— S2VG
—~ DDPG }
SAC R — sac
. — sLBo 500 o = —— sLBO
+ SVG im0 SVG

1000

0
0 25 50 5 100 125 150 175 200 20 40 60 80 100 120 140 160 180 o 50

7 100 150 200
steps (1e3) steps (1e3) steps (1le3)

(d) Hopper (e) Swimmer (f) Walker2d

Figure 1: Performance of S2VG with H = 1 and other baselines in benchmark tasks. The x-axis
is the training step (epoch or step). Each experiment is tested on five trailed using five different
random seeds and initialized parameters. For a simple task, i.e., InvertedPendulum, we limit the
training steps at 40 epochs. For the other three complex tasks, the total training steps are 200K
or 300K. The solid line is the mean of the average return. The shaded region represents the stan-
dard deviation. On Invertedpendulum,HalfCheetah, Hopper, Swimmer, S2VG outperforms the other
baselines significantly. In the task Walker2d, SLBO is slightly better than S2VG. They both surpass
other algorithms. On Reacher, S2VG and SAC perform best.

5.2 COMPARISON TO STATE-OF-THE-ART

We compare our algorithm with state-of-the-art model-free and model-based reinforcement learn-
ing algorithms in terms of sample complexity and performance. DDPG (Lillicrap et al., 2015) and
Soft actor-critic (Haarnoja et al., |2018) are two model-free reinforcement learning algorithms on
continuous action tasks. Soft actor-critic has shown its reliable performance and robustness on sev-
eral benchmark tasks. Our algorithm also builds on the maximum entropy reinforcement learning
framework and benefits from incorporating the model in the policy update. Two model-based rein-
forcement learning baselines are SVG (Heess et al.,[2015) and SLBO (Luo et al.l 2018). Comparing
with SVG, our work avoids the importance sampling and utilizes the maximum entropy principle.
Notice in SVG, the algorithm just computes the gradient in the real trajectory, while our S2VG up-
dates policy using the imaginary data m times generated from the model. SLBO is a model-base
algorithm with performance guarantees that applies TRPO (Schulman et al., [2015) on the data set
generated from the rollout of the model.

Notice that in our implementation, we do not use any ensemble learning (Chua et al) [2018) or
uncertainty estimation (Malik et al.l 2019) on the model. These techniques are known to reduce
the model biased. We do not use distributed RL either to accelerate the training. We believe that
above-mentioned skills are orthogonal to our work and could be integrated into the future work to
further improve the performance. Also for the fairness, we just compare this pure version of S2VG
with other baselines. We also notice that some recent works in MBRL modify the benchmarks to
shorten the task horizons and simplify the model problem (Kurutach et al.| 2018)). On the contrary,
we test our algorithm in the full-length tasks. In all experiment, we implement S2VG with H =1
and will do ablation study on H in the next section.

We present experimental results in Figure[I] In a simple task, invertedPendulum, S2VG achieves
the asymptotic result just using 16 epochs. In HalfCheetah, S2VG’s performance is at around 8000
at 200k steps, while all the other baselines’ performance is below 2500. In Reacher, S2VG and
SAC has similar performance. Both of them are better than other algorithms. In Hopper, the final
performance of S2VG is around 3300. The runner-up is SAC whose final performance is around

Under review as a conference paper at ICLR 2020

8000

Reward
|
Average return
Bias

4 E 0 25 s 75 100 135 150 175 200
epoch steps (1le3) epoch

(a) Pendulum (b) HalfCheetah (c) Bias

Figure 2: S2VG with value expansion. We do the ablation study on (a) Pendulum and (b) HalfChee-
tah problem where the x-axis is the training step and the y-axis is the reward. (c) reflects the bias of
the value function in the training procedure.

2000. In swimmer, the performance of S2VG is best.In walker2d, SLBO is slighter better than
S2VG. Both of them achieve the average return 2900 at 300k timesteps.

5.3 DESIGN EVALUATION

In this section, we make the ablation study to understand how much imaginary data we should
include in the algorithm. Remark that in our algorithm, the model is embedded in Soft Bellman
equation in the policy update step, which means we fully trust the model to compute the policy
gradient. While in the value function update, we can either train () and V' using the true data or
the data from imaginary rollout in equation [/} In section [5.2] we apply a relatively conservative
way, i.e., train () and V with true data set, i.e., H = 1 in equation In the following experiment,
we test the algorithm with value expansion, particularly with horizon H = 2 and H = 5. Our
conclusion is that including the imaginary data to train the value function in our algorithm would
hurt the performance, especially in complex tasks.

We demonstrate the performance of S2VG with value expansion in Figure 2} We first test the al-
gorithm on a simple task pendulum from OpenAl gym (Brockman et al.| | 2016) and show the result
in Figure 2a] S2VG with H = 1 converges to the optimal policy within several epochs. When we
increase the value of H, the performance decreases. The agent with H = 5 just starts to learn the
optimal policy at 50 epochs. Then we evaluate the performance of value expansion in a complex
task HalfCheetach from Mujoco environment (Todorov et al.,2012)). In this task, value expansion
with H = 2 and H = 5 does not work at all. The reason would be that the dynamics model of
HalfCheetah introduces more significant model bias comparing to the simple task pendulum. Thus
training both policy and value function in the imaginary data set may cause a large error in policy
gradient. In Figure|2c| we plot the bias of the value function in the training procedure of Figure
We evaluate the value estimation by averaging the estimated value along 100 states sampled from
the replay buffer. Then, we perform Monte Carlo sampling starting from each sampled states with
50 trials and average the discounted return as the true value estimation. We compared the value
estimation results of our proposed methods with or without utilizing value expansion. Comparing
with the S2VG with H = 1, S2VG with H = 2 and H = 5 introduce more value estimation bias in
the learning procedure.

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose a new model-based algorithm to directly incorporate models in the policy
improvement step. Comparing with the existing method, our algorithm is both sample-efficient and
computational-friendly. We test our S2VG on several benchmark tasks and achieve state-of-the-art
performance. We can integrate the existing techniques such as ensemble learning and distributed
reinforcement learning to further improve the learning speed of S2VG in the future work, since they
are orthogonal to our core idea.

Under review as a conference paper at ICLR 2020

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8224-8234, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pp. 4754-4765, 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter
Abbeel. Model-based reinforcement learning via meta-policy optimization. arXiv preprint
arXiv:1809.05214, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465-472,2011.

V Feinberg, A Wan, I Stoica, MI Jordan, JE Gonzalez, and S Levine. Model-based value expan-
sion for efficient model-free reinforcement learning. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), 2018.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International Conference on Machine Learning, pp. 49-58, 2016.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. UAI, 2016.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1352-1361. JMLR. org, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944-2952, 2015.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep rein-
forcement learning. In Conference on Robot Learning, pp. 195-206, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pp. 1071-1079,
2014.

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine
Learning, pp. 1-9, 2013.

Under review as a conference paper at ICLR 2020

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorith-
mic framework for model-based deep reinforcement learning with theoretical guarantees. arXiv
preprint arXiv:1807.03858, 2018.

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and Stefano Er-
mon. Calibrated model-based deep reinforcement learning. 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7559-7566. IEEE, 2018.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions on
Graphics (TOG), 37(4):143, 2018.

Arthur George Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889—1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Machine Learning Proceedings 1990, pp. 216-224. Elsevier,
1990.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4906—4913. IEEE, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. 2008.

Brian D Ziebart, J] Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
maximum causal entropy. 2010.

10

Under review as a conference paper at ICLR 2020

A ENVIRONMENT OVERVIEW AND HYPERPARAMETER SETTING

In this section, we provide an overview of simulation environment in Table|l} The hyperparameter
setting for each environment is shown in Table[2]

Environment Name | Observation Space Dimension | Action Space Dimension | Horizon
Pendulum 3 1 200
InvertedPendulum 4 1 1000
HalfCheetah 17 6 1000
Hopper 11 3 1000
Walker2D 17 6 1000

Table 1: The observation space dimension, action space dimension, and horizon for each simulation
environment implemented in the experiment and ablation study.

Pendulum [InvertedPendulum | HalfCheetah | Hopper [Walker2D
Epoch 50 40 200 300

Policy Learning Rate 0.0003

Value Learning Rate 0.0003 \ 0.001 | 0.001 0.0003

Model
Learning Rate 0.0003 0.0001

(inilnptlrlgp\;aigm) 0.2 0.1 0.4
e
Ne\t/glcl)lrekax(rjcg?tzst};re (256,256)
Networllz/IAO(ricelllitecture (32,16 (256,128) (256,256)
Trairni ﬁgﬁr-ﬂs)rﬂm 5) s 3

Table 2: The hyperparameter used in training S2VG algorithm for each simulation environment.
The number in policy, value, and model network architecture indicate the size of hidden units in
each layer of MLP. The ReLu activation function is implemented in all architecture.

11

	Introduction
	Preliminaries
	MDP
	Maximum entropy reinforcement learning
	Stochastic Value Gradient

	Soft stochastic value gradient method
	Model Learning
	Value function learning
	Policy Learning
	S2VG algorithm

	Related work
	Experimental results
	 Environment
	comparison to state-of-the-art
	Design Evaluation

	conclusion and future works
	Environment Overview and Hyperparameter Setting

