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ABSTRACT

Super Resolution (SR) is a fundamental and important low-level computer vi-
sion (CV) task. Different from traditional SR models, this study concentrates on
a specific but realistic SR issue: How can we obtain satisfied SR results from
compressed JPG (C-JPG) image, which widely exists on the Internet. In general,
C-JPG can release storage space while keeping considerable quality in visual.
However, further image processing operations, e.g., SR, will suffer from enlarging
inner artificial details and result in unacceptable outputs. To address this problem,
we propose a novel SR structure with two specifically designed components, as
well as a cycle loss. In short, there are mainly three contributions to this paper.
First, our research can generate high-qualified SR images for prevalent C-JPG
images. Second, we propose a functional sub-model to recover information for
C-JPG images, instead of the perspective of noise elimination in traditional SR
approaches. Third, we further integrate cycle loss into SR solver to build a hy-
brid loss function for better SR generation. Experiments show that our approach
achieves outstanding performance among state-of-the-art methods.

1 INTRODUCTION

With the marvelous achievement of deep learning (DL) in computer vision (CV), Super Resolution
(SR) attracts much attention for its crucial value as the basis of many high-level CV tasks (Chen
et al., 2017; He et al., 2016). Deep learning Super Resolution (DL-SR) algorithms (Kim et al., 2016;
Lim et al., 2017; Haris et al., 2018; Zhang et al., 2018c;b) strive for finding the complex nonlinear
mapping between low resolution (LR) images and their high resolution (HR) counterparts. However,
the learned model only reflects the inverse of down-scaled mapping, which is used to obtain LR
images from their HR fathers. In other words, if there are some spots/stains in LR inputs, the SR
model will treat them as inherent elements, and the corresponding SR outputs will enlarge these
undesirable details. In reality, on the Internet, JPG compression is probably the most commonly
used pattern for storage space reduction. That is to say, the LR image will be further processed into
a compressed JPG (C-JPG) image. The quality of C-JPG will greatly drop, and the compression
may yield unpleasant artifacts, for example, the presence of obvious partition lines, which vastly
deteriorates the overall visual feeling. Hence, directly solving high-level CV tasks with these C-JPG
images will lead to poor performance. In this paper, we propose a lossless SR model to obtain images
with satisfying quality from the low-quality inputs (C-JPG). The deterioration in C-JPG makes the
SR processing a huge challenge.

In this paper, we focus on the more realistic C-JPG SR problem. Many SR methods regarding to
the real-world condition images have been already developed, such as Zhang et al. (2018a); Yuan
et al. (2018). Among them, some models regard the noise as a kernel estimating problem which
can be solved by addictive Gaussian noises. However, the distribution of most real images are
inconsistent with the hypothetical Gaussian distribution. Taking C-JPG images as a example, the
image compression operation is related to decreasing information from original image instead of
adding specific noises. Other models learn the related information from irrelevant LR-HR images to
obtain similar representations by unsupervised strategy. All of them cannot solve the problem well.

In general, most LR images are produced through performing traditional interpolation method
(mostly bicubic) on their HR fathers. The SR training process should recover this down-scaled map-
ping in a reverse manner. Referring to our C-JPG SR issue, when searching images from Google, a
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Bicubic RCAN Matlab+RCAN Ours

Figure 1: SR generations of four different settings: Bicubic, RCAN, RCAN with denosing input by
Matlab, and our model. We marked some obvious details in red rectangles to indicate the advantage
of our method.

lot of unpleasant details are displayed, especially in the edges of objects. However, the low quality
of image makes former SR methods fail to generate applicable images. As shown in Fig. 1, it is
shown that the SR generations of traditional bicubic interpolation, leading SR algorithm RCAN,
and RCAN with pre-denoising input all demonstrate poor quality with the low quality C-JPG inputs.
Damaged grids are apparently enlarged by the approaches designed for traditional non-JPG datasets.
More specialized analysis can be found in the research of Köhler et al. (2017).

Note that the image pairs with fixed down-scaled kernel have been successfully learnt by SR models,
such as SRGAN (Ledig et al., 2017), EDSR (Lim et al., 2017), and RDN (Zhang et al., 2018c). In
this study, we deliberately build a more complicated dataset by adding JPG format LR images to
the training data. To be specific, we have three kinds of training inputs: C-JPG LR, LR, and HR
images. The whole training process includes two separate functional components: missing detail
recuperative part (JPG recovering stage) and SR mapping learning part (SR generating stage). In
order to remove ring, checkerboard effects, as well as other noise, the former half sub-model is
trained with pre-processed C-JPG LR images as inputs, and original LR ones as the supervised
information. The function of this stage is to recover LR image from its compression counterpart.
Hence, the outputs (LR(C − JPG)) of the first part are greatly improved and free of partition
lines phenomenon. Based on these improved LR images, the latter sub-model continues to learn the
mapping between (LR(C−JPG)) andHR. Therefore, an integrated pipeline for SR representation
between C-JPG and HR images is achieved through the jointly two sub-models.

In short, there are mainly three contributions in this study:

• Our research can be regarded as an universal SR method that generates SR images from C-
JPG inputs, which is empirically proved to be more difficult than SR with non-JPG inputs.

• We regard this specific SR task as a recovering information process for the inputs, compared
with the former denoising assumption including down-sampling and degradation parts. In
this viewpoint, a recovering model is firstly introduced to generate satisfied intermediates
from C-JPG inputs.

• We further propose an integrated SR model training pipeline with two-level data, i.e., C-
JPG LR and LR images, as well as a new integrated loss function. The experimental results
demonstrate our method can surpass traditional SR models.

2 RELATED WORK

2.1 IMAGE SUPER-RESOLUTION

Single image super-resolution (SISR) is a widely concerned task. A bundle of researches is devel-
oped to resolve this challenge, and great achievements have been achieved. At first, researchers
obtain SR generations with an estimated pixel-value interpolation function. For instance, Bicubic
regards pixel spreading in a limited patch as a specified linear parametric function. However, these
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methods are prone to generate fuzzy SR results. Later, depending on external and internal dataset,
two different classes of SR methods (external and internal based models) are developed. In detail,
external models learn the mapping upon many image pairs with various learning algorithms, such as
nearest neighbor (Freeman et al., 2002), kernel ridge regression (Kim & Kwon, 2010), sparse learn-
ing (Yang et al., 2010; 2012), cluster learning (Timofte et al., 2013; Yang & Yang, 2013), manifold
learning (Chang et al., 2004), and neural networks (Dong et al., 2014). Internal models leverage sim-
ilar patches within the image or across scales, and the approaches mainly focus on obtaining more
self-similar patches, such as Ebrahimi & Vrscay (2007); Freedman & Fattal (2011); Irani (2009);
Michaeli & Irani (2013); Yang et al. (2013); Huang et al. (2015).

Recently, deep learning method, which has achieved excellent performance in many high-level CV
tasks, is introduced to SR. DL-SR focuses on learning the relationship between LR image and its
corresponding HR one. To our knowledge, the most cutting-edge SR algorithms DL-SR, thanks to
the powerful learning ability of deep learning. In detail, Dong et al. (2014) firstly propose end-to-end
DL-SR network, SRCNN. Though there are only three convolutional layers in SRCNN, it greatly
surpasses the former traditional methods in peak-signal-to-nosie-ratio (PSNR). Ever since SRCNN,
a number of novel models arise for better generation ability, such as FSRCNN (Dong et al., 2016),
VDSR (Kim et al., 2016), SRGAN (Ledig et al., 2017), EDSR (Lim et al., 2017), RDN (Zhang et al.,
2018c), DBPN (Haris et al., 2018), ESRGAN (Wang et al., 2018), and RCAN (Zhang et al., 2018b).

In DL-SR, the goal is developed into two different aspects, i.e., higher accuracy factor (high PSNR
and SSIM values) and more photo-realistic (better feature similarity) in visual sense. Based on
this consideration, various structures are designed to extract more crucial features from the LR
image. For example, VDSR (Kim et al., 2016) introduces the global residual learning and trains
a multi-scale model through sharing parameters across different scales. Inspired by the stunning
performance of ResNet (He et al., 2016), the SRGAN (Ledig et al., 2017) replaces most basic con-
volutional blocks with residual ones. Moreover, it combines MSE loss, GANs loss (Goodfellow
et al., 2014) loss, perceptual loss (Johnson et al., 2016), and global loss for photo-realistic SR gen-
erations. Experiments show the great power in generating photo-realistic images. Based on the
generator of SRGAN, EDSR (Lim et al., 2017) removes all batch normalization (Ioffe & Szegedy,
2015) to reduce the computation complexity, and replaces MSE loss with L1 norm loss. Moreover,
the model increases the channel number to 256 in each layer and achieves state-of-the-art results in
NTIRE2017 (Timofte et al., 2017). However, there are over 40 million parameters in EDSR. Benefit
from the joint of densely architecture, such as Densely Network (Huang et al., 2017), RDN (Zhang
et al., 2018c) surpasses EDSR in accuracy. RCAN (Zhang et al., 2018b) upgrades the densely block
to residual in residual (RIR) block and combines with channel attention mechanism. To our knowl-
edge, RCAN is the leading method in accuracy pursuing SISR. Meanwhile, some researchers aim to
build a lightweight and accurate model, such as CARN (Ahn et al., 2018), s-LWSR (Li et al., 2019),
and FALSR (Chu et al., 2019). These methods try to reduce parameters and operations while keeping
the decent performance. CARN leverages the cascading mechanism upon a residual block for ob-
taining better feature representation from multi-level layers. At the same time, to decrease the model
size, some residual blocks are replaced by group convolution parts, which is similar to depth-wise
convolution in MobileNets (Howard et al., 2017). The s-LWSR tries to introduce a more flexible
SR model with an additional information pool. Inspired by the NAS (Zoph & Le, 2016), FALSR
automatically searches a desirably lightweight and accurate SR model without human-designing.

2.2 KERNEL UNKNOWN IMAGE SUPER-RESOLUTION

All methods mentioned above try to solve the SR problem on algorithmic LR-HR image pairs. How-
ever, the scale-kernel and degradation function are usually undefined in real-world, which results in
the SR image accompanied by amplified noise.

To overcome this weakness, ZSSR (Shocher et al., 2018) proposes an unsupervised Zero-shot SR
method. Firstly, the method generates many derived HR and LR images from the input and builds a
simple CNN network to learn the mapping between pre-proposed LR image and its HR counterpart.
So far as we know, ZSSR greatly surpasses other supervised SR models on the non-ideal condi-
tion mentioned above. Learning from CycleGAN (Zhu et al., 2017), Yuan et al. (2018) propose a
cycle-in-cycle structure called CincGAN to address the blind SR issue. Inputs with noise are firstly
processed to generate intermediate LR images with less noise. Then, these LR images are jointly
restored and scaled up with the help of an extra pre-trained SR model. Besides, Shi et al. (2019)
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proposes the multi-gram losses in UMGSR to generate perceptual satisfying images. For supervised
method, Xu et al. (2019) propose a new pipeline to learn to generate SR images from the generated
realistic data of raw image.

3 METHOD

Challenge Formulation In general, SISR issue can be formulated as: y = F(x) + z, where y
and x represent HR and LR images respectively. Here, F is the SR mapping in the hypothesis set
space (e.g., neural networks), and z denotes the additional irrelevant information, such as noises and
blurred details. Normally, most SISR models are trained on the standard dataset, where the input
LR is directly downsampled from HR by chosen method (e.g., Bicubic). As a result, we assume
that z equals to zero in the dataset. In this paper, we investigate a specific situation where the LR is
low-quality C-JPG image. This situation commonly exists on the Internet, due to reducing storage
or protecting copyright. Since LR inputs are firstly deteriorated to low-quality images, we redefine
the above SISR formulation as: y = F(x+w). Here, w refers to the missing information due to the
compression.

3.1 NETWORK ARCHITECTURE

Based on the specialization of low-quality JPG-SR issue, our model can be separated into two func-
tional stages: JPG recovering and SR generating. Hence, our SISR formulation consists in two
stages:

ILR = G(IC−JPG), ISR = F(ILR). (1)
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Figure 2: The illustration of the proposed JPG-SR model. The total model can be divided into the
JPG recovering part, the SR generating part, and the reconstruction loss part.

As shown in Figure 2, training data are: C-JPG LR images (LR(C − JPG)); normal LR images
(LR(normal)), which provide supervised information in the first stage; and HR images, which are
the supervised information in the second stage.

Stage I: JPG Recovering. For low quality JPG images, the compression operation discards most of
useful details. As a result, to rebuild details according to the original LR image plays a key role in
this stage. To this end, we design a specialized network to learn the mapping betweenLR(C−JPG)
and LR(normal).

The comparison of LR(C − JPG) and LR(normal) is shown in Figure 3. Given the original LR
image, we firstly re-save it to its low quality JPG version as our training material. In detail, the JPG
compression abandon information in Cb/Cr channel on every 8 × 8 patch. As shown in Figure 3,
the size of the original LR image is 82K bytes, while its C-JPG version (80 percent lower in quality)
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LR (Urban100) (a) LR 82K

(b) C-JPG (20% quality) 12K

Figure 3: The comparison of compressed JPG image and its LR counterpart. We choose a typical
building image from Urban100 dataset (Huang et al., 2015). Given the LR image, we leverage
Pillow to compress it with 80 percent lower in quality. Benefiting from the compression process,
C-JPG takes only 12K storage space, compared to the 82K LR image. However, the visual feeling
of C-JPG displays more unpleasant details than LR.

is only 12K bytes. However, the quality of image are greatly decreased. This phenomenon can
be clearly inferred from the visual contrast in Figure 3 that mussy details are generated in C-JPG
image, such as the irregular shape of windows and the blurry object edge. Normally, to achieve better
balance between storage cost and customer satisfaction, many websites provide images with partial-
quality JPG ones. When performing SR operation on these images, the effect of these deuterogenic
noises is enlarged, leading to aggressively unpleasant feeling in visual.

Since this recovering task shares similar goal with SR task, that is, trying to restore accurate infor-
mation in pixel level, we employ an effective SR model, s-LWSR (Li et al., 2019), to address the
details recovering issue. Learning from stage I in Figure 2, LR(C-JPG) images firstly go through the
recovering model. In detail, a simple convolutional layer transfers the basic RGB layers into fixed
numbers. The main body part of recovering stage shares the same structure with our SR generat-
ing: stacking 26 residual blocks with additional information pool to intensively extract information.
Experiments in s-LWSR have proven the powerful learning ability of this architecture. Finally, a
convolution layer inversely realize the transformation between middle layers and final 3 RGB lay-
ers.

Eventually, the recovered LR image for C-JPG achieves visual satisfactory in certain degree, and
the artificial trace appears smooth, which greatly reduces the pixel inconsistency. Furthermore, SR
generation will benefit from these better quality LR input deriving from C-JPG in stage I.

Stage II: SR Generating. Because SR generating acts as a complementary task and is not the main
contribution in our paper, we just bring in a state-of-the-art SR method called s-LWSR (Li et al.,
2019) in our model.

As is mentioned, s-LWSR leverages the combination of multi-level information from the front half
of model. More details are shown in Figure 4. Specifically, chosen layers are stacked to form the
information pool, which transfers the combination of abundant low-level information to high-level
layers through a series of activation operations.

Thanks to stage I, the intermediate results partly deblur artificial noise brought by JPG compression
process. During SR stage, intermediate images go through a similar model as recovering stage.
However, in the last part, a specified upsampling block is applied to scale up the image to the ideal
one. Normally, 2×, 3×, 4×, and 8× are the most frequent SR tasks. Some models, such as MDSR
(Lim et al., 2017), RCAN (Zhang et al., 2018b), can deal with all these scale-up tasks upon only
one block with sharing parameters. In this paper, following most SR algorithms, we deal with single
scale-up factor 4× SR problem. As a result, the upsampling stage in our model contains two sub-
pixel interpolation layers as in ESPCN (Shi et al., 2016). In detail, each upsample layer performs
one 2× scale-up. Finally, we obtain SR generations with satisfactory visual quality.
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Figure 4: The s-LWSR architecture (Li et al., 2019).

3.2 LOSS FUNCTIONS

The framework of our approach includes two typical tasks: JPG recovering and SR generating,
involving three similarity loss functions as follows.

In stage I, each pixel in C-JPG image corresponds to one counterpart in non-JPG LR image. The
aim is to recover accurate value in pixels. As a result, we choose the following L1 loss:

L1
L1(I

C−JPG, ILR) =
1

WH

W∑
w=1

H∑
h=1

∥∥ILR
wh −GRec(I

C−JPG
wh )

∥∥ , (2)

where W and H refer to the width and height of image respectively. GRec is the transformation of
stage I.

On the basis of pre-processed C-JPG, we further scale the intermediate (LRrec) up to the default size
of HR image through SR operation. Since our SR model pursues a better accurate SR generation,
loss function in stage II inherits from that of former outstanding SR models:

L2
L1(I

LRrec , IHR) =
1

s2WH

sW∑
w=1

sH∑
h=1

∥∥∥IHR
sw×sh −GSR(I

LRrec

wh )
∥∥∥ (3)

where s is the scale factor.

Different from normal SR task, C-JPG SR involves more difference between the input C-JPG and
its final supervised HR image. Inspired by marvelous development of unsupervised style-to-style
learning, like CycleGAN (Kim et al., 2017), CinCGAN (Yuan et al., 2018), and WESPE (Ignatov
et al., 2018), we apply cycle loss as the third component in our final loss function. Taking CycleGAN
as an example, images in different domains are transferred with inconsistent contents. Cycle loss
can keep same content of the original image, while changing the style features, such as colors and
texture. In this paper, SR generations are downscaled to input size to further compare with the cor-
responding non-JPG LR images. Here, we also use L1 loss, and Bic refers to bicubic interpolation
downsampling.

L3
L1(I

SR, ILR) =
1

s2WH

sW∑
w=1

sH∑
h=1

∥∥ILR
wh −Bic(ISR

sw×sh)
∥∥ . (4)

The final loss function is the combination of three L1 losses above with equal weight:

Ltotal=L1
L1(I

C−JPG, ILR)+L2
L1(I

LRrec , IHR)+L3
L1(I

SR, ILR), (5)
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4 EXPERIMENTS

In this section, we first describe the implementation details of our model. Then, we further analyze
effects of all the proposed strategies in our model by ablation study. Finally, we compare our method
with other leading SR models to validate the advantage.

4.1 IMPLEMENTATION DETAILS

Dataset and Pre-processing Models. As mentioned in the modeling part, the training process
is based on compressed LR (C-JPG), LR, and HR images. Following other leading SR methods,
we choose DIV2K Agustsson & Timofte (2017) as our training dataset. There are 800 HR-LR
training image pairs and 100 validation images. To get the C-JPG LR images, all LR images are
firstly processed by pillow package in python. In order to exhibit more contrast results with different
compression levels, we respectively save JPG images with 20% and 50%. Moreover, we pre-process
C-JPG with MatLab2018, which contains the default deblurring model. All images (C-JPG LR and
LR) are processed by data augmentation strategy which randomly rotates images by 90◦, 180◦, 270◦
and flips horizontally.

Training Settings. During training, images in C-JPG and LR dataset are randomly cropped with
size of 48 × 48, while crop HR images with size of 192 × 192. Considering the computation
and time consumption, we set batch size as 16. Testing experiments are done on most popular SR
datasets: Set5 Bevilacqua et al. (2012), Set14 Zeyde et al. (2010), BSD100 Martin et al. (2001), and
Urban100 Huang et al. (2015). Moreover, in order to prove the practical effectiveness, we perform
our approach on the downloaded JPG images from the Internet. For both of the two stages, we
apply Adam optimizer (Kingma & Ba, 2014), where β1 = 0.9 and β2 = 0.999. The learning rate is
initialized as 1× 10−4 and half decreased every 2× 102 iterations of back-propagation. Our model
is trained over 1 × 103 times until reaching its convergence. We implement our model by Pytorch
with a Titan 2080Ti GPU.

Evaluation Standards. For accurate related SR models, the most common evaluation standards are
PSNR and SSIM Wang et al. (2004). Aligning with these algorithms, we evaluate our SR results on
Y channel (i.e., luminance) of transformed YCbCr space instead of direct RGB channels.

4.2 ABLATION STUDY

To clarify the effectiveness of the recovering stage in our model, we apply ablation study to our
model. Two strategies are employed. First, the recovering stage is removed from the model. Second,
we use denoising with Matlab2018 to replace the recovering stage.

4.2.1 STRAIGHT TRAINING

The recovering stage plays the crucial role in our model. In this part, we remove it from the model.
As a result, C-JPG inputs directly go through the stage II: SR generating. Correspondingly, we
just train the model with L2

L1 loss. The remaining architecture is the same. As shown in Fig.5,
there are a lot of undesired artifacts compared with C-JPG model. Both of the PSNR and the SSIM
decrease a large number. In fact, single model is hard to solve SR and recovering the C-JPG image
simultaneously. The huge difference in supervised information leads to large variance among middle
layers, which represent ideal details serving the final SR model. More comparisons are shown in the
Appendix.

4.2.2 PRE-DENOISING

To further analyze the learning ability of our recovering stage, we replace it by the denoising code
in Matlab2018. The C-JPG images are firstly processed to a set of clean intermediate inputs:
IC−JPG → Iinter. Then, we train the SR model with Iinter and IHR pairs. The correspond-
ing results are shown in Fig.5. It clearly illustrates that pre-denoisng operation can remove many
artifacts, but it is still obviously worse than our model. In our opinion, more details should be re-
covered instead of just removing noise. Denoising only makes these C-JPG inputs clearer, while
recovering brings accurate information to C-JPG images.
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Table 1: 4× scaled performance comparison on the validation datasets among different methods
(PSNR/SSIM). Scores in bold indicate the best performance. M refers to pre-processed inputs, and
C-JPG means that the model is trained on 20% quality compressed JPG dataset.

Methods Set5 Set14 BSD100 Urban100
DBPN 24.63/0.6437 23.33/0.5629 23.79/0.5540 21.26/0.5372

DBPN(M) 25.80/0.7135 24.17/0.6060 24.42/0.5735 22.08/0.5845
RCAN 24.45/0.6355 23.17/0.5559 23.65/0.5367 21.12/0.5302

RCAN(M) 25.76/0.7123 24.15/0.6051 24.40/0.5725 22.04/0.5836
s-LWSR32 24.73/0.6487 23.44/0.5669 23.86/0.5467 21.39/0.5424

s-LWSR32(M) 25.82/0.7153 24.21/0.6087 24.43/0.5742 22.10/0.5860
s-LWSR32(C-JPG) 26.34/0.7488 24.58/0.6275 24.63/0.5874 22.54/0.6186

Ours 26.37/0.7525 24.61/0.6286 24.64/0.5882 22.55/0.6208

4.3 COMPARISON WITH LEADING METHODS

We provides quantitative evaluation of our model on four public benchmark datasets: Set5 (Bevilac-
qua et al., 2012), Set14 (Zeyde et al., 2010), BSD100 (Martin et al., 2001), and Urban100 (Huang
et al., 2015). Because our research is SR generation from compressed JPG image, we firstly pro-
cess images of the mentioned datasets to 20% quality JPG ones. Then, we compare our model with
the sate-of-the-art SR methods: EDSR (Lim et al., 2017), DBPN (Haris et al., 2018), and RCAN
(Zhang et al., 2018b). We present all comparison results in Figure 5 and Table 1. The new pro-
posed method surpasses all the former methods in a large margin. More slippy details and structured
shapes exist in our SR generations. Our model successfully recovers detailed features and edges of
IHR and exhibits satisfactory results compared with former SR models. More results are shown in
the Appendix.

DBPN (C-JPG)

DBPN (M)

RCAN (C-JPG)

RCAN (M)

s-LWSR

(Training)

Ours

HR

Bicubic

Figure 5: The comparison of C-JPG SR model and other SR methods. Inputs are divided into 20%
quality JPG images (C-JPG) and Matlab pre-denosing images (M). Details show that our model
achieves the best performance compared with others.

5 CONCLUSION

In this paper, we propose a lossless SISR model for low-quality C-JPG images which is exten-
sive used on the Internet. Based on our redefined C-JPG SR pipeline, two functional stages are
integrated to fulfill the SR task on C-JPG images. In addition, we employ cycle loss to guarantee
the consistency after above two stages. The intensive experiments demonstrate that our model can
learn capable representations of LR inputs for C-JPG SR task and outperform other cutting edges
in SISR. More exploration should be executed on other CV tasks with C-JPG images inputs as the
future work.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 126–135, 2017.

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 252–268, 2018.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. BMVA
press, 2012.

Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-resolution through neighbor embedding. In
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., volume 1, pp. I–I. IEEE, 2004.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2017.

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, Jixiang Li, and Qingyuan Li. Fast,
accurate and lightweight super-resolution with neural architecture search. arXiv preprint
arXiv:1901.07261, 2019.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In European conference on computer vision, pp. 184–199.
Springer, 2014.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
neural network. In European conference on computer vision, pp. 391–407. Springer, 2016.

Mehran Ebrahimi and Edward R Vrscay. Solving the inverse problem of image zooming using self-
examples. In International Conference Image Analysis and Recognition, pp. 117–130. Springer,
2007.

Gilad Freedman and Raanan Fattal. Image and video upscaling from local self-examples. ACM
Transactions on Graphics (TOG), 30(2):12, 2011.

William T Freeman, Thouis R Jones, and Egon C Pasztor. Example-based super-resolution. IEEE
Computer graphics and Applications, 22(2):56–65, 2002.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Deep back-projection networks
for super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1664–1673, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

9



Under review as a conference paper at ICLR 2020

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from trans-
formed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5197–5206, 2015.

Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Wespe:
weakly supervised photo enhancer for digital cameras. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 691–700, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Daniel Glasner Shai Bagon Michal Irani. Super-resolution from a single image. In Proceedings of
the IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 349–356, 2009.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1646–1654, 2016.

Kwang In Kim and Younghee Kwon. Single-image super-resolution using sparse regression and
natural image prior. IEEE transactions on pattern analysis and machine intelligence, 32(6):1127–
1133, 2010.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp. 1857–1865. JMLR. org, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Computer Science,
2014.
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A APPENDIX

HR DBPN(C-JPG) RCAN(C-JPG) DBPN-M RCAN-M Ours

Figure 6: More comparisons of our C-JPG SR model and other leading SR methods. Inputs chosen
from BSD100 Martin et al. (2001) and Urban100 Huang et al. (2015) are divided into 20% quality
JPG images (C-JPG) and Matlab pre-denosing images (M).
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Bicubic DBPN(C-JPG) RCAN(C-JPG) RCAN-M Ours

Figure 7: More comparisons of our C-JPG SR model and other leading SR methods. Inputs chosen
from the Internet are divided into 20% quality JPG images (C-JPG) and Matlab pre-denosing images
(M). It can be seen that our model achieves the best performance compared with others.
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