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Abstract

The mechanisms used by the human visual sys-
tem and artificial convolutional neural networks
(CNN) to understand images are vastly different.
The two systems have different notions of hard-
ness, meaning the set of images which appear to
be ambiguous and hard to classify are different.
In this paper, we answer the following question:
are there measures we can compute in the trained
CNN models that correspond closely to human
visual hardness? We employ human selection
frequency, the frequency with which human an-
notators label a given image, as a surrogate for
human visual hardness. This information is re-
cently made available on the ImageNet validation
set (16). The CNN model confidence does not
correlate well with this human visual hardness
score, and it is not surprising given that there
are calibration issues in the models. We propose
a novel measure known as angular visual hard-
ness (AVH). It is the normalized angular distance
between the image feature embedding and the
weights of the target category. We demonstrate
that AVH is strongly correlated with human visual
hardness across a broad range of CNN architec-
tures. We conduct an in-depth scientific study and
test multiple hypotheses to draw this conclusion.
We observe that CNN models with the highest val-
idation accuracy also have the best AVH scores.
This agrees with the earlier finding that the state-
of-art (SOTA) models are improving classification
of harder examples. We also observe that during
the training of CNNs, AVH reaches a plateau in
early stages even as the training loss keeps im-
proving. We conjecture the different causes for
such plateau of easy and hard examples, which
suggests the need to design better loss functions
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that can target harder examples more effectively
and improve SOTA accuracy.

1. Introduction
Convolutional Neural Networks (CNN) have achieved rapid
progress on many computer vision tasks such as image clas-
sification (8), face recognition, and scene analysis. On large
benchmark datasets such as ImageNet (3) they have even
surpassed human-level accuracy. Despite this, these models
are no match to the human visual system when it comes
to other measures such as robustness and few-shot learn-
ing (1; 21; 15). This is not surprising given that they have
entirely different processing mechanisms. Due to the black-
box nature of CNNs and our limited understanding of the
human brain, it is challenging to map out these differences
precisely. In this paper, we focus on one key aspect, viz.,
how different are the hard examples for these two systems?
By hard examples, we mean the the set of images that appear
ambiguous and are error prone.

Much of current deep learning research focuses on mea-
suring the hardness of an image sample for deep models
rather than for a human. For example, hardness for models
can be defined using the loss value (18), relative Euclidean
distance (17; 20) and gradient norm (11). On the other
hand, there is a rich history in cognitive and neuroscience
communities to understand human visual perception (6; 2).
Many works focus on mechanisms used by the human brain
to translate visual information into mental representations.
These representations are subject to many correspondence
differences and errors, and thereby are not isomorphic to the
real world (13). They can be affected by the ambiguity of
different semantics (10) such as occlusion, distortion, mo-
tion blur, and inherent similarity among objects. However,
such detailed semantic information is typically not present
in large-scale image benchmarks used to train the CNN
models.

A natural approach to measure human visual hardness is
the human selection frequency, i.e. the rate with which
human annotators select a specific image as belonging to
a certain category. Unfortunately, most publicly available
benchmarks do not have this information. But thanks to the
recent efforts of (16), we now have this information on the
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ImageNet test set. We employ this new dataset in this paper
and as a result, come up with many novel insights. In addi-
tion, we propose a novel measure that closely aligns with
the human selection frequency, and hence, can be employed
in other datasets where such information is not available.

Our Contributions: We conduct an in-depth exploratory
study on the ImageNet testset with newly available human
selection frequency information. We employ the scientific
method and carefully test multiple hypotheses and present
our findings.

• We observe that the CNN model confidence and human
selection frequency are not strongly correlated. The CNN
model tends to be overconfident and this is a well known
calibration issue (7).

• We propose a new measure known as angular visual hard-
ness (AVH) described below.

• We observe that AVH is strongly correlated with human
selection frequency across a wide range of CNN mod-
els. To the best of our knowledge, this is the first model
score that correlates strongly with human visual hardness.
Hence, it can serve as its proxy on datasets where such
information is not available.

• We observe that the state-of-art (SOTA) models have the
highest AVH score. This implies that improving SOTA
accuracy will entail improving accuracy of hard exam-
ples. AVH serves as a good measure to mine such hard
examples in any dataset.

• We observed the evolution of AVH score during training
of CNN models. It plateaus early in training even as the
training (cross-entropy) loss function keeps improving.
This suggests the need to design better loss functions that
can improve performance on hard examples.

Angular visual hardness: We propose a new score for a
given CNN model based on the normalized angular distance
between the image feature embedding and the weights of
the target category. The normalization takes into account
the angular distances to other categories. We argue that the
semantic ambiguity that affects human visual hardness is
strongly correlated with this score. This is inspired by the
intuition in (14) that the angle between image feature em-
bedding and the weights of the target class accounts for the
inter-class semantic differences while the `2 norm of the fea-
ture embedding accounts for intra-class variation. (14) used
this insight to try to improve the generalization of the model.
On the other hand, we use it to study the correspondence
with human visual hardness.

2. A Discovery of the Bridge: Angular Visual
Hardness

In order to quantify Human Visual Hardness and Model
Predictions for convenience purposes in experiments, we

use corresponding surrogates which are formally defined as
the following throughout the paper.

Definition 1 (Model Confidence). We define model confi-
dence on a single sample as the probability score of the true
objective class output by the CNN models, eWyx∑C

i=1 eWix
.

We employ the standard image benchmark ImageNet(4) in
all following experiments. Particularly, we take advantage
of the Human Selection Frequency information for valida-
tion images provided by the recent paper (16). Recall that
such information serves as a proxy for Human Visual Hard-
ness. Besides, in order to verify that the our experimental
results hold consistently across models instead of a particu-
lar model, we use four popular ImageNet pre-trained models
AlexNet (12), VGG19 (19), DenseNet121 (9), ResNet50 (8).
We select ResNet50 as the representative model for some
experiments.

2.1. Gap between Human Visual Hardness and Model
Predictions

Studying the precise connection or gap between human vi-
sual hardness and model predictions is not feasible because
data collection involving human labelling or annotation re-
quires large amount of work. In addition, usually those
human data is application or dataset specific, which makes
the scalability of this study even worse. Therefore, all the
testing and experiments we design are at best effort given
the limited resources. That is exactly another motivation
for us to bridge the gap between Human and models be-
cause models predictions require minimum costs compared
to human efforts.

An interesting observation in (16) shows that Human Se-
lection Frequency has strong influence on the Model Con-
fidence. Specifically, examples with low Human Selection
Frequency tends to have relatively low Model Confidence.
Naturally we examine if the correlation between Model Con-
fidence and Human Selection Frequency is strong. Specifi-
cally, all ImageNet validation images are evaluated by the
pre-trained models. The corresponding output is simply the
Model Confidence on each image. In addition, because each
such image is provided with the frequency of being identi-
fied as the labeled class out of 50 workers who manually
perform the labeling task, i.e. Human Selection Frequency.

The left plot in figure 1 presents a two-dimensional his-
togram for the correlation visualization. The x-axis repre-
sents Human Selection Frequency, and the y-axis represents
Model Confidence. Each bin exhibits the number of images
which lie in the corresponding range. We can observe the
high density at the right corner, which means the majority
of the images have both high human and model accuracy.
However, there is a considerable amount of density on the
range of medium human accuracy but either extremely low
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Figure 1. `2 norm and angle of the embedding of an easy sample
and a hard sample v.s. iteration number.

or high model accuracy. Overall, Model Confidence and
Human Selection Frequency are not in direct proportion and
thereby not strongly correlated.

2.2. Bridging the Gap

Followed by identifying the gap in last section, we naturally
propose a hypothesis:
Hypothesis 2. There exists some characteristic in CNN
Models strongly correlates with Human Selection Frequency
to bridge the gap?

In this section, We first provide two predictions and test
them accordingly. Denote Sn as the unit n-sphere, formally,
Sn = {x ∈ Rn+1|‖x‖2 = 1}. Below by A(·, ·), we de-
note the angular distance between two points on Sn, i.e.,
A(u,v) = arccos( 〈u,v〉

‖u‖‖v‖ ). Let x be the feature embed-
dings input for the layer before the last one of the classifier
of the pretrained CNN models, eg. FC2 for VGG19. Let C
be the number of classes for a classification task. Denote
W = wi|0 < i ≤ C} as the set of weights for all C classes
in the final layer of the classifier.
Definition 3 (Angular Visual Hardness (AVH)).
AVH, for any x, is defined as, AVH(x) =
A(x,wy)∑C

i=1 A(x,wi),which
wy represents the weights

of the target class.

Prediction 1: ‖x‖2 has a strong correlation with Human
Selection Frequency

(14) conjectures that ‖x‖2 accounts for intra-class Hu-
man/Model Confidence. Particularly, if the norm is larger,
the prediction from the model is also more confident, to
some extent. Therefore, we conduct similar experiments
like previous section to demonstrate the correlation between
‖x‖2 and Human Selection Frequency. Initially, we com-
pute the ‖x‖2 for every validation sample for all models.
Then we normalize ‖x‖2 within each class. The middle
plot in figure 1 uses a two-dimensional histogram to show
the correlation for all the validation images. Given that the
norm has been normalized with each class, naturally, there
is notable density when the norm is 0 or 1. Except for that,
there is no obvious correlation between ‖x‖2 and Human
Selection Frequency.

We further verify if presenting all samples across 1000 dif-

ferent classes affects the visualization of the correlation.
According to WordNet (5) hierarchy, we map the original
1000 fine-grained classes to 45 higher hierarchical classes.
Figure 7 exhibits the relationship between Human Selection
Frequency and ‖x‖2 for three representative higher classes
containing 58, 7, 1 fine-grained classes respectively. Noted
that there is still not any visible direct proportion between
these two variables across all plots.

Prediction 2: AVH(x) has a strong correlation with Hu-
man Selection Frequency

We test the correlation between AVH(x) and Human Se-
lection Frequency. Correspondingly, after evaluating each
validation sample on pre-trained models, we extract feature
embeddings x and also the class weights W to compute
AVH(x). Noted that we linear scale the range of AVH(x)
to [0, 1].

The plot on the right in Figure 1 shows strong correlation
between AVH(x) and Human Selection Frequency for vali-
dation images. One intuition behind this correlation is that
the class weights W might corresponds to human seman-
tic for each category and thereby AVH(x) corresponds to
human semantic categorization of an image. Embedding `2
Norm ‖x‖2 is on the other hand irrelevant.

In order to test if the strong correlation holds for all models,
we perform the same experiments on AlexNet, VGG19 and
DenseNet121. Figure 6 shows the strong correlation of
AVH(x) and Human Selection Frequency consistently.

3. Dynamics of AVH during Training
After discovering the strong correlation of human visual
hardness and AVH score, a natural question would be: What
role does AVH play during the training process? Optimiza-
tion Algorithms are used to update weights and biases i.e.
the internal parameters of a model to improve the training
loss. Both the angles between feature embedding and clas-
sifiers and the L2 norm of the embedding can influence
the loss. While it is well-known that the training loss or
accuracy keeps improving but it is not obvious what would
be the dynamics of the angles and norms separately during
training. we design the experiments to observe the training
dynamics of various network measurements like ‖x‖2 and
AVH(x).

Experiment Settings For datasets and models, we use ex-
actly the same setting as the experiments in ??. Neverthe-
less, observing training dynamics involves training models
from scratch on ImageNet training set instead of directly
using the pre-trained models. Therefore, we follow the
standard training process of AlexNet (12), VGG19 (19),
DenseNet121 (9), ResNet50 (8). For consistency, we train
all four models for 90 epochs and decay the initial learning
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Figure 2. The top three plots show the number of Epochs v.s. Aver-
age `2 norm across all ImageNet validation samples. The middle
three plots represent number of Epochs v.s. Average AVH(x).
The bottom ones present number of Epochs v.s. Model Accuracy.
From left to right, we use AlexNet, Vgg19 and ResNet50. The
plots for DenseNet are in Appendix.

rate by a factor of 10 every 30 epochs. The initial learning
rate for AlexNet and VGG19 is 0.01 and for DensetNet121
and ResNet50 is 0.1. We split all the validation images into
5 bins based on their human selection frequency, respec-
tively [0.0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0] for
experiments on dynamics under different human selection
frequency. Note that for all the figures in this section, Epoch
starts from 1.

Observation 1: Dynamics of ‖x‖2 and model accuracy
are similarly increasing Figure 2 presents the dynamics
of the average ‖x‖2 and the dynamics of the accuracy for
testing samples vary in 90 epochs during the training on four
architectures. Note that we are using the validation data for
dynamics observation and thereby have never fit them into
the model. The average ‖x‖2 increases with a small initial
slope but it suddenly climbs after 30 epochs when the first
learning rate decay happens. The accuracy curve is very
similar to that of the average ‖x‖2. The above observations
are consistent in all models.

Observation 2: AVH(x) hits a plateau very early even
when the accuracy or loss is still improving Figure 2 ex-
hibits the change of average AVH(x) for testing samples in
90 epochs of training on four models. The average AVH(x)
for AlexNet and VGG19 decreases sharply at the beginning
and then starts to bounce back a little bit before converg-
ing. However, the dynamics of the average AVH(x) for
DenseNet121 and ResNet50 are different. They both de-
crease slightly and then quickly hits a plateau in all three
learning rate decay stages. But the common observation
is that they all stop improving even when ‖x‖2 and model
accuracy are increasing. However, AVH(x) is more impor-
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Figure 3. The top three plots show the number of Epochs v.s. Av-
erage `2 norm across ImageNet validation samples which are split
into five bins based on human selection frequency information.
The middle three plots represent number of Epochs v.s. Average
AVH(x). The bottom ones present number of Epochs v.s. Model
Accuracy. We use AlexNet, Vgg19 and ResNet50.

tant than ‖x‖2 because during inference it is the key factor
deciding which class the input sample is classified to The
dynamics for ‖x‖2 should be monotonically decreasing so
we raise the question that is the cross-entropy loss the best
for CNNs?

Observation 3: AVH(x)’s correlation with human selec-
tion frequency holds across models and throughout the
training process. Figure 3 demonstrates the change of ‖x‖2
and AVH(x) similar to Figure 2, but average over testing
samples in five human selection frequency bins separately.
We can observe that for ‖x‖2, the gaps between the samples
with different human visual hardness are not obvious in
ResNet50 and DenseNet121. Besides and closed near con-
vergence. However, for AVH(x), such gaps are significant
and consistent across every single model during the whole
training process.

Observation 4: AVH(x) is an indicator of model’s gen-
eralization ability From Figure 2 and Figure 3, we ob-
serve that better models have better AVH(x) throughout the
training process and also across samples under different hu-
man selection frequency. For instance, Alexnet is the worst
model and its overall AVH(x) or average AVH(x) on each
of five bins are worse than those of the other three models.
This observation aligned with the earlier observations of
(16) that better models also generalize better on samples
across different human selection frequencies.
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Figure 4. Average `2 norm and angle of the embedding across all
testing samples v.s. iteration number.
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Figure 5. `2 norm and angle of the embedding of an easy sample
and a hard sample v.s. iteration number.

A. Additional Experiments
Figure 4 illustrates how the average norm of the feature
embedding and angles between feature and class embedding
for testing samples vary in 60 iterations during the training
process. The average norm increases with a large initial
slope but it flattens slightly after 10 iterations. On the other
hand, the average angle decreases sharply at the beginning
and then becomes almost flat after 10 iterations.

Moreover, we explore the difference between norm and
angle change for easy and hard human examples in more
details. Figure 5 also plots the angle and norm changes for
two examples, which are hard and easy for human visual-
ization, in the training phase. Note that both examples are
testing data and thereby have never fit into the model. We
can see that for the angle, both of them drop largely initially
and then the angle for the easy one converges to a much
lower value. For the norm, both of them are increasing
drastically at an early stage but that for the harder example
keeps climbing even when that for the easy one saturates.
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Figure 6. The three plots present the correlation between Hu-
man Selection Frequency and ‖x‖ using AlexNet, VGG19 and
DenseNet121.

0.0 0.2 0.4 0.6 0.8 1.0
Human Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

L2
 N

or
m

0

2

4

6

8

10

12

14

# of Sam
ples

0.0 0.2 0.4 0.6 0.8 1.0
Human Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

L2
 N

or
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

# of Sam
ples

0.0 0.2 0.4 0.6 0.8 1.0
Human Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

L2
 N

or
m

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

# of Sam
ples

Figure 7. `2 norm of the embedding v.s. human selection frequency
under different class granularity (according to WordNet hierarchy).
From left to right, there are 58, 7, 1 classes respectively. The
human selection frequency is therefore computed based on the new
class granularity.


