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Simplicity bias in the parameter-function map of deep neural networks
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Abstract

The idea that neural networks may exhibit
a bias towards simplicity has a long history
(1; 2; 3; 4). Simplicity bias (5) provides a way
to quantify this intuition. It predicts, for a broad
class of input-output maps which can describe
many systems in science and engineering, that
simple outputs are exponentially more likely to
occur upon uniform random sampling of inputs
than complex outputs are. This simplicity bias
behaviour has been observed for systems rang-
ing from the RNA sequence to secondary struc-
ture map, to systems of coupled differential
equations, to models of plant growth. Deep neu-
ral networks can be viewed as a mapping from
the space of parameters (the weights) to the
space of functions (how inputs get transformed
to outputs by the network). We show that this
parameter-function map obeys the necessary
conditions for simplicity bias, and numerically
show that it is hugely biased towards functions
with low descriptional complexity. We also
demonstrate a Zipf like power-law probability-
rank relation. A bias towards simplicity may
help explain why neural nets generalize so well.

1. Introduction to simplicity bias
In a recent paper (5), an inequality inspired by the coding
theorem from algorithmic information theory (AIT) (6),
and applicable to computable input-output maps was de-
rived using the following simple procedure. Consider
a map f : I → O between NI inputs and NO outputs.
The size of the inputs space is parameterized as n, e.g.
if the inputs are binary strings, then NI = 2n. Assum-
ing f and n are given, implement the following simple
procedure: first enumerate all 2n inputs and map them to
outputs using f . Then order the outputs by how frequently
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they appear. Using a Shannon-Fano code, one can then
describe x with a code of length − log2 P (x) + O(1),
which therefore upper bounds the Kolmogorov complex-
ity, giving the relation P (x) ≤ 2−K(x|f,n)+O(1). The
O(1) terms are independent of x (but hard to estimate).
Similar bounds can be found in standard works (6). As
pointed out in (5), if the maps are simple, that is condi-
tion 1: K(f) + K(n) � K(x) + O(1) holds, then be-
cause K(x) ≤ K(x|f, n) +K(f) +K(n) +O(1), and
K(x|f, n) ≤ K(x) +O(1), it follows that K(x|f, n) ≈
K(x) + O(1). The problem remains that Kolmogorov
complexity is fundamentally uncomputable (6), and that
the O(1) terms are hard to estimate. However, in refer-
ence (5) a more pragmatic approach was taken to argue
that a bound on the probability P (x) that x obtains upon
random sampling of inputs can be approximated as

P (x) ≤ 2−aK̃(x)−b, (1)

where K̃(x) is a suitable approximation to the Kol-
mogorov complexity of x. Here a and b are constants
that are independent of x and which can often be deter-
mined from some basic information about the map. These
constants pick up multiplicative and additive factors in
the approximation to K(x) and to the O(1) terms.

In addition to the simplicity of the the input-output map
f (condition (1)), the map also needs to obey conditions
(2) Redundancy: that the number of inputs NI is much
larger than the number of outputs NO, as otherwise P (x)
can’t vary much; 3) Large systems where NO � 0, so
that finite size effects don’t play a dominant role; 4) Non-
linear: If the map f is linear it won’t show bias and
5) Well-behaved: The map should not have a significant
fraction of pseudorandom outputs because it is hard to find
good approximations K̃(x). For example many random-
number generators produce outputs that appear complex,
but in fact have low K(x) because they are generated by
a relatively simple algorithms with short descriptions.

Some of the steps above may seem rather rough to AIT
purists. For example: Can a reasonable approximation to
K(x) be found? What about O(1) terms? And, how do
you know condition 5) is fulfilled? Notwithstanding these
important questions, in reference (5) the simplicity bias
bound (1) was tested empirically for a wide range of dif-
ferent maps, ranging from a sequence to RNA secondary
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structure map, to a set of coupled differential equations, to
L-systems (a model for plant morphology and computer
graphics) to a stochastic financial model. In each case the
bound works remarkably well: High probability outputs
have low complexity, and high complexity outputs have
low probability (but not necessarily vice versa). A simple
matrix map that allows condition 1 to be directly tested
also demonstrates that when the map becomes sufficiently
complex, simplicity bias phenomena disappear.

14

further that b can be ignored for this derivation which we motivate below, then a has a simple approximation, shown431

as equation (4) in the main text:432

a ⇡ log2(NO)

max
x2O

(K̃(x))
(38)

Using this equation we can either find the gradient a from knowing NO, or find NO from knowing a. Alternatively,433

if we have a way of estimating max(K̃(x)), as well as the gradient a, then we can infer NO directly. Since NO is very434

hard to estimate for large maps where exhaustive enumerations are not possible, this method may be a way to get a435

quick estimate of NO based on some limited sampling.436

Estimating b437

As a first approximation, we note that if a map is strongly biased towards simple outputs, then we expect the largest438

P (x) for outputs x with complexity for K̃(x) = min
x

(K̃(x)) to be at most within one or two orders of magnitude of 1.439

That suggests that b is generally small, and as a zeroeth order approximation we assume that b ⇡ 0.440

Alternatively, if P (x) is known for some output x, then assuming knowledge of a and K̃(x), and assuming441

P (x) ⇡ 2�aK̃(x)�b (39)

then b can be inferred by rearranging this equation. Clearly this method would work just as well for finding a, if one442

knew b and K̃(x). It seems plausible that the most likely P (x) to be close to the upper bound is the largest P (x)443

for the set of x with modal K(x), i.e. the K(x) that is most likely to be generated by sampling random inputs. We444

typically use this value of P (x) to fix b. One drawback with this method is that it relies on the assumption of the445

approximate equality equation (39); hence if for the chosen output x, the upper bound was only a poor approximation,446

then the corresponding estimation of b would be equally poor.447

With the methods above, reasonable approximations to a and b can generally be estimated with a limited amount448

of sampling of random inputs, as we demonstrate in the main text. As long as there are ways to estimate max(K̃(x)),449

and NO, then the only real fitting parameter is b, which to first order can simply be set to zero. Of course some450

simplifying assumptions have been used here. Not all maps may obey them, but we can always simply fix a and b451

with a few values of P (x) and K̃(x). It remains the case that only a small amount of information is needed to fix the452

bound.453

Finally, we note that the values of a and b depend on the chosen approximate measure of complexity. In this454

paper we use K(x) ⇡ K̃(x) = CLZ(x). If we were to choose a di↵erent complexity say K̃↵,� = ↵CLZ(x) + �, then455

the phenomenology would be the same, but with new constants a↵,� = a/↵ and b↵,� = b � a�/↵. In other words,456

multiplicative and additive constants are simply absorbed into the parameters. Such robustness is a useful property.457

Supplementary Figure 4. Probability P (x) vs. increasing complexity for di↵erent sized systems. (a) RNA n = 10
shows essentially no simplicity bias, although the trivial unbonded and simplest structure does have the largest probability.
(b) RNA n = 20 shows simplicity bias, despite the noise. For the upper bound, a = 0.23, b = 1.08; (c) RNA n = 80 shows
clear simplicity bias, as does n = 55 in the Main text. For the upper bound, a = 0.33, b = 6.39.

Figure 1. Probability that an RNA secondary structure x obtains
upon random sampling of length L = 80 sequences versus a
Lempel-Ziv measure of the complexity of the structure. The
black solid line is the simplicity-bias bound (1), while the dashed
line denotes the bound with the parameter b set to zero.

In Fig. 1 we illustrate an iconic input-output map for
RNA, a linear biopolymer that can fold into well-defined
sructures due to specific bonding between the four differ-
ent types of nucleotides ACUG from which its sequences
are formed. While the full three-dimensional structure is
difficult to predict, the secondary structure, which records
which nucleotide binds to which nucleotide, can be ef-
ficiently and accurately calculated. This mapping from
sequences to secondary structures fulfills the conditions
above. Most importantly, the map, which uses the laws
of physics to determine the lowest free-energy structure
for a given sequence, is independent of the length of the
sequences, and so fulfills the simplicity condition (1).
The structures (the outputs x) can be written in terms of
a ternary string, and so simple compression algorithms
can be used to estimate their complexity. In Fig. 1, we
observe, as expected, that the probability P (x) that a
particular secondary structure x is found upon random
sampling of sequences is bounded by Eq. (1) as predicted.
Similar robust simplicity bies behaviour to that seen in
this figure was observed for the other maps.

Similar scaling (5) was also observed for this map with a
series of other approximations to K(x), suggesting that

the precise choice of complexity measure was not critical,
as long as it captures some basic essential features.

In summary then, the simplicity bias bound (1) works
robustly well for a wide range of different maps. The pre-
dictions are strong: the probability that an output obtains
upon random sampling of inputs should drop (at least)
exponentially with linear increases in the descriptional
complexity of the output. Nevertheless, it is important to
note that while the 5 conditions above are sufficient for
the bound (1) to hold, they are not sufficient to guarantee
that the map will be biased (and therefore simplicity bi-
ased). One can easily construct maps that obey them, but
do not show bias. Understanding the conditions resulting
in biased maps is very much an open area of investigation.

The question we will address here is: Can deep learn-
ing be re-cast into the language of input-output maps,
and if so, do these maps also exhibit the very general
phenomenon of simplicity bias?

2. The parameter-function map
Definition 1. (Parameter-function map) For a
parametrized supervised learning model, let the
input space be X and the output space be Y . The space
of functions that the model can express is then F ⊆ Y |X |.
If the model has p real valued parameters, taking values
within a set Θ ⊆ Rp, the parameter-function map,M, is
defined as:

M : Θ→ F
θ 7→ fθ

where fθ is the function implemented by the model with
choice of parameter vector θ.

It is not hard to see that the map above obeys condition
1: The shortest description of the map grows slowly with
the logarithm of the size of the space of functions (which
determines the typical K(x)). Conditions 2-4 are also
clearly met. Condition 5 is more complex and requires
empirical testing. But given that simplicity bias was ob-
served for such a wide range of maps, our expectation is
that it will hold robustly for neural networks also.

3. Simplicity bias on CIFAR10
In order to explore the properties of the parameter-
function map, we consider random neural networks. We
put a probability distribution over the space of parameters
Θ, and are interested in the distribution over functions
induced by this distribution via the parameter-function
map of a given neural network. We consider Gaussian and
uniform distributions over parameters. In the following,
when we say “probability of a function”, we imply we



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Simplicity bias in the parameter-function map of deep neural networks

Figure 2. Probability (using GP approximation) versus critical
sample ratio (CSR) of labelings of 1000 random CIFAR10 in-
puts, produced by 250 random samples of parameters. The
network is a 4 layer CNN.

are using a Gaussian or uniform i.i.d. distribution over
parameters unless otherwise specified.

For a convolutional network with 4 layers and no pooling1,
we have used the Gaussian process approximation(7; 8)
to estimate the probability of different labellings2 on a
random sample of 1000 images from CIFAR10. We used
the critical sample ratio (CSR) (4) as a measure of the
complexity of the functions3. Fig. 2, depicts the strong
correlation between the log probability and CSR consis-
tent with Eq. (1).

In Fig. 3, we also show the values of the log probabil-
ity for a CNN and a FC network, on a larger sample of
10k images from CIFAR10, MNIST, and fashion-MNIST.
This illustrates the large range of orders of magnitude for
the probability of different labellings, as well as the nega-
tive correlation with increasing label corruption. While
label corruption is not a direct measure of descriptional
complexity, it is almost certainly the case that increasing
label corruption generally corresponds to an increase in
measures of Kolmogorov complexity.

4. Simplicity bias in a model system
Direct measurements of simplicity bias are extremely
computationally expensive, and so far we have not been
able to obtain directly sampled results for datasets larger
than CIFAR10.

To further isolate the phenomenon of simplicity bias in
the parameter-function map, and study the effect of us-

1See Appendix A for more details on the architecture
2See Appendix A.1 for details on the Gaussian process ap-

proximation
3See Appendix C for more details on complexity measures

(a) (b)

Figure 3. log probability of a labelling on 10k random images
on three different datasets, as the fraction of label corruption
increases. The probability is computed using the Gaussian
process approximation for (a) a CNN with 4 layers and no
pooling. (b) a 1 hidden layer FC network.

Figure 4. Probability versus Lempel-Ziv complexity. Probabil-
ities are estimated from a sample of 108 parameters. The red
line is the simplicity bias bound of Eq.(1)

ing different complexity measures, we look at a series of
MLPs with 7 Boolean input neurons, 1 Boolean output
neuron, and a number of layers of 40 hidden neurons each.
We use ReLU activation in all hidden layers. For each
such architecture, we sample the parameters i.i.d. accord-
ing to a Gaussian or uniform distribution. We then count
how often individual Boolean functions are obtained, and
use the normalized empirical frequencies as estimate of
their probability. In Fig. 4, we plot the probability (in
log scale) versus the Lempel-Ziv complexity, which is de-
fined in Appendix C.1. In Appendix C.3, we show similar
results for other complexity measures, demonstrating that
the simplicity bias is robust to the choice of complexity
measure, as long as it not too simple (like entropy). The
simplicity bias observed in Fig. 4 very closely resembles
that seen for the other maps in (5).

In Fig. 4 in Appendix C.3, we show the same data as in
Fig. 4, but as a histogram, highlighting that most of the
probability mass, when sampling parameters, is close to
the upper bound. In addition, in Fig. 6 in Appendix D,
we show the probability versus complexity plots for fully-
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connected networks with increasing number of layers,
showing that the correlation is similar in all cases, al-
though for deeper networks, the bias is a bit stronger.

5. Zipf’s law conjecture
In our experiments in the previous two sections, we ob-
serve that the range of probabilities of functions spans
many orders of magnitude. Here we show that for the
experiment in Section 4, when we plot the probabilities
versus the rank of the function (when ranked by probabil-
ity), we find that the probabilities asymptotically follow
Zipf’s law:

Prob(rank) =
1

(lnNO)rank
, (2)

where NO is the total number of functions.

This was also observed in (9) for networks of Boolean
functions, and in (10) for more general circuits. We for-
malize our findings for neural networks in the following
conjecture:

Conjecture 1 (Zipf’s law beahviour) The probability-
rank relation of functions for sufficiently over-
parametrized neural networks follows Zipf’s law
(Equation 2)

By “sufficiently over-parametrized” we mean that the
networks are in the regime where the Gaussian process
approximation to the distribution over function is a good
approximation (which appears to be the case for many
cases in practice (11; 8; 12)). We now explain the experi-
ments we conducted to test this conjecture.

In Fig. 5, we show the probabilities of the functions versus
their rank (when ranked by probability), for different
choices of parameter distribution. We observe that for
all the parameter distributions the probability-rank plot
appears to approach Zipf’s law.

To determine the parameterNO in Zipf’s law, we checked
that this architecture can produce almost all Boolean func-
tions of 7 inputs, by finding that it could fit all the func-
tions in a sample of 1000 random Boolean functions. We
thus usedNO = 22

7

in the Zipf’s law curve in Fig. 5, find-
ing excellent agreement with no free parameters. These
results imply in particular that the distribution is extremely
biased, with probabilities spanning a huge range of orders
of magnitudes. Note that the mean P (x) over all func-
tions is 1/NO ≈ 3 × 10−39, so that in our plots we are
only showing a tiny fraction of functions for which P (x)
is orders of magnitude larger than the mean.

We can’t reliably obtain a probability-rank plot for the ex-
periments we did on CIFAR10, because our sampling of
the space of functions is much sparser in this case. How-

Figure 5. Probability versus rank of each of the functions
(ranked by probability) from a sample of 1010 (blue) or 107

(others) parameters. The labels are different parameter distribu-
tions. σ2

w/n and σ2
b are weight and bias variances, respectively,

where n is the number of hidden neurons

ever, the probabilities still span a huge range of orders
of magnitude, as seen in Figs. 2, 3. In fact, the range of
orders of magnitude appears to scale with m, the size of
the input space. This is consistent with a probability-rank
following Zipf’s law.

6. Generalization
The fact that neural networks are biased towards simple
solutions has been conjectured to be the main reason they
generalize (4; 3; 12). Here we have explored a form of
simplicity bias encoded in the parameter-function map.
It turns out that this bias is enough to guarantee good
generalization, as was shown in (12) via a PAC-Bayesian
formalism. In Fig. 1 in Appendix B, we show the PAC-
Bayesian bounds versus the true generalization error they
obtained, finding that the bounds are not only nonvacuous
but follow the trends of the true error closely.

Simplicity bias also provides a lens through which to
naturally understand various phenomena observed in deep
networks, for example, that the number of parameters
does not strongly affect generalization.

7. Conclusion
We have provided evidence that neural networks exhibit
simplicity bias. The fact that the phenomena observed are
remarkably similar to those of a wide range of maps from
science and engineering (5) suggests that this behaviour is
general, and will hold for many neural network architec-
tures. It would be interesting to test this claim for larger
systems, which will require new sampling techniques, and
to derive analytic arguments for a bias towards simplicity,
as done in (13).
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A. Architecture details
In the main experiments of the paper we used two classes of architectures. Here we describe them in more detail.

• Fully connected networks (FCs), with varying number of layers. The size of the hidden layers was the same as the
input dimension, and the nonlinearity was ReLU. The last layer was a single Softmax neuron. We used default
Keras settings for initialization (Glorot uniform).

• Convolutional neural networks (CNNs), with varying number of layers. The number of filters was 200, and the
nonlinearity was ReLU. The last layer was a fully connected single Softmax neuron. The filter sizes alternated
between (2, 2) and (5, 5), and the padding between SAME and VALID, the strides were 1 (same default settings
as in the code for (1)). We used default Keras settings for initialization (Glorot uniform).

A.1. Gaussian process approximation to the prior over functions

In recent work ((2; 3; 1; 4)), it was shown that infinitely-wide neural networks (including convolutional and residual
networks) are equivalent to Gaussian processes. This means that if the parameters are distributed i.i.d. (for instance
with a Gaussian with diagonal covariance), then the (real-valued) outputs of the neural network, corresponding to any
finite set of inputs, are jointly distributed with a Gaussian distribution. More precisely, assume the i.i.d. distribution
over parameters is P̃ with zero mean, then for a set of n inputs (x1, ..., xn),

Pθ∼P̃ (fθ(x1) = ỹ1, ..., fθ(xn) = ỹn) ∝ exp

(
−1

2
ỹTK−1ỹ

)
, (1)

where ỹ = (ỹ1, ..., ỹn). The entries of the covariance matrix K are given by the kernel function k as Kij = k(xi, xj).
The kernel function depends on the choice of architecture, and properties of P̃ , in particular the weight variance σ2

w/n
(where n is the size of the input to the layer) and the bias variance σ2

b . The kernel for fully connected ReLU networks
has a well known analytical form known as the arccosine kernel ((5)), while for convolutional and residual networks it
can be efficiently computed1.

The main quantity in the PAC-Bayes theorem, P (U), is precisely the probability of a given set of output labels for
the set of instances in the training set, also known as marginal likelihood, a connection explored in recent work
((6; 7)). For binary classification, these labels are binary, and are related to the real-valued outputs of the network via a
nonlinear function such as a step functionwhich we denote σ. Then, for a training set U = {(x1, y1), ..., (xm, ym)},
P (U) = Pθ∼P̃ (σ(fθ(x1)) = y1, ..., σ(fθ(xm)) = ym).

This distribution no longer has a Gaussian form because of the output nonlinearity σ. We will discuss approximations
to deal with this in the following. There is also the more fundamental issue of neural networks not being infinitely-wide
in practice. However, the Gaussian process limit has been found to be a good approximation for nets with reasonable
widths (3; 4; 8).

In order to calculate P (U) using the GPs, we use the expectation-propagation (EP) approximation, implemented in (9),
which is more accurate than the Laplacian approximation (see (10) for a description and comparison of the algorithms).
In (8), the authors compare the two approximations and find that EP appears to give better approximations.

B. PAC-Bayesian generalization bounds

C. Other complexity measures
One of the key steps to practical application of the simplicity bias framework of Dingle et al. in (11) is the identification
of a suitable complexity measure K̃(x) which mimics aspects of the (uncomputable) Kolmogorov complexity K(x) for
the problem being studied. It was shown for the maps in (11) that several different complexity measures all generated
the same qualitative simplicity bias behaviour:

P (x) ≤ 2−(aK̃(x)+b) (2)

1We use the code from (1) to compute the kernel for convolutional networks
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Figure 1. PAC-Bayes bound and generalization error versus training set size for three different datasets, for a CNN with 4 layers and
no pooling, for three datasets and a training set of size 10000. Training set error is 0 in all experiments. (reproduced with permission
from (8))

but with different values of a and b depending on the complexity measure and of course depending on the map, but
independent of output x. Showing that the same qualitative results obtain for different complexity measures is sign of
robustness for simplicity bias.

Below we list a number of different descriptional complexity measures which we used, to extend the experiments in
Section 4 in the main text.

C.1. Complexity measures

Lempel-Ziv complexity (LZ complexity for short). The Boolean functions studied in the main text can be written as
binary strings, which makes it possible to use measures of complexity based on finding regularities in binary strings.
One of the best is Lempel-Ziv complexity, based on the Lempel-Ziv compression algorithm. It has many nice properties,
like asymptotic optimality, and being asymptotically equal to the Kolmogorov complexity for an ergodic source. We
use the variation of Lempel-Ziv complexity from (11) which is based on the 1976 Lempel Ziv algorithm ((12)):

KLZ(x) =

{
log2(n), x = 0n or 1n

log2(n)[Nw(x1...xn) +Nw(xn...x1)]/2, otherwise
(3)

where n is the length of the binary string, and Nw(x1...xn) is the number of words in the Lempel-Ziv "dictionary"
when it compresses output x. The symmetrization makes the measure more fine-grained, and the log2(n) factor as well
as the value for the simplest strings ensures that they scale as expected for Kolmogorov complexity. This complexity
measure is the primary one used in the main text.

We note that the binary string representation depends on the order in which inputs are listed to construct it, which is not
a feature of the function itself. This may affect the LZ complexity, although for low-complexity input orderings (we use
numerical ordering of the binary inputs), it has a negligible effect, so that K(x) will be very close to the Kolmogorov
complexity of the function.

Entropy. A fundamental, though weak, measure of complexity is the entropy. For a given binary string this is defined
as S = −n0

N log2
n0

N −
n1

N log2
n1

N , where n0 is the number of zeros in the string, and n1 is the number of ones, and



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

N = n0 +n1. This measure is close to 1 when the number of ones and zeros is similar, and is close to 0 when the string
is mostly ones, or mostly zeros. Entropy and KLZ(x) are compared in Fig. 2, and in more detail in supplementary
note 7 (and supplementary information figure 1) of reference (11). They correlate, in the sense that low entropy S(x)
means low KLZ(x), but it is also possible to have Large entropy but low KLZ(x), for example for a string such as
10101010....

Boolean expression complexity. Boolean functions can be compressed by finding simpler ways to represent them. We
used the standard SciPy implementation of the Quine-McCluskey algorithm to minimize the Boolean function into a
small sum of products form, and then defined the number of operations in the resulting Boolean expression as a Boolean
complexity measure.

Generalization complexity. L. Franco et al. have introduced a complexity measure for Boolean functions, designed
to capture how difficult the function is to learn and generalize ((13)), which was used to empirically find that simple
functions generalize better in a neural network ((14)). The measure consists of a sum of terms, each measuring the
average over all inputs fraction of neighbours which change the output. The first term considers neighbours at Hamming
distance of 1, the second at Hamming distance of 2 and so on. The first term is also known (up to a normalization
constant) as average sensitivity ((15)). The terms in the series have also been called “generalized robustness” in the
evolutionary theory literature ((16)). Here we use the first two terms, so the measure is:

C(f) = C1(f) + C2(f),

C1(f) =
1

2nn

∑
x∈X

∑
y∈Nei1(x)

|f(x)− f(y)|,

C1(f) =
2

2nn(n− 1)

∑
x∈X

∑
y∈Nei2(x)

|f(x)− f(y)|,

where Neii(x) is all neighbours of x at Hamming distance i.

Critical sample ratio. A measure of the complexity of a function was introduced in (17) to explore the dependence
of generalization with complexity. In general, it is defined with respect to a sample of inputs as the fraction of those
samples which are critical samples, defined to be an input such that there is another input within a ball of radius r,
producing a different output (for discrete outputs). Here, we define it as the fraction of all inputs, that have another
input at Hamming distance 1, producing a different output.

C.2. Correlation between complexities

In Fig. 2, we compare the different complexity measures against one another. We also plot the frequency of each
complexity; generally more functions are found with higher complexity.

C.3. Probability-complexity plots

In Fig. 3 we show how the probability versus complexity plots look for other complexity measures. The behaviour is
similar to that seen for the LZ complexity measure in Fig 1(b) of the main text. In Fig. 5 we show probability versus LZ
complexity plots for other choices of parameter distributions.

In Fig. 4, we show a histogram of the functions in the log probability - complexity plane. The histogram counts are
weighted by the probability of the function, so that the total weight is proportional to the probability of obtaining a
function in a particular bin, when sampling the parameters.

D. Effect of number of layers on simplicity bias
In Figure 6 we show the effect of the number of layers on the bias (for feedforward neural networks with 40 neurons
per layer). The left figures show the probability of individual functions versus the complexity. The right figure shows
the histogram of complexities, weighted by the probability by which the function appeared in the sample of parameters.
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Figure 2. Scatter matrix showing the correlation between the different complexity measures used in this paper On the diagonal,
a histogram (in grey) of frequency versus complexity is depicted. The functions are from the sample of 108 parameters for the
(7, 40, 40, 1) network.
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(a) Probability versus Boolean complexity (b) Probability versus generalization complexity

(c) Probability versus entropy (d) Probability versus critical sample ratio

Figure 3. Probability versus different measures of complexity (see main text for Lempel-Ziv), estimated from a sample of 108

parameters, for a network of shape (7, 40, 40, 1). Points with a frequency of 10−8 are removed for clarity because these suffer from
finite-size effects (see Appendix E). The measures of complexity are described in Appendix C.
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Figure 4. Histogram of functions in the probability versus Lempel-Ziv complexity plane, weighted according to their probability.
Probabilities are estimated from a sample of 108 parameters, for a network of shape (7, 40, 40, 1)

The histograms therefore show the distribution over complexities when randomly sampling parameters2 We can see that
between the 0 layer perceptron and the 2 layer network there is an increased number of higher complexity functions.
This is most likely because of the increasing expressivity of the network. For 2 layers and above, the expressivity does
not significantly change, and instead, we observe a shift of the distribution towards lower complexity.

E. Finite-size effects for sampling probability
Since for a sample of size N the minimum estimated probability is 1/N , many of the low-probability samples that
arise just once may in fact have a much lower probability than suggested. See Figure 7), for an illustration of how this
finite-size sampling effect manifests with changing sample size N . For this reason, these points are typically removed
from plots.

2using a Gaussian with 1/
√
n variance in this case, n being number of inputs to neuron
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(a) (b)

Figure 5. Probability versus LZ complexity for network of shape (7, 40, 40, 1) and varying sampling distributions. Samples are of
size 107. (a) Weights are sampled from a Gaussian with variance 1/

√
n where n is the input dimension of each layer. (b) Weights

are sampled from a Gaussian with variance 2.5
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(a) Perceptron (b) Perceptron

(c) 1 hidden layer (d) 1 hidden layer

(e) 2 hidden layers (f) 2 hidden layers

(g) 5 hidden layers (h) 5 hidden layers

(i) 8 hidden layers (j) 8 hidden layers

Figure 6. Probability versus LZ complexity for networks with different number of layers. Samples are of size 106 (a) & (b) A
perceptron with 7 input neurons (complexity is capped at 80 in (a) to aid comparison with the other figures). (c) & (d) A network
with 1 hidden layer of 40 neurons (e) & (f) A network with 2 hidden layer of 40 neurons (g) & (h) A network with 5 hidden layers of
40 neurons each. (i) & (j) A network with 8 hidden layers of 40 neurons each
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Figure 7. Probability (calculated from frequency) versus Lempel-Ziv complexity for a neural network of shape (7, 40, 40, 1), and
sample sizes N = 106, 107, 108. The lowest frequency functions for a given sample size can be seen to suffer from finite-size
effects, causing them to have a higher frequency than their true probability.



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

References
[1] Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen. Deep convolutional networks as shallow Gaussian

processes. In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[2] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-Dickstein. Deep
neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

[3] Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani. Gaussian process behaviour
in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

[4] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Bayesian convolutional neural networks with many channels are gaussian processes. In Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[5] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in neural information processing systems,
pages 342–350, 2009.

[6] Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient descent. CoRR,
abs/1710.06451, 2017.

[7] Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-bayesian theory meets bayesian inference.
In Advances in Neural Information Processing Systems, pages 1884–1892, 2016.

[8] Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the parameter-function map is
biased towards simple functions. In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[9] GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy, since 2012.

[10] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine learning, pages 63–71.
Springer, 2004.

[11] Kamaludin Dingle, Chico Q Camargo, and Ard A Louis. Input–output maps are strongly biased towards simple outputs. Nature
communications, 9(1):761, 2018.

[12] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Transactions on information theory, 22(1):75–81,
1976.

[13] Leonardo Franco and Martin Anthony. On a generalization complexity measure for boolean functions. In Neural Networks,
2004. Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 973–978. IEEE, 2004.

[14] Leonardo Franco. Generalization ability of boolean functions implemented in feedforward neural networks. Neurocomputing,
70(1):351–361, 2006.

[15] Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27–35, 1998.

[16] Sam F Greenbury, Steffen Schaper, Sebastian E Ahnert, and Ard A Louis. Genetic correlations greatly increase mutational
robustness and can both reduce and enhance evolvability. PLoS computational biology, 12(3):e1004773, 2016.

[17] David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S. Kanwal, Tegan Maharaj, Emmanuel Bengio,
Asja Fischer, Aaron Courville, Simon Lacoste-Julien, and Yoshua Bengio. A closer look at memorization in deep networks.
Proceedings of the 34th International Conference on Machine Learning (ICML’17), 2017.

http://github.com/SheffieldML/GPy

