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Abstract

Untrained deep neural networks as image priors have been recently introduced for
linear inverse imaging problems such as denoising, super-resolution, inpainting,
and compressive sensing, with promising performance gains over hand-crafted
image priors such as sparsity. Moreover, unlike learned generative priors they do
not require any training over large datasets. In this paper, we consider the non-linear
inverse problem of compressive phase retrieval (CPR); this involves reconstructing
a d-dimensional image signal from n magnitude-only measurements, where n� d.
To this end, we model images to lie in the range of an untrained deep generative
network with a fixed seed. We then present two approaches for solving CPR —
gradient descent, and projected gradient descent — and show superior empirical
performance when compared to algorithms that use hand crafted priors.

1 Introduction

Motivation: Low-light images are images that are captured in poor lighting conditions. As an
artifact of camera sensors hardware and photon noise, this can result in noisy images with low
dynamic resolution. This motivates the low-light image enhancement problem, which is particularly
challenging. Several low-light enhancement problems suffer from over-enhancement, where images
appear to be unnaturally bright. Mathematically, low-light image enhancement is a non-linear
problem; each pixel value is modified by different amounts.

Deep neural networks have led to unprecedented success in solving several linear as well as non-linear
inverse imaging problems. Image denoising [1], super-resolution [2], inpainting, compressed sensing
[3] and phase retrieval [4] are among the many imaging applications that have benefited from the
usage of deep convolutional networks (CNNs). Learned generative priors have replaced hand-crafted
priors such as sparsity, total variation, block-matching with high success rates [3, 5, 6, 7]. However,
the main challenge with these approaches is the requirement of massive amounts of training data.

In contrast, recently, there has been a surge of interest in using untrained neural networks as an
image priors, for regularizing linear inverse problems. Seminal works on Deep Image Prior [8, 9]
are capable of solving linear inverse imaging problems with no training data whatsoever, while
merely imposing an auto-encoder [8] and decoder [9] architecture as a structural priors on the
image, for denoising, inpainting, super-resolution and compressed sensing [10] and exhibit superior
reconstruction performance as compared to conventional methodologies [11, 12, 13].

Phase retrieval is a non-linear inverse imaging problem which arises in several Fourier imaging
applications, and involves reconstructing images from magnitude-only measurements. Given a
d-dimensional signal x∗, and measurement matrix A, one can obtain n measurements stored in y,
such that the forward model representing overall image acquisition can be expressed as:

y = |Ax∗|
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where | · | represents an element-wise absolute value operation. The task is to recover signal estimate
x̂ from y, which can be posed as a non-convex problem of the following form:

x̂ = argmin
x
‖y − |Ax|‖22.

If the measurement matrix A has Gaussian N (0, 1/n) entries with zero mean and variance 1/n, then
literature suggests that the sample requirement exceeds n > 2d [14] and in high dimensional regimes
this can be especially challenging, since the computational complexity is also proportional to n and d.

Compressive phase retrieval (CPR) models use sparsity as a prior for reducing sample requirements;
however, standard techniques from recent literature [15] suggest a quadratic dependence of number
of measurements on the sparsity level for recovering sparse images from magnitude-only Gaussian
measurements and the design of a smart initialization scheme [16, 15], for linear convergence
algorithms. Convex relaxation based methods advocate a lifting [17] strategy that converts the
problem to a rank-one matrix estimation problem which is computationally expensive. Recent papers
such as [6, 18] have used learned GAN priors for bringing down sample requirements; however this
requires sufficient training data, which can be prohibitively expensive to obtain in domains which
require phase retrieval, such as medical or astronomical imaging.

Our contributions: In this paper, we explore the use of untrained deep neural networks as an image
prior for inverting images from under-sampled non-linear measurements. We assume that the image
x∗ belongs to the range spanned by the weights of a deep under-parameterized untrained neural
network G(w; z) [9], which we denote by S, where w is a set of the weights of the deep network,
z is the latent code, and G captures the overall deep network architecture. Specifically, we use two
different strategies to solve compressive phase retrieval with fewer measurements as compared to
state-of-art, based on gradient descent (Net-GD) and projected gradient descent (Net-PGD) and
compare these two schemes. We empirically show significant improvements in image reconstruction
quality as compared to prior works. We further analyze random initialization schemes in the context
of both algorithms.

Prior work: Sparse signal recovery from magnitude-only compressive measurements has been
extensively studied, with several algorithmic approaches [15]. In all of these approaches, modeling
the low-dimensional embedding is challenging and may not be captured correctly using simple hand-
crafted priors such as structured sparsity [19]. Since it is hard to estimate these hyper-parameters
accurately, the number of samples required to reconstruct the image is often much higher than
information theoretic limits [19, 5]. Several papers in recent literature [14, 20, 15, 16] rely on
the design of a spectral initialization scheme which ensures that one can subsequently optimize
over a convex ball of the problem. However this initialization requirement results in high sample
complexity and is a bottleneck in achieving information theoretically optimal sample complexity.
Trained generative priors have successfully cirvumvented this problem [5, 6, 21, 22, 7]; however,
with the following shortcomings: test images are strictly restricted to the range of a trained generator,
and the requirement of sufficient training data.

Notation: Throughout the paper, lower case letters denote vectors, such as v and upper case letters
for matrices, such as M . Vectorization of a matrix is written as vec(·). Hadamard or element-wise
product is denoted by ◦. Element-wise absolute valued vector is denoted by |v|.

2 Problem setup

In this paper we discuss the problem of reconstructing image x̂, with assumed underlying deep image
prior, from magnitude-only Gaussian measurements y, which can be formulated as an optimization
problem of the form:

min
x∈S
L1(x) := min

x∈S
‖y − |Ax|‖22 (1)

where we have chosen the `2-squared loss function and where S captures the prior on the image.

In general, if the image x ∈ Rd×k (k channels each of dimension d) can be represented as the action
of a deep generative network G(w; z) with weights w on some latent code z, such that x = G(w; z),
then the set S captures the characteristics ofG(w; z). The latent code z := vec(Z1)withZ1 ∈ Rd1×k1

is a low-dimensional embedding with dimension d1k1 � dk and its elements are generated from
appropriately scaled uniform random distribution.
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Algorithm 1 Net-GD for compressive phase retrieval.
1: Input: A, z = vec(Z1), η,w0.
2: while termination condition not met do
3: wt+1 ← wt − η∇L2(wt) {gradient step}
4: end while
5: Output x̂← G(wT ; z).

In this paper, the weights of the generator w are not pre-trained; rather, the task is to estimate
image x̂ = G(ŵ; z) ≈ G(w∗; z) = x∗ and corresponding weights ŵ, for a fixed seed z, where
x∗ is assumed to be the true image and the true weights w∗ (possibly non-unique) satisfy w∗ =
minw ‖x∗ − G(w; z)‖22. With this formulation, the optimization in Eq. 1 can be rewritten by
substituting the surjective mapping G : w→ x, and optimizing over w,

min
w
L2(w) := min

w
‖y − |AG(w; z)|‖22, (2)

to obtain ŵ = argminw L2(w) and corresponding image x̂.

Specifically, the untrained network G(w; z) takes the form of an expansive neural network; a
decoder architecture similar to the one in [9]. Alternatively, one may assume the architecture of the
generator of a DCGAN [23, 10]. The neural network is composed of L weight layers Wl, indexed by
l ∈ {1, . . . , L} and are 1× 1 convolutions, bilinear upsampling operators Ul for l ∈ {1, . . . L− 1}
and ReLU activation σ(·) and is expressed as follows

x = G(w, z) = UL−1σ(ZL−1WL−1)WL = ZLWL, (3)

where σ(·) represents the action of ReLU operation, Zdi×ki
i = Ui−1σ(Zi−1Wi−1), for i = 2, . . . L,

z = vec(Z1), dL = d and WL ∈ RkL×k.

Fixing this architectural framework, we define the deep network prior as follows:
Definition 1. A given image x ∈ Rd×k is said to obey an untrained neural network prior if it belongs
to a set S defined as: S := {x|x = G(w; z)}, where z is a (randomly chosen, fixed) latent code
vector and G(w; z) has the form in Eq. 3.

3 Solution methodology

The loss function in Eq.2 can be solved using gradient descent by optimizing over weights w and
we call this formulation Net-GD, which has been described in Algorithm 1. The gradients ∇L2(w)
in Step 3 of Algorithm 1 can be computed using back-propagation in standard frameworks for deep
network optimization such as TensorFlow and PyTorch, with learning rate η. The weights w0 are
initialized according to He initialization (scaled Gaussian random) [24].

A projected gradient descent based algorithm (Algorithm 2) was also tested out. Algorithm 2 consists
of two parts; in Line 3 we compute the Wirtinger gradient [14] with learning rate η as follows:

vt ← xt − ηA>(Axt − y ◦ sign(Axt))

and execute one step for solving an unconstrained phase retrieval problem with gradient descent. In
Lines 4 and 5, we estimate the weights of the deep network prior with noisy input vt and ensure that
the output wt and subsequently the image estimate xt = G(wt; z) lies in the range of the decoder
G(·) outlined by set S , which is the main assumption of our problem formulation. The sub-problem
in Step 4, which is a denoising problem is solved using gradient descent, which can be implemented
via back-propagation in standard computational frameworks. An in-depth theoretical inspection of
Algorithm 2 can be found in [25].

Initialization: Due to the non-convex nature of the problem, appropriate initialization is crucial. For
Algorithm 2, we initialize x0 = G(w0; z), where w0 are assigned according to He initialization. In
our experiments (Section 4) we note that this initialization is sufficient for both Net-GD and Net-PGD
to succeed for CPR. In Section 4 we show experimental evidence to support this claim.

4 Experimental results
Dataset: We use images from the MNIST database (Figure 1(a)) and CelebA database (Figure
1(b)) to test our algorithms and reconstruct 6 grayscale (MNIST, 28 × 28 pixels (d = 784)) and
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Algorithm 2 Net-PGD for compressive phase retrieval.
1: Input: A, z = vec(Z1), η, x

0 = G(w0; z).
2: while termination condition not met do
3: vt ← xt − η∇L1(x

t) {gradient step for phase retrieval}
4: wt ← argmin

w
‖vt −G(w; z)‖ {projection to range of deep network}

5: xt+1 ← G(wt; z)
6: end while
7: Output x̂← xT .

Original Compressed Net-GD Net-PGD Sparta
n/d = 0.5

n/d = 0.1

0 1 2 3

0

0.5

compression ratio f

nM
SE

Ours
Sparta

(a) (c) (c)

Figure 1: (CPR) Reconstructed images from magnitude-only measurements (a) at compression rate
of n/d = 0.3 for MNIST, (b) at compression rates of n/d = 0.1, 0.5 for CelebA with (row 1,3)
Net-GD and (row 2,4) Net-PGD, (c) nMSE at different compression rates f = n/d for MNIST.

5 RGB (CelebA) images. The CelebA dataset images are center cropped to size 64 × 64 × 3
(d = 12288). The pixel values of all images are scaled to lie between 0 and 1. Deep network
architecture: We first optimize the deep network architecture which fit our example images such
that x∗ ≈ G(w∗; z) (referred as “compressed” image). For MNIST images, the architecture was
fixed to a 2 layer configuration k1 = 15, k2 = 15, k3 = 10, and for CelebA images, a 3 layer
configuration with k1 = 120, k2 = 15, k3 = 15, k4 = 10. Measurement setup: We use a Gaussian
measurement matrix of size n×d with n varied such that n/d = 0.1, 0.2, 0.3, 0.5, 1, 3. The elements
of A are picked such that Ai,j ∼ N (0, 1/n) and we report averaged reconstruction error values
over 10 different instantiations of A for a fixed image (image of digit ‘0’ from MNIST), network
configuration and compression ratio n/d . Performance metrics: We compare reconstruction quality
using normalized Mean-Squared Error (nMSE), which is calculated as ‖x̂− x∗‖2/‖x∗‖2 and plot
its variation with different compression rates f = n/d for all the algorithms tested averaged over
all trials for MNIST in Figure 1 (c). Algorithms and baselines: We implement 3 schemes based
on untrained priors for solving CPR , (i) Net-GD (ii) Net-PGD and finally (iii) Sparse Truncated
Amplitude Flow (Sparta) [16] which is state-of-art, with sparse prior in DCT basis for both datasets.
We note that both Net-GD and Net-PGD outperform Sparta (Figure 1(c)). Implementation details:
Both Net-GD and Net-PGD were implemented using the PyTorch framework with Python 3 and using
GPU support, using SGD optimizer. For implementing Sparta algorithm, the algorithm from [16]
was implemented in MATLAB. We report the average running times for different algorithms across
different measurement levels for examples from MNIST is 25.59s (Net-GD), 28.46s (Net-PGD), 3.80s
(Sparta-DCT). Goodness of random initialization: We perform rigorous experiments to assert that
He random initialization of the weights w0 of the neural network, ensure that the initial estimate
x0 = G(w0; z) is good for Net-PGD. We denote the distance of initialization as δi = ‖x0 − x̂‖/‖x̂‖
and report the values of δi for the trials in which ‖x̂− x∗‖/‖x∗‖ < 0.1 in Table 1.

Table 1: Distance of initial estimate x0 in Net-PGD (Algorithm 2)

n/d d channel configuration nMSE of x̂ average δi values
0.2 784 (MNIST) 15, 15, 10 0.098 0.914
0.5 784 (MNIST) 15, 15, 10 0.018 0.942
0.4 12288 (CelebA) 120, 15, 15,10 0.020 0.913
0.6 12288 (CelebA) 120, 15, 15,10 0.015 0.915
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