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Abstract

We introduce the open-ended, modular, self-
improving Omega AI unification architecture
which is a refinement of Solomonoff’s Alpha ar-
chitecture, as considered from first principles.
The architecture embodies several crucial prin-
ciples of general intelligence including diversity
of representations, diversity of data types, in-
tegrated memory, modularity, and higher-order
cognition. We retain the basic design of a fun-
damental algorithmic substrate called an “AI
kernel” for problem solving and basic cognitive
functions like memory, and a larger, modular
architecture that re-uses the kernel in many
ways. Omega includes eight representation lan-
guages and six classes of neural networks, which
are briefly introduced. The architecture is in-
tended to initially address data science automa-
tion, hence it includes many problem solving
methods for statistical tasks. We review the
broad software architecture, higher-order cog-
nition, self-improvement, modular neural ar-
chitectures, intelligent agents, the process and
memory hierarchy, hardware abstraction, peer-
to-peer computing, and data abstraction facil-
ity.

1 Introduction and Motivation

In today’s AI research, most researchers focus on spe-
cific application problems and they develop the capabil-
ities of their AI solutions only to the extent that these
specific applications require them. While challenging AI
problems such as natural language understanding require
a broader view, most researchers do not begin with an
all-encompassing architecture and then adapt to a spe-
cific application. It is usually more efficient to pursue
a bottom-up development methodology for the experi-
mental results, and as a result, progress in ambitious
architectures for generality may have stalled.

To achieve generality, a rigorous architectural ap-
proach has several benefits such as easing development,
allowing future extensions while remaining backwards

compatible, and exposing problems before they hap-
pen since we can conceptualize complex use-cases. In
other words, it is at least better software engineering,
however, there are also scientific benefits such as un-
derstanding the functions and capabilities required by
a general-purpose AI system much better, and address
these problems fully. Since the most general problem is
attacked, the architecture can follow a rigorous design
process which will eliminate redundancies, leading us to
a more mathematically elegant design. And finally, since
use-cases will lead the design, the result will be empiri-
cally firmer than a special-purpose application.

A design from first principles is rarely undertaken, and
it is arduous, but it can produce highly effective systems.
We build upon the most powerful architectures for gen-
eral AI, and then identify the requirements, from which
we introduce refinements to the existing architectures,
introducing new architectural ideas and incorporating
new AI technologies in the process. The resulting deep
technological integration architecture is a compact, scal-
able, portable, AI platform for general-purpose AI with
many possible applications in wide domains.

2 Design Principles for Generality
In this section, we review the requirements of a general
AI system, and from this vantage point we formulate
design principles for constructing a general system.

A general AI system cannot contain any and all spe-
cific solutions in its memory, therefore it must equal the
computer scientist in terms of its productive capacity
of solutions. The requirement of a universal problem
solver therefore is fundamental to any such design. Nat-
urally, this implies the existence of Turing-complete pro-
gramming languages, and a universal method to gener-
alize – which implies a universal principle of induction
such as Solomonoff induction. A suitably general prob-
abilistic inference method such as Bayesian inference is
implied since most AI problems are probabilistic in na-
ture. It must have practically effective training methods
for learning tasks, such as the GPU accelerated training
methods used in deep learning. The system must have
an integrated memory for cumulative learning. The ar-
chitecture must be modular for better scalability and
extensibility; human brain is a little like that as the neo-
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cortex has a grid of cortical columns, which are appar-
ently functionally equivalent structures.

A general AI system must be able to support robotics,
however, it should not be limited to agent architec-
tures; it must also support traditional applications like
databases, web search, and mobile computing. To ac-
commodate for such a wide variety of functions, the ar-
chitecture must expose a Swiss army knife like AI toolkit,
to provide a unified AI API to developers. Such an API
can then be served over the cloud, or via fog computing.
Machine learning applications generally require hard-
ware with high performance computing support. There-
fore, the architecture should be compatible with high
performance computing hardware such as GPUs, and
FPGAs to be able to scale to many clients.

The general AI system must also address all the
hard challenges of a natural environment as formulated
by [Russell and Norvig, 2016, Chapter 2]: the sys-
tem must cope with the partially observable environ-
ments, multi-agent environments, competition and co-
operation, stochastic environments, uncertainty, nonde-
terminism, sequential environments, dynamic environ-
ments, continuous environments, and unknown environ-
ments. A tall order, if there were ever one. Therefore,
the system must be designed with these features of the
environment in mind, for accommodating their needs.

AIXI [Hutter, 2007] addresses partially observable en-
vironments, however, the rest of the features require ar-
chitectural support in most cases, such as the necessity
of providing a theory-theory module (a cognitive module
that has a theory of other minds), or showing that the
system will discover and adapt to other minds. To pro-
vide for multi-agent environments, the system can offer
a self-simulation virtualization layer so that the agent
can conceive of situations involving entities like itself.
To support proper modeling of environments like with
stochastic and uncertainty, we need an extensive proba-
bilistic representation language to deal with non-trivial
probabilistic problems; the language must cover common
models such as hiearchical hidden markov layer mod-
els; it should offer a wide range of primitives to choose
from, which must be supplied by the architecture. The
representation language must also provide the means to
combine primitives meaningfully, and obtain short pro-
grams for common patterns. The mystique art of design-
ing compact representation languages therefore remains
a vital part of AI research. To provide for effective repre-
sentation of things like sequential, dynamic, continuous
environments, the architecture can provide effective rep-
resentation primitives and schemas. For dealing with
unknown environments, the architecture can provide an
agent architecture that can engage in the exploration of
the unknown, much as an animal does.

Without doubt, the system must also accommodate
common data types, and common tasks such as speech
recognition, and the examples for more specific opera-
tions should be provided. It is important that the sys-
tem allows one to implement a wide family of AI tasks
for the system to be considered sufficiently general. If,
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Figure 1: Some principles of general intelligence.

for instance, the user cannot feasibly implement some-
thing like style transfer, that is popular in deep learning
research, with the architecture, it should rather not be
termed general. The system should support a wide range
of structured, and unstructured data, including popular
data types like image, audio, video, speech, and text, and
have sufficiently rich models to represent these challeng-
ing kinds of data. These more human data types consti-
tute the primary means by which humans can communi-
cate with AI’s directly. However, structured, regular and
irregular data types also must be supported, since these
originate from a variety of sources that can be consumed
by the AI system.

The system must also therefore provide an adequate
perception architecture by which such a system can learn
a world-representation from its sensorium which includes
many senses. These processes should be sufficiently gen-
eral that they can be adapted to any sort of sensorium
that will work under known laws of physics. The system
should also support an adequate intelligent agent archi-
tecture that supports typical goal following, or utility
maximization architectures.

Therefore, it also is a challenge to test system general-
ity. Typically, a benchmark that consists of a large num-
ber of diverse AI tasks and datasets must be provided for
the system to demonstrate generality. The benchmark
should be diverse enough to include the whole gamut of
AI problems such as typical pattern recognition prob-
lems of image recognition, speech recognition, but also
natural language understanding, machine learning tasks
like anomaly detection (over real-world datasets such as
an industrial dataset), time-series prediction (commonly
used for stock market analysis), robotics problems, game
playing problems, and so forth with randomly varied pa-
rameters.

We therefore arrive at an understanding of general-
purpose AI design that tries to maximize generality for
every distinct aspect of a problem. The solution space
must be wide enough to cover every problem domain.



The methods must be independent from the data type.
The tasks that can be performed should not be fixed.
The system should be independent from the task to be
solved; any task should be specifiable. The architecture
must not depend either on a particular representation, it
should cover a very wide range of representations to be
able to deal with different kinds of environments. The
intelligent agent code should not be environment spe-
cific, it must be adaptable to any environment and agent
architecture; in other words, the system must be inde-
pendent of the environment. Some principles of general
intelligence are depicted in Figure 1 on page 2.

3 Architecture Overview
Many of the aforementioned problems have been ad-
dressed by existing AI architectures. We therefore take
a well-understood general AI architecture called the Al-
pha architecture of Solomonoff [Solomonoff, 2002], and
define some basic capabilities better, while incorporating
newer models and methods from recent research.

For the purposes of general-purpose AI, two most sig-
nificant events have occured since Alpha was designed
in 2002. First, the Gödel Machine architecture [Schmid-
huber, 2006] which also provides a level of self-reflective
thinking, and presents an agent model around it. The
other notable development is the immense success of
deep learning methods, which now enable machines to
achieve pattern recognition at human-level or better for
many basic tasks. The present design therefore merges
these two threads of developments into the Alpha frame-
work. The architecture also provides for basic universal
intelligent agents, and self-reflection like Gödel Machine
does. Unlike Gödel Machine, we do not assume that
the environment is known to a substantial degree, such
things are assumed to be learnt.

Like the Alpha architecture, we assume a basic prob-
lem solver that is smart enough to bootstrap the rest of
the system. This component is called the AI Kernel.

The system is thought to be parameter free, depen-
dent only on the data, and the commands given. The
system’s interface is a graphical web-based application
that allows the user to upload datasets and then ap-
ply AI tasks from the library. The system also provides
an API for programming novel tasks. A basic graphical
programming environment is considered for later releases
since the system aims to be usable by non-programmers.

3.1 Components

We review the major components of the system archi-
tecture, and explain their functions.

AI Kernel
The AI kernel is an inductive programming system that
should use a universal reference machine such as LISP.
We have proposed using Church as the reference machine
of such a system. However, what matters is that the AI
kernel must be able to deal with all types of data, and
tasks. We assume that the reference machine is vari-
able in the right AI kernel. The kernel must be a com-

pact code base that can run on a variety of hardware ar-
chitectures to ensure portability, and the parallelization
must support heterogeneous supercomputing platforms
for high energy efficiency and scalability.

The AI kernel supports sophisticated programmabil-
ity, allowing the user to specify most machine learning
tasks with a very short API. We employ OCaml generic
programming to characterize the kernel’s internal com-
ponents, model discovery, and transfer learning algo-
rithms.

The AI kernel supports real-time operation, and can
be configured to continuosly update long-term memory
splitting running-time between currently running task
and meta-learning.

Bio-mimetic Search

State-of-the-art bio-mimetic machine learning algo-
rithms based on such methods as stochastic gradient de-
scent, and evolutionary computation are available in the
AI kernel, and thus chosen and used automatically.

Heuristic Algorithmic Memory 2.0

The AI kernel has integrated multi-term memory, mean-
ing that it solves transfer learning problems automati-
cally, and can remember solutions and representational
states at multiple time scales. Heuristic Algorith-
mic Memory 2.0 extends Heuristic Algorithmic Memory
[Özkural, 2011] to support multiple reference machines.

Problem Solvers

Problem Solution Methods (PSMs) are methods that
solve a given problem. These could be algorithmic solu-
tions like sorting a list of numbers, or statistical methods
like predicting a variable. The Alpha architecture basi-
cally tries a number of PSMs on a problem until it yields.
However, in Omega, it is much better specified which
PSMs the system should start with. Since the system is
supposed to deal with unknown environments, we give
priority to machine learning and statistical methods, as
well model classes that directly address some challenging
properties of the environment, and support hard appli-
cations like robotics. The diversity of the model classes
and methods supported expand the range of Omega ap-
plications. The Alpha architecture can invent and retain
new PSMs, that is why it should be considered an open-
ended architecture; so is Omega.

The architecture is taught how to use a problem solver
via unstructured natural language examples, like the in-
tent detection task in natural language processing.

Both narrowly specialized and general-purpose meth-
ods are included in the initial library of problem solvers
for initially high machine-learning capability.

For approximating functions, there are model-based
learning algorithms like a generic implementation of
stochastic gradient for an arbitrary reference machine.
For model discovery, model-free learning algorithms like
genetic programming are provided. Function approxima-
tion facilities can be invoked by the ensemble machine
to solve machine learning problems. Therefore, a degree



of method independence is provided by allowing multi-
strategy solvers.

A basic set of methods for solving scientific and en-
gineering problems is provided. For computer science,
the solutions of basic algorithmic problems including full
software development libraries for writing basic com-
puter programs for each reference machine (standard
library). For engineering, basic optimization methods
and symbolic algebra. In the ultimate form of the ar-
chitecture, we should have methods for computational
sciences, physical, and life sciences.

A full range of basic data science / machine learning
methods are provided including:

Clustering Clustering is generalized to yield auto-
mated statistical modeling. Universal induction can
be used to infer a PDF minimizing expected diver-
gence (AI kernel function). Both general-purpose
and classical clustering algorithms are provided, in
recognition that for a specific class of problems a
specialized method can be faster, if not necessarily
more accurate. The classical algorithms of k-means
[Hartigan and Wong, 1979], hierarchical agglomer-
ative clustering [Murtagh and Legendre, 2014], and
Expectation Maximization (EM) for Gaussian Mix-
ture Models [Xu and Jordan, 1996] are provided.
General-purpose algorithms based on NID [Vitányi
et al., 2009], and universal induction enable working
with arbitrary domains.

Classification Again both classical and general-
purpose algorithms are supported. Classical al-
gorithms of decision-tree classifier [Quinlan, 2014],
random forest [Liaw et al., 2002], knn [Altman,
1992], logistic regression [Cox, 1958], and SVM
[Vapnik et al., 1995] are supported. General-
purpose algorithm invokes AI kernel universal in-
duction routines to learn a mapping from the input
to a finite set. NID based classifier works with ar-
bitrary bitstrings.

Regression General-purpose algorithm invokes univer-
sal induction routines in the AI kernel to learn a
stochastic operator mapping from the data domain
to a real number. Classical algorithms of linear
regression, logistic regression, and SVM are sup-
ported.

Outlier detection The generalized outlier detection
finds the points least probable given the rest of the
dataset using a generalization of z-score; to first
model the data again a universal set induction in-
vocation characterizes the data.

Time-series Forecasting Time series prediction is
generalized with a universal induction approach
modeling the stochastic dynamics, then the most
probable model is inferred. Classical time-series
prediction algorithms of ARIMA, Hidden Markov
Model (HMM), and Hiearchical Hidden Markov
Model (HHMM) [Fine et al., 1998] are provided. A
deep LSTM based forecast method is also provided

[Hochreiter and Schmidhuber, 1997].

Deep Learning A complete range of DNN architec-
tures for various data types such as image, au-
dio, video and text are provided. Standard algo-
rithms of backpropagation, stochastic gradient and
variational inference are supported. The state-of-
the-art fully automated machine learning algorithm
of Fourier Network Search (FNS) [Koutńık et al.,
2014] is included. We also invoke universal induc-
tion routines to automate neural model discovery.
The deep learning implementations are parallelized
for multi GPU clusters. For this purpose, an ex-
isting deep learning framework such as TensorFlow
may be used. The deep learning framework we use
is a different, proprietary approach that predates
TensorFlow and is composed of a neural program-
ming language called MetaNet and a heterogeneous
supercomputing middleware called Stardust.

Each algorithm mentioned is exposed as a PSM in the
system.

Ensemble Machine

An ensemble machine is introduced to the system which
runs PSMs in parallel with time allocated in accordance
with their expected probability of success. The associa-
tions between tasks and their success are remembered as
a stochastic mapping problem solved with the universal
induction routines of AI Kernel, guiding future decisions.
The ensemble machine itself is exposed as a PSM.

3.2 Representation Languages

We define eight reference machines to widen the
range of solutions obtainable, and types of environ-
ments/applications addressable.

MetaNet MetaNet is a new General Neural Networks
(GNN) representation language that encompasses
common neuron types and architectures used in
neural network research. It is a graphical meta-
language that can be used to define a large number
of network architectures. Formally, it uses a multi-
partite labeled directed graph with typed vertices,
as a generic representation to represent neural cir-
cuits, and the richer sort of representation allows
us to extend the model to more biologically plausi-
ble, or with neuroscience-inspired models. The sys-
tem uses this representation to facilitate automated
model discovery of the right neural network for the
given task when evaluating the MetaNet represen-
tation language.

Church We use the Church language [Goodman et
al., 2012] to represent probability distributions and
solve basic algorithmic problems like adding a list of
numbers, and the Towers of Hanoi problem. Com-
ponents expose their interfaces in Church machine,
expanding self-reflection capability.

Probabilistic Logic We define a probabilistic logic
programming language to deal with uncertainty



and stochasticity, and the ability to solve reason-
ing problems.

Bayesian Networks We define a general class of
bayesian networks that can be used to deal with
uncertainty.

Analog Computer We use an analog computing
model to represent dynamical, continuous and
stochastic systems better.

Picture We use the Picture [Kulkarni et al., 2015a] lan-
guage to deal with images.

Matrix Computer We use an LAPACK based matrix
algebra computing package such as GNU Octave to
represent mathematical solutions.

Asynchronous Computer We define an asyn-
chronous model of computation for conception of
fine-grain concurrent models.

3.3 Neural Representation Classes

There are a number of ready neural representations that
the system can quickly invoke.

Fourier Neural Network Fourier Neural Networks
use a Fourier series representation to represent neu-
ral networks compactly, and may be considered a
general-purpose learning model class [Koutńık et
al., 2010b; Koutńık et al., 2010a].

Convolutional Neural Networks CNNs are particu-
larly effective for pattern recognition problems. A
variety of basic CNNs [LeCun et al., 1995] suitable
for processing different kinds of data are provided,
including specialized networks such as multi-column
DNNs for image classification [Ciresan et al., 2012],
for video [Karpathy et al., 2014], text [Zhang et al.,
2015], and speech [Abdel-Hamid et al., 2014].

Deep Belief Networks These networks are a stack of
Restricted Boltzmann Machines [Hinton et al., 2006]
that can perform unsupervised learning.

Deep Autoencoders Deep autoencoders [Hinton and
Salakhutdinov, 2006] use several hidden unit layers,
two deep belief networks, that learn to compress
and then reproduce the data. We provide specific
applications like variational autoencoders for image
captions [Pu et al., 2016], inverse graphics [Kulkarni
et al., 2015b], multimodal learning [Ngiam et al.,
2011].

LSTM/GRU networks We provide a variety of RNN
models using LSTM (Long-Short Term Memory)
and GRU (Gated Recurrent Unit) stacks to model
sequential data. Variants for different data types
such as speech [Graves and Jaitly, 2014], video
[Zhang et al., 2016], image [Donahue et al., 2015]
are included.

Recursive Deep Networks Especially useful for lan-
guage processing, these networks can recognize hi-
erarchical structures easily [Socher et al., 2013].

The networks are specified as generic network archi-
tectures that can scale to required input/output size.
Any hyper-parameters are designated as variables to be
learned to the AI kernel so that the hyper parameters can
adapt to the problem. These networks are considered to
be sufficient as providing enough library primitives. The
generators for neural networks are specified such that
the program generator can indeed generate all of the li-
brary networks; however, re-inventing the wheel is not
a feasible idea, therefore we aim to include a complete
inventory of deep learning models.

3.4 Software Architecture

Functional Decomposition

A high-level component architecture without the many
inter-component interactions is depicted in Figure 2 on
page 6.

The system’s process flow is straightforward. The user
presents the system with a number of datasets, and the
user selects a task to be applied to the data. The system
automatically recognizes different data types, however,
it also allows data to be specified in detail by a descrip-
tion language. The system will also accept tasks to be
defined via a conversational engine, and a programming
interface (API). The conversational engine can learn to
recognize a task via given examples, mapping text to
a task specification language and backwards. The pro-
gramming interface accumulates the interfaces of all the
components, unified under a single facade of a generic
problem solver, which is formulated as a general opti-
mizer [Alpcan et al., 2014]. As in Alpha, the most gen-
eral interface the system provides is that of time-limited
optimization, however, the system allows to solve any
well-defined problems allowing the user to define any
success criterion. The problem solver then predicts the
probability that a PSM will succeed in solving the so-
specified problem, and then translates the input data
and the task to a format that the particular PSM will
understand, and also translate any results back. After
a task is solved, the system automatically updates its
long-term memory and writes a snapshot to the disk. It
then executes higher-order cognition routines to improve
its PSMs, and awaits for the next task.

Execution

The execution of PSMs is parallelized as much as possi-
ble, as many PSMs may be run in parallel, but also some
methods will allow data to be sharded, and will also par-
allelize well themselves. A main operational goal of the
system is the ability to keep track of these paralleliza-
tions well enough to present an OS like stability to the
user with a simple interface. The system also allows
modules to be invoked concurrently and in a distributed
manner to facilitate the design of distributed and decen-
tralized applications using the API.

The PSMs are executed with a hardware abstrac-
tion layer called Stardust that provides heterogeneous
peer-to-peer computing capability to the architecture.
MetaNet acts as a common neural network representa-
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tion language. Scientific Data Language is a data spec-
ification language that allows us to describe the type,
format and semantic labels of the data.

3.5 Higher-Order Cognition

Two fundamental higher-order cognitive functions are
defined as analysis and synthesis. Analysis decomposes
a problem into components and then tries to solve the
problem by first solving sub-problems and then merging
their results into a solution. Synthesis generates new
PSMs by combining known PSMs. These operations
give the ability to observe the code of its modules, and
expand the system’s repertoire of PSMs continuously.
Analysis is self-reflective in that sense, and synthesis is
self-reification.

These functions correspond to a second kind of mod-
ularity where the tasks themselves can be decomposed,
and entirely new PSMs may be invented and added as
new modules to the system.

The system continually self-reflects through updating
its algorithmic memory for accelerating future solutions.
It also keeps a record of task performance for trying
to retroactively optimize past solutions. The compo-
nents expose themselves via a high-level reference ma-
chine (Church) which acts as the system “glue code” to
compose and decompose system functions. Since Church
is quite expressive, it can also act as the system’s task de-
scription code, and be used to recognize, decompose, and
compose tasks and solutions. The synthesis and analy-
sis modules operate over the system’s modular cognition
itself, helping with synthesis of new solution methods
and analysis of problems. The system uses self-models
to guide its self-improvement, for instance, by trying to
optimize its performance.

3.6 Self-Improvement

Analysis and synthesis can learn how to accomplish this
as they can use the execution history to improve the
results retrospectively. After a new problem is solved,
therefore, the system can continuously try to improve
its consolidated memory of PSMs by trying to generate
new PSMs that will improve performance over history, or
by decomposing problems to accelerate their execution.
A general objective such as maximizing energy efficiency
of solutions can be sought for self-improvement.

3.7 Modular Neural Architectures

PSMs embody a basic kind of modularity in the sys-
tem which are extended with modular neural architec-
tures. These architectural schemas are a cortical orga-
nization that decomposes the networks into many cor-
tical columns, which are henceforth again decomposed
into micro-columns, with variant geometries. This orga-
nization schema is called MetaCortex, and it is a way
to describe larger networks that can digest a variety of
data sources, and construct larger neural models with
better modularity, that is better data/model encapsu-
lation based on affinity. There are architectures such

as multi-column committee networks that already im-
plement these architectures, however, we would expand
this to the entire library of networks described.

3.8 Intelligent Agents

Basic goal-following and utility-maximization agents can
be realized similarly to time-series prediction. A typ-
ical two part model of learning representations (world
model), and planning will be provided. A basic neu-
ral template will provide for multi-modal perception,
multi-tasking, task decomposition and imitation learn-
ing. Neural templates corresponding to different kinds
of agents such as Deep Mind’s I2A model [Weber et al.,
2017] will be provided.

The intelligent agents have a real-time architecture,
they run at a fixed number of iterations every second.
At this shortest period of synchronization, mostly back-
propagation like learning algorithms, and simulation are
allowed to complete. Everything else is run in the back-
ground for longer time-scales.

3.9 Process and Memory Hierarchy

The processes and memory are organized hierarchically
from long-term, heavy tasks to short-term, lightweight
tasks. At the shortest scale, the system has neural mem-
ory units like LSTM, that last at the scale of one task,
and model-based local training/inference algorithms like
backpropagation algorithms. At a longer scale which
corresponds to one iteration of problem solution proce-
dure, the system remembers the best solutions so far,
and it updates its mid-term memory with them to im-
prove the solution performance in the next iteration. At
this scale, the system will also engage in more processes
such as the just mentioned memory update operation,
and more expensive training algorithms such as genetic
algorithms. At the highest scale, the system runs the
most expensive model-free learning algorithms that can
search over architectures, models, and components, and
updates its persistent, long term memory based on the
statistics about solutions of the new problem after solv-
ing it to guide the solution of new problems. The system
also updates its PSMs by executing its higher-order cog-
nitive functions at this scale.

3.10 Hardware Abstraction Layer

The architecture depends on a Hardware Abstraction
Layer (HAL) in the form of Stardust peer-to-peer com-
puting substrate. Stardust provides a bytecode represen-
tation that can be run on both multi-core cluster, GPU
clusters, and FPGA clusters in the future. Stardust uses
virtualization technology for compartmentalization and
basic security. It uses a lightweight kernel, and provides
parallel and distributed computing primitives.

3.11 Peer-to-Peer Computing

Peer-to-peer computing is facilitated by a node soft-
ware that users download and operate to earn fees from
the network with a cryptographic utility token. Since
approaching human-level will typically require several



petaflops/sec of computing speed, scaling to a significant
number of global users requires peer-to-peer computing.
If a proportion of profit is paid to the users, this can
incentivize their contribution, providing a cost-effective
computing platform for the architecture.

3.12 Scientific Data Language
A canonical data representation seems essential for Al-
pha family of architectures, because the PSMs can vary
wildly in their assumptions. That is why, a common
data format is required. The format we propose has
standard representations for both structured (tabular,
tree, network, etc.), unstructured (like text, audio, im-
age, video) and complex data types. It supports web,
cloud and fog computing data sources, thus also ab-
stracting data ingestion. Each PSM handles the data
differently, mapping to an internal representation if nec-
essary. Therefore, every element of the data can be given
a type, the format of the data may be specified (such as
a 10x10 table of integers), and semantic labels may be
ascribed to data elements. For instance, each dataset
has a different domain, which may be designated with a
domain path. Likewise, the physical units, or other se-
mantic information may be annotated on a dataset with
arbitrary attributes. The specification language must
be also modular allowing to include other modules. The
system automatically ingests known data formats, recog-
nizes them, and converts into this common format which
may henceforth be modified by the user. In the future,
we are planning to design a data cleaning facility to im-
prove the data at this stage.

4 Discussion and Research Program
We gave the overview of an ambitious architecture based
on Solomonoff’s Alpha Architecture, and Schmidhuber’s
Gödel Machine architecture. The system is like Alpha,
because it re-uses the basic design of PSMs. It is also
similar to Gödel Machine architecture, because it can
deploy a kind of probabilistic logical inference for rea-
soning and it can also observe some of its internal states
and improve itself. The system also has basic provisions
for intelligent agents, but it is not limited to them. We
saw that the first important issue with implementing Al-
pha was to decide a basic set of primitives that will grant
it sufficient intelligence to deal with human-scale prob-
lems. It remains to be demonstrated empirically that is
the case, however, two of the eight reference machines
have been implemented and seen to operate effectively.

A criticism may be raised that we have not explained
much about how the AI Kernel works. We only assume
that it presents a generalized universal induction approx-
imation that can optimize functions, rich enough to let us
define basic machine learning tasks. It surely cannot be
Levin search, but it could be any effective multi-strategy
optimization method such as evolutionary architecture
search [Liang et al., 2018]. We are using an extension of
the approach in Fourier Network Search [Koutńık et al.,
2010a] which is also likely general enough. The mem-
ory update is also not detailed but it is assumed that

it is possible to extend an older memory design called
heuristic algorithmic memory so that it works for any
reference machine. We also did not explain in detail
how many components work due to lack of space, which
is an issue to be tackled in a longer future version of the
present paper.

In the future, we would like to support the architec-
tural design with experiments, showing if the system is
imaginative enough to come up with neural architectures
or hybrid solutions that did not appear to humans. The
algorithms used are expensive, therefore they might not
work very well with the extremely large models required
by the best vision processing systems; but to accommo-
date such models, it might be required that the system
evolves only parts of the system and not the entire ar-
chitecture. The system is intended to be tested on basic
psychometric tests first, and a variety of data science
problems to see if we can match the competence of the
solution a human data scientist would achieve.
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