
[Re] Learning to Learn By Self-Critique

Isac Arnekvist∗
Divison of Robotics, Perception and Learning

KTH Royal Institute of Technology
isacar@kth.se

Dmytro Kalpakchi∗
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
dmytroka@kth.se

Abstract

This work is a reproducibility study of the paper of Antoniou and Storkey [2019],
published at NeurIPS 2019. Our results are in parts similar to the ones reported
in the original paper, supporting the central claim of the paper that the proposed
novel method, called Self-Critique and Adapt (SCA), improves the performance
of MAML++. The conducted additional experiments on the Caltech-UCSD Birds
200 dataset confirm the superiority of SCA compared to MAML++. The ability to
reproduce these results, without many of the implementation details, we believe
is in favor of the proposed method. In addition, the reproduced paper suggests a
novel high-end version of MAML++ for which we could not reproduce the same
results. Our conclusion is that the reproduced paper is not self-contained, and we
identify this as a potential reason of failure to reproduce all results.

1 Introduction

Humans are very good at learning new concepts by observing just a few examples of each one.
Modern deep learning methods are also good at learning new concepts, but require much more
examples to learn any concept, albeit a very simple one, e.g. distinguishing cats from dogs. In striving
to bridge the gap between the established supervised learning paradigm and fast-learning humans,
the paradigm of few-shot learning has emerged recently. In this new setting, the training data for
each concept (or task) consists only of a few samples, called shots (hence the name). The aim of the
few-shot learning is to learn a variety of tasks with a few shots each, instead of learning one task with
many shots (as in classical supervised learning).

A popular way to approach few-shot learning is to frame it as meta-learning or learning to learn,
i.e., a learning paradigm focused on acquiring across-task knowledge about how to learn, e.g. by
learning parameter initializations, learning rate schedulers, optimizers, etc. Usually there are two
models involved: a base model and a meta model. A base model learns task-specific information
from a small labeled training set (support set) to predict on an unlabeled validation set (target set). A
meta model learns task-agnostic information to produce parameters for a base model enabling the
fastest possible fine-tuning for each task at hand.

In this work we reproduce the paper of Antoniou and Storkey [2019], which proposes a framework,
called Self-Critique and Adapt or SCA, inspired by the idea that a target set also has task-specific
information. For instance, if the training task is to distinguish cats from dogs and the new task would
be to classify different breeds of dogs, a human would be able to guess what the new task is by
observing a small number of samples. SCA aims at improving this ability by learning a label-free loss
function during training, in order to be able to continue training the base model on the (unlabeled)
test set before the final inference.

∗Denotes equal contribution.

Preprint. Under review.

The paper has been reproduced by solely reading the details therein, and not taking the published
code of the authors into account. It has become evident though, that the published code is essential
for a complete understanding of the work.

2 Background

2.1 Meta learning

Meta learning has recently gained momentum after the publication of Model Agnostic Meta Learning
(MAML) [Finn et al., 2017]. In short, MAML tries to optimize the initialization parameters θ of the
base model, such that a network performs well on new few-shot learning tasks after only a few steps
of training (see Figure 1). This approach, and its successors all have in common that a meta model is
updated in an outer loop, while in an inner loop the task-specific base model is learned based on the
meta model.

Figure 1: MAML diagram showing how base model parameters θ are optimized to quickly adapt to
new tasks (taken from the original paper [Finn et al., 2017])

Versions of MAML include a first-order gradient version, denoted Reptile [Nichol and Schulman,
2018], and a range of improvements presented by Antoniou et al. [2019], denoted MAML++. In the
latter, improvements were mainly focused at gradient instability, speedup of the first part of training
by not using second-order gradients, learned step sizes, and tweaking Batch Normalization [Ioffe and
Szegedy, 2015] for the meta-learning regime.

In short, given a task b, MAML++ updates the base model parameter vector θb0 = θ0 by:

θbi+1 = θbi − α∇θLb(θbi) (1)

The loss for task b is given by Lb. The parameter θ0 is the parameter vector of the meta model, and is
the common starting point, initialization, for all task-specific updates, as shown above. The meta
model parameter vector is also updated, but in an outer loop, to minimize:

Lmeta(θ0) =

B∑
b=1

N∑
i=1

viLb(θbi) (2)

Here, B is the total number of tasks, and N is the total number of base model updates. The scalars vi
can be seen as importance weights which fulfill vi > 0 and

∑N
i vi = 1. This is done to get more

stable gradients by not only considering the last update, but throughout the entire update sequence.
As training progresses, however, vN → 1 since the last update is ultimately what we care about and
use during evaluation.

Other interpretations of this algorithm, rather than meta learning, could be transfer learning since the
common features of all tasks are encoded in the meta model, invariant of the task-specific updates.
Yet another interpretation is that we learn a parameter initialization rather than randomly initializing
network weights from some simpler distribution.

2.2 The SCA algorithm

The paper we reproduce proposes a framework called Self-Critique and Adapt or SCA. The framework
aims at using the information from the target set at inference time. This is achieved by learning a
label-free loss function, parameterized as a neural network, called Critic Network (later referred

2

to as Critic). It is said that SCA can be applied for any meta-learning method that uses inner-loop
optimization, but a specific example is given for the case of MAML (see Algorithm 1).

Algorithm 1: SCA Algorithm combined with MAML
1 Required: Base model function f and initialisation parameters θ, critic network function C and

parameters W, a batch of tasks {SB = {xBS , yBS },TB = {xBT , yBT }} (where B is the number
of tasks in our batch) and learning rates α, β, γ

2 for b in range(B) do
3 θb0 = θ; /* Reset θ0 to the learned initialization parameters */
4 for i in range(N); /* N is a number of inner loop steps wrt support set */
5 do

/* Inner loop optimization wrt support set */
6 θbi+1 = θbi − α∇θbiL(f(x

b
S , θ

b
i), y

b
S) (3)

7 end
8 for j in range(I); /* I is a number of inner loop steps wrt target set */
9 do

/* Critic feature-set collection */
10 F = {f(xbT , θbN+j), θ

b
N+j , g(x

b
S , xn)} (4)

/* Inner loop optimization wrt target set */
11 θbN+j+1 = θbN+j − γ∇θbN+j

C(F,W) (5)
12 end
13 Louter = Louter + L(f(xbT , θ

b
N+I), y

b
T)

14 end
/* Joint outer loop optimization of θ */

15 θ = θ − β∇θLouter (6)
/* Joint outer loop optimization of W */

16 W =W − β∇WLouter (7)

The major difference between SCA and MAML is the introduction of another inner loop part (lines
8 to 12 of Algorithm 1), where the base model weights are optimized with respect to the target set
using the Critic Network C as a loss function. The Critic operates on the collected feature set F (see
Equation (4) of Algorithm 1), consisting of:

• f(xbT , θbN+j) - predictions of the base model (trained wrt support set) on the target set T b

for the task b using the base model parameters θbN+j ;

• θbN+j - parameters of the base model for the task b after N + j optimization steps;

• g(xbS , xn) - a task embedding, parameterized as a neural network, where xbS is the support
set for the task b and xn is not described in the original paper.

These features serve as the input to the Critic C, which outputs the label-free loss function, used in
the inner loop to perform gradient descent on the parameters θ of the base model (see Equation (5)
of Algorithm 1, where W are parameters of the Critic and γ is the Critic’s learning rate). The loss
for the outer loop Louter, used in original MAML now uses the base model parameters θN+I after I
updates using the Critic. The base model parameters θ (which will be used as initialization for the
next task) and Critic’s parameters W are updated in the outer loop using Louter loss. There are two
key observations to make about the outer loop:

• the base model parameters θ can be updated using the gradient ofLouter, since the parameters
θbN+I depend on θ used to initialize θb0 (line 3 of Algorithm 1);

• the Critic parameters W can be updated using the gradient of Louter, since θbN+I depends
on W through gradient descent update (line 11 of Algorithm 1).

Critic Network Architecture. The components of the Critic Network are shown in the Figure 2.
As mentioned previously, the feature set F serves as an input to the Critic. All features from F are
reshaped into a batch of 1D vectors, concatenated on the feature dimension and then passed to a
sequence of five one-dimensional dilated convolutions with kernel size 2 and 8 kernels per layer.

3

Each convolutional layer i (starting from 0) uses an exponentially increasing dilation policy with a
dilation 2i. Furthermore, DenseNet style connectivity is employed for convolutional layers, meaning
that the input for each convolutional layer is a concatenation of outputs of all preceding convolutional
layers. Finally a sequence of two fully-connected layers with ReLU activation functions is applied
with the final fully-connected layer outputting a loss value.

Input � Conv + � Conv + � Conv + � Conv + � Conv + � FC + � FC

�(�) ∈ ℝ
1

�

�(,)�� ��

�()��

�

Figure 2: Critic Network architecture. The parts marked in blue correspond to parts which are
not clear from the paper on how to implement. Other details that were unclear were padding or
concatenation strategies and parameter initialization.

3 High-End MAML++

In order to test whether SCA provides significant performance improvement for high-capacity models,
the authors have introduced a novel high generalization performance MAML++ backbone, which
is dubbed as High-End MAML++. The main difference compared to the Low-End MAML++ is
the use of a High-End Classifier (see architecture in Figure 3), instead of VGG network as the base
model. The High-End classifier uses a DenseNet style architecture with 2 dense stages (purple blocks
in Figure 3) and one transition layer in between them (light blue block in Figure 3). Each dense
stage consists of two dense block units (see architecture of dense block unit in Figure 4). Each
dense block unit consists of a bottleneck block, as described in [Huang et al., 2017], preceded by the
squeeze-excite style convolutional attention, as described in [Hu et al., 2018].

Transition layer Dense stage 2Dense stage 1

Dense Block
Unit

Dense Block
Unit

TextTextTextTextTextText
1x1

convolutions
TextTextTextTextTextText

2x2
average
pooling

Dense Block
Unit

Dense Block
Unit Linear

0.08

0.28

0.1

0.2

0.34

Figure 3: Architecture of the classifier in the High-End MAML++

Dense Block Unit

Squeeze-Excite Attention

ReLU

Bottleneck block

BN BN
TextTextTextTextTextTextTextTextTextTextTextTextTextText

1x1
convolutions

TextTextTextTextTextText
3x3

convolutions

4k
k

ReLU ReLU
3x3 convolutions3x3 convolutions3x3 convolutions

Input
features

3x3 convolutions3x3 convolutions3x3 convolutionsInput featuresTextTextTextTextTextText
Output
features

Figure 4: Architecture of the Dense block unit - a part of the classifier in the High-End MAML++.
k = 64 is a growth rate; BN stands for Batch Normalization.

To improve the performance and the training speed of the High-End classifier, the authors propose
to optimize only the last dense block unit and the final linear layer in the inner loop. All the other
network components are shared across inner loop optimization steps by treating them as feature
embedding. Hence, all other components, but the last dense block unit and the final linear layer,
will be optimized in the outer loop.

4 Reproducibility

4.1 Critic architecture

The key concept of DenseNets is that features of all previous layers are concatenated as inputs to all
successive layers. For this to work, we either need the features to have the same size, or to preprocess

4

them in some way such that the sizes agree. We decided to assume the sizes were kept constant by
adding zero-padding. This padding will not be constant, however, since dilation changes per layer.
This requires us to solve the equation

L =

⌊
L+ 2× padding − dilation(kernel_size− 1)− 1

stride
+ 1

⌋
(8)

= bL+ 2× padding − 2ic (9)
(10)

where it is stated by the authors that: i is the number of the layer from 0 to 4, kernel size is 2, and
stride is 1. L is the size of the input and output. For the first layer, we have:

L = bL+ 2× padding − 1c (11)

which has padding = 0.5 as the solution. We solved this by adding one additional zero last in the
feature dimension. For the remaining layers, the equation have integer solutions which makes the
implementation trivial.

For the last fully connected layers, two questions are raised:

1. Are all previous features from earlier layers propagated to the fully connected layer, or only
to the last convolutional layer?

2. What is the feature dimension size after the first fully connected layer?

For (1), we noticed that if skip connections to the fully connected layer were not present, the gradient
of the output w.r.t. the input was zero. This changed after adding the skip connections and was
therefore used in the experiments. For (2), in our experiments, we assumed that the feature size
was kept after the first fully connected layer, making the weight matrix of this layer a square matrix.
Another question raised was which activation function was used. We decided to use ReLU throughout
the entire critic Network.

4.2 Additional input features to the Critic

The critic’s input consists of three features: base model predictions on the target set, base model
parameters used to produce these predictions and task embeddings produced by a neural network g.
While supplying base model predictions as an input was not problematic, the other two input features
were problematic to implement, because of the reasons, described below.

The embedding function g was only partly specified by highlighting that a relational network produced
superior results compared to DenseNet-style network. However, neither the architecture of such
relational net nor its training procedure (i.e. which loss function was used, whether it was trained in
conjunction with the meta and base model as in [Rusu et al., 2019], etc) were explained. Due to the
large amount of possible procedures for learning task embeddings, e.g., [Rusu et al., 2019, Hausman
et al., 2018, Arnekvist et al., 2019], this part was not implemented.

Regarding passing base model parameters to the critic, the amount of required RAM becomes a
problem. As an example, the base model in the case of Mini-ImageNet has roughly 70000 parameters.
In this case, the weights of the first fully connected layer of the critic would use

(70000 · (5 · 8 + 1))2 · 32bits ≈ 32TB (12)

of GPU memory, which is obviously not reasonable. In our experiments for adding base model
parameters as features, we tried different sizes of the last fully connected layers, but all ran out of
memory on a GPU with 11GB RAM. Even when restricting the output dimension of the first fully
connected layer to 256, it still sums up to about 3GB. Note, that this does not include the other
parameters of the critic, the base/meta model, multiple forward activations, gradients, etc.

4.3 Hyperparameters for Low-End MAML++

In Algorithm 1, there are three step sizes listed: α, β, and γ. We used the MAML++ approach where
all the upgrades to the base model, including those made by the critic, are done with vanilla SGD and
learned step sizes. The critic’s parameters were updated with SGD and a relatively small step size

5

10−6. The reasoning was to use a relatively small step size and get slow learning, rather than using a
large step size and risk unstable learning.

Batch sizes were 2 for the 1-shot experiments, as in MAML++, but 1 for 5-shot, since otherwise we
ran out of memory. In MAML++, it is proposed that Batch Normalization only normalizes data using
the exponentional moving averages, which implies that we can use batch size one. As can be seen in
section 5, despite the changed batch size, results for Low-End MAML++ still turn out the same, or
better than those reported in the original paper.

For the critic, we used standard initializations of layers defined in PyTorch [Paszke et al., 2017], i.e,
w ∼ U(−

√
k,
√
k) for the biases and weights of the convolutional layers, where k−1 is the number

channels in times the kernel size. For the fully connected layers, we used the same initialization but
where k−1 is the number of input features (fan-in).

4.4 SCA for Low-End MAML++

In SCA, we perform I additional updates using the critic, after the N inner loop updates using a
pre-defined loss function, usually negative log-likelihood. The simplest guess how to use MAML++
along with SCA is by optimizing

Lmeta(θ0) =

B∑
b=1

[
N∑
i=1

viLb(θbi) + C(f(xbT , θ
b
N+I))

]
. (13)

This can be extended in multi-step loss fashion (similar to MAML++), as follows:

Lmeta(θ0) =

B∑
b=1

 N∑
i=1

viLb(θbi) +
I∑
j=1

wjC(f(x
b
T , θ

b
N+j))

 , (14)

where wj are importance weights as vi.

For the exact implementation details, the only information about the value of I was given as an
example in the Section 4 of the original paper, where I = 1. For this reason, we used this value in
our experiments, and then also the choice of importance weights wj for the critic losses becomes
obsolete.

4.5 Hyperparameters for High-End MAML++

For most of the implementation details, the reader is referred to other papers [Huang et al., 2017, Hu
et al., 2018] and we had to assume that all details are the same as in these papers. Learning rate and
optimizer for the High-End classifier are not specified, so we assumed that they should be the same
as for Low-End MAML++.

However, when we were unable to reproduce the reported results with the assumed hyperparameters,
we had to experiment further and tried different weight initialization strategies, namely Kaiming
uniform and normal [He et al., 2015], Xavier [Glorot and Bengio, 2010], as well as different
optimizers, namely Adam optimizer [Kingma and Ba, 2014] and SGD. We noticed that these choices
are crucial for the learning outcome, and after manual search we found SGD with learning rate
10−4 to be superior to Adam. For weight initializations, we chose to follow the implementation of
MAML++ with Xavier initialization and zero bias in all layers except the last linear layer of the
classifier. If using Xavier in the last linear layer, interestingly, the learning immediately diverges. We
instead found that the PyTorch [Paszke et al., 2017] default initialization produced stable learning,
but could not find any papers confirming this particular choice.

5 Results

We list our results in Table 1. For the original paper no results were reported for the Caltech-UCSD
Birds 200 (CUBS-200) dataset [Welinder et al., 2010] using Low-End MAML++ (which is the original
MAML++ proposed in [Antoniou et al., 2019]), while we provide our results for this dataset here.
The reported 95% confidence intervals are calculated using the standard error times 1.96. Standard
deviations were estimated using the resulting accuracies of the 3 experiments we ran, changing only

6

the seed for each of them. Note, that in the original paper, neither a number of experimental runs, nor
the way of calculating the confidence intervals were reported.

The reported results for SCA are deemed significant if the performance confidence intervals of
MAML++ with SCA and without SCA do not overlap. Performance improvements that are considered
significant are marked in bold in Table 1. Note, that the results are compared only within each
implementation, meaning that the reproduced SCA performance is compared to only the reproduced
MAML++ performance and not the one reported in the original paper.

It should be mentioned that we have also tried running SCA with High-End MAML++, but all
experiments ran out of memory.

Table 1: SCA reproducibility results (all SCA models are applied on top of Low-End MAML++, the
values in bold indicated significant improvements compared to the the base model)

Test Accuracy
Model Mini-ImageNet CUBS-200

1-shot 5-shot 1-shot 5-shot

MAML++
(Low-End)

Orig. 52.15± 0.26% 68.32± 0.44% - -
Ours 51.41± 0.20% 69.25± 0.25% 55.62± 1.57% 68.19± 0.86%

with
SCA (pred)

Orig. 52.52± 1.13% 70.84± 0.34% - -
Ours 55.38± 0.39% 70.42± 1.25% 57.92± 1.55% 69.96± 0.26%

MAML++
(High-End)

Orig. 58.37± 0.27% 75.50± 0.19% 67.48± 1.44% 83.80± 0.35%
Ours 39.35± 1.33% Out of memory 31.23± 0.66% Out of memory

All experiments for Mini-ImageNet were run on NVIDIA GeForce RTX 2080 Ti, all experiments
for CUBS-200 were run on NVIDIA GeForce GTX 1080 Ti (both GPUs have 11 GB RAM). The
running times for all experiments are reported in Table 2. Note that we stop training after 10 epochs
of no improvement in terms of accuracy on the validation set.

Table 2: Running time for the conducted reproducibility experiments

Model Mini-ImageNet CUBS-200
1-shot 5-shot 1-shot 5-shot

MAML++ (Low-End) 2.6± 0.8h 2.8± 0.1h 1.1± 0.2h 1.8± 0.1h

MAML++ (Low-End)
with SCA (pred) 7.8± 0.6h 5.2± 0.7h 4.5± 0.8h 3.7± 0.3h

MAML++ (High-End) 6.0± 0.8h Out of memory 4.9± 1.5h Out of memory

The source code for this re-implementation is built atop the MAML++ code published
by Antoniou et al. [2019], and can be found here: https://github.com/dkalpakchi/
ReproducingSCAPytorch.

6 Discussion

The paper by Antoniou and Storkey [2019] presents ideas that work well in practice for the Low-
End MAML++, even without specific details that might be crucial to the success of other methods.
The authors state that improvements to low-end methods often fail to give the same improvements
to high-end versions, and that they want to show that this is not true for SCA. It is mentioned
that meta-learning methods are very sensitive to architecture changes, nonetheless these details are
explained in the paper very briefly, totally excluding hyperparameter and parameter initialization
details. In fact, the paper is leaving out many details (which a reader will realize first in the middle
of implementation). It should be said though, that the authors have indeed published their code,
which makes it an additional and critical source of information. However, we have not consulted the
published code, according to the guidelines of the NeurIPS Reproducibility Challenge.

7

https://github.com/dkalpakchi/ReproducingSCAPytorch
https://github.com/dkalpakchi/ReproducingSCAPytorch

In contrast to the reported results, we were not able to reproduce the results for the High-End
MAML++, which can, of course, be caused by programming mistakes on our side. We did, however,
employ pair programming which is a proven method to reduce errors [Hannay et al., 2009] and spent
ample time going through the code to spot bugs.

6.1 Large amount of missing information

We had to make several guesses on the architecture and hyperparameters, such as learning rates,
weight initializations, and choice of optimizers. Although left out of the paper, we could mostly
make reasonable guesses on how to implement it. On the other hand, for the embedding function
g too many details were absent from the paper to make it possible to implement. The initial part
of the network was described briefly, but for the rest only a reference to a “similar” approach was
mentioned [Rusu et al., 2019]. Among the details omitted, we feel that the most vital is the loss
function for training the embedding function, especially since loss functions for embeddings are not
as straightforward to guess as for regression and classification.

For the High-End backbone of MAML++, we noticed that different strategies for weight initializations
were crucial to be able to learn at all. In particular, following the strategies in the MAML++
implementation and using Xavier initialization [Glorot and Bengio, 2010] on the last linear layer
before the softmax led to a monotonically increasing loss. Instead using the standard initialization of
PyTorch [Paszke et al., 2017] produced decreasing loss and increasing accuracy.

The reported results are based on versions of MAML++, but the only algorithm box in the paper
describes SCA for MAML. Especially in conjunction with the missing number of critic updates I ,
it is hard to understand how to extend MAML++ to incorporate SCA, which gives rise to a bunch
of questions. For instance, should the losses from the critic also be summed as for the N previous
steps? Should we use derivative order annealing as described in the MAML++ paper? Should we use
importance weights if we go with a summation of the critic losses?

6.2 Missing computational requirements

The computational requirements for training any method play a vital role in the ability to use the
method in practice. Unfortunately, such details are missing from the original paper making it hard to
both estimate the computational power needed to reproduce the experiments and understand if the
re-implemented model performs similarly to the original one.

6.3 On the matter of “magic” numbers

Some methods reported in the scientific literature might rely heavily on hyperparameters assuming
just the correct values, without reporting why these were chosen, how they were chosen, or in the
worst case not reported at all. When methods rely so heavily on particular hyperparameter choices,
one could either argue that they overfitted to the problem at hand and are not expected to generalize
beyond standard benchmarks, or that the method just happened to perform better because it was
allowed ample hyperparameter search. This raises a question of whether an alternative method would
be still better when allowed the same opportunity. For the reproduced paper though, we can not draw
any conclusions about whether crucial implementation details (e.g. details about architecture or other
hyper-parameters) are missing or there are simply errors in our code.

In this work we have re-implemented SCA, for the Low-End MAML++ backbone, without specific
details (sometimes simply guessing), but we were still able to get results in favor of the method. The
fact that SCA worked even without the exact implementation details is a clear indication of good
quality research. We were, however, not able to reproduce the results for the High-End MAML++
and the experiments of High-End MAML++ with SCA ran out of memory. For the architectural
details of the High-End backbone, the reader is mostly referred to read additional papers [Huang
et al., 2017, Hu et al., 2018] and we had no choice but to assume the exact same design choices as
reported in the cited papers.

8

References
Antreas Antoniou and Amos Storkey. Learning to learn by self-critique. Advances in Neural

Information Processing Systems, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1126–1135. JMLR. org, 2017.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2, 2018.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
HJGven05Y7.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. International Conference on
Learning Representations, 2019.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. International Conference on Learning
Representations, 2018.

Isac Arnekvist, Danica Kragic, and Johannes A Stork. Vpe: Variational policy embedding for transfer
reinforcement learning. In 2019 International Conference on Robotics and Automation (ICRA),
pages 36–42. IEEE, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NIPS-W, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Jo E Hannay, Tore Dybå, Erik Arisholm, and Dag IK Sjøberg. The effectiveness of pair programming:
A meta-analysis. Information and software technology, 51(7):1110–1122, 2009.

9

https://openreview.net/forum?id=HJGven05Y7
https://openreview.net/forum?id=HJGven05Y7

	Introduction
	Background
	Meta learning
	The SCA algorithm

	High-End MAML++
	Reproducibility
	Critic architecture
	Additional input features to the Critic
	Hyperparameters for Low-End MAML++
	SCA for Low-End MAML++
	Hyperparameters for High-End MAML++

	Results
	Discussion
	Large amount of missing information
	Missing computational requirements
	On the matter of ``magic'' numbers

