
Published as a conference paper at ICLR 2020

ADAPTIVE CORRELATED MONTE CARLO FOR CON-
TEXTUAL CATEGORICAL SEQUENCE GENERATION

Xinjie Fan1, Yizhe Zhang2, Zhendong Wang3, Mingyuan Zhou1

1University of Texas at Austin, 2Microsoft Research, 3Columbia University
xfan@utexas.edu, yizhe.zhang@microsoft.com,
zw2533@columbia.edu, mingyuan.zhou@mccombs.utexas.edu

ABSTRACT

Sequence generation models are commonly refined with reinforcement learning
over user-defined metrics. However, high gradient variance hinders the practical
use of this method. To stabilize this method, we adapt to contextual generation
of categorical sequences a policy gradient estimator, which evaluates a set of
correlated Monte Carlo (MC) rollouts for variance control. Due to the correlation,
the number of unique rollouts is random and adaptive to model uncertainty; those
rollouts naturally become baselines for each other, and hence are combined to
effectively reduce gradient variance. We also demonstrate the use of correlated MC
rollouts for binary-tree softmax models, which reduce the high generation cost in
large vocabulary scenarios by decomposing each categorical action into a sequence
of binary actions. We evaluate our methods on both neural program synthesis
and image captioning. The proposed methods yield lower gradient variance and
consistent improvement over related baselines.

1 INTRODUCTION

Contextual categorical sequence generation is a core modeling component in a wide variety of
machine learning tasks, such as neural program synthesis (Bunel et al., 2018; Devlin et al., 2017b;
Si et al., 2018; Chen et al., 2019) and image captioning (Vinyals et al., 2015; Xu et al., 2015).
Typically, an encoder-decoder framework is applied. The encoder maps a contextual input to a
latent representation, conditioning on which and previously generated tokens the decoder generates
categorical tokens in a consecutive manner (Bahdanau et al., 2014; Sutskever et al., 2014; Cho et al.,
2014; Rush et al., 2015; Chopra et al., 2016). It is common to train contextual sequence generation
models using maximum likelihood estimation (MLE), which attempts to maximize the likelihood of
each token in a target sequence given its preceding tokens. Learning with MLE is often sub-optimal
as it does not directly optimize the evaluation metric of the end task. It generally suffers from the
exposure bias (Bengio et al., 2015; Ranzato et al., 2016) , which refers to the discrepancy between
training and generation using the Teacher Forcing (Williams & Zipser, 1989) strategy, i.e., during
training ground truth tokens are used as inputs, while during generation, only generated tokens are
available. Thus giving higher likelihoods to target sequences does not guarantee the model to generate
sequences close to the target or good sequences. Moreover, MLE requires target sequences for
training, while for many scenarios in task-oriented dialogue (Williams & Young, 2007) and program
synthesis (Zhong et al., 2017), only the final rewards to the generated sequences are available.

To overcome the aforementioned issues of MLE, it is common to refine a contextual sequence
generation model pre-trained with MLE under the reinforcement learning (RL) framework (Zaremba
& Sutskever, 2015; Ranzato et al., 2016; Bahdanau et al., 2016; Wu et al., 2018; Paulus et al., 2017).
The objective becomes maximizing the expected rewards of model generated sequences. During
training, only the model generated tokens are fed into the model so that the exposure bias is avoided.
The reward to guide RL can be: 1) a task-dependent user-defined metric, such as CIDEr for image
captioning (Vedantam et al., 2015) and Generalization for neural program synthesis (Bunel et al.,
2018); and 2) automatically learned reward using a discriminator or language model (Yang et al.,
2018; Yu et al., 2017; Lamb et al., 2016; Caccia et al., 2018; d’Autume et al., 2019). The RL training

Code link: https://github.com/xinjiefan/ACMC ICLR

1

 https://github.com/xinjiefan/ACMC_ICLR

Published as a conference paper at ICLR 2020

enables direct improvement of the user-defined or learned reward. Moreover, in cases where only
weak-supervision is available, e.g., in neural program synthesis, RL may considerably improve the
model performance (Bunel et al., 2018; Zhong et al., 2017). However, the gradients of the expected
reward in RL often suffer from high Monte Carlo (MC) estimation variance, due to noisy and/or
sparse rewards and the large action space that grows exponentially with the sequence length.

There has been significant recent interest in variance reduction methods for MC gradient estimation
(Mohamed et al., 2019). A highly effective solution is the reparameterization trick (Kingma &
Welling, 2013; Rezende et al., 2014), which, however, is applicable to neither discrete variables
nor non-differentiable reward functions. For variance reduction involving discrete variables, one
potential solution is to combine the Gumbel-softmax trick, which relaxes the discrete variables to
continuous ones, with reparameterization to produce low-variance but biased gradients (Jang et al.,
2017; Maddison et al., 2017). Another common way for variance reduction is adding appropriate
baselines (Owen, 2013; Williams, 1992; Paisley et al., 2012; Ranganath et al., 2014; Mnih & Gregor,
2014), and there exist several such methods customized for discrete variables (Tucker et al., 2017;
Grathwohl et al., 2018). However, due to either the inherent biases or difficulty to learn the parameters
of the baselines, it is unclear how effective these newly proposed estimators are in backpropagating
the gradients through a sequence of discrete variables (Yin et al., 2019). This is exacerbated in
contextual categorical sequence generation problems, where it is common for a sequence to contain
quite a few tokens/actions, each of which is selected from a set of thousands of candidates.

Another practical issue is that generating a token from a large vocabulary via the softmax output
layer is often computationally heavy. This prevents a categorical sequence generation model from
being deployed to low-power devices. Despite significant recent efforts in addressing the computation
bottleneck due to a wide softmax layer (Shim et al., 2017; Zhang et al., 2018; Chen et al., 2018),
for categorical sequence generation, it is so far unclear how to address the softmax computational
bottleneck while at the same time providing low-variance gradient of its RL objective.

This paper makes two primary contributions: 1) To address the high gradient variance issue, we
adapt to contextual categorical sequence generation tasks the augment-REINFORCE-swap-merge
(ARSM) estimator (Yin et al., 2019), which provides unbiased, low-variance gradients for categorical
variables, using token-level rewards from correlated MC rollouts that naturally serve as the baselines
for each other. We show that the number of rollouts is adapted to the model uncertainty on the latest
generated token, and can also be manually controlled to balance variance reduction and computation.
2) To address the high generation cost issue, we replace the generation of each categorical variable
in the sequence, via a categorical softmax output layer, with the generation of a sequence of binary
decisions on a binary tree from its root node to a leaf node, which is occupied by a unique term of the
vocabulary. For training, we adapt the augment-REINFORCE-merge (ARM) estimator (Yin & Zhou,
2019), which provides unbiased, low-variance gradients for binary variables, to backpropagate the
gradients through the sequence of binary sequences. Under this binary-tree construction, the cost of
generating a categorical token reduces from O(V) to O(log2(V)), where V is the vocabulary size.

We demonstrate our methods on two representative contextual categorical sequence generation tasks,
with the number of actions ranging from 53 (neural program synthesis) to 9978 (image captioning).

2 PRELIMINARIES ON CONTEXTUAL SEQUENCE GENERATION

For a dataset of context-output pairs D := {xi,yi}Ni=1, our goal is to learn the conditional distri-
bution of output yi given its context xi, expressed as pθ(yi |xi). Below we drop the data index
subscript for brevity. We focus on the case that an output is a sequence of T categorical vari-
able as y = {y1, · · · , yT }, where yt ∈ {1, . . . , V }. A common way to model pθ(y |x) is to
decompose it as pθ(y |x) =

∏T
t=1 pθ(yt | y1:t−1,x), where the t-th term in the product, which

models the distribution of token yt conditioning on the context x and previously generated to-
kens y1:t−1, is commonly parameterized by a recurrent neural network (Sutskever et al., 2014).
MLE is a common way to train the model: θ̂MLE = argmaxθ E{x,y}∼pdata(x,y)[log pθ(y |x)].
Viewing pθ(yt | y1:t−1,x) as a stochastic policy for choosing an action given the state, we can
formulate contextual sequence generation as an RL problem and infer the policy parameter θ as
θ̂RL = argmaxθ E{x,y}∼pdata(x,y)Ez∼pθ(· |x)[r(z |x,y)], where r(z |x,y) denotes the reward of
the generated (hypothesis) sequence z given the context x and the reference target sequence y. For

2

Published as a conference paper at ICLR 2020

example, for image captioning, the reward could be the CIDEr score that measures the similarity
between the generated caption z and the reference y (Rennie et al., 2017).

Denote σ(·) as the softmax function and Tθ(·) as a deterministic function defined by a deep neural
network with parameter θ. We model pθ(z |x) =

∏T
t=1 pθ(zt | z1:t−1,x), where

pθ(zt |x, z1:t−1) = Cat(σ(φt)), φt := Tθ(x, z1:t−1). (1)

For a context-target pair {x,y}, we can expand the expected reward ER under policy pθ(z |x) as

ER = Ez∼pθ(· |x)[r(z |x,y)] = Ez1:t−1∼pθ(· |x)Ezt∼Cat(σ(φt))[r(z1:t |x,y)], (2)

where the partial-sentence reward is defined as r(z1:t |x,y) = Ezt+1:T∼pθ(· | x,z1:t)[r(z |x,y)].

Using the chain rule and REINFORCE (Williams, 1992) estimator, we have

∇θER =
∑T
t=1∇φtER∇θφt, ∇φtER = Ez1:t−1∼pθ(· |x)∇φtEzt∼Cat(σ(φt))[r(z1:t |x,y)],

∇φtEzt∼Cat(σ(φt))[r(z1:t |x,y)] = Ezt∼Cat(σ(φt))[r(z1:t |x,y)∇φt ln p(zt;σ(φt))].

The main challenge here is to control the variance in estimating∇θER. A variety of methods have
been proposed. For example, drawing sentence z ∼ pθ(z |x) and using its reward r(z |x,y) to
approximate all partial-sentence rewards {r(z1:t |x,y)}1,T , Ranzato et al. (2016) introduce MIXER
with a scheduled training iterating between MLE and RL, estimating the RL gradient as

∇̂θER =
∑T
t=1(r(z |x,y)− b(z1:t−1))∇φt ln p(zt;σ(φt))∇θφt,

where b(z1:t−1) is a baseline function. To improve MIXER, Rennie et al. (2017) introduces the
self-critic (SC) sequence training algorithm that sets b(z1:t−1) = r(z̃ |x,y) for all t, where z̃ is a
greedy sequence rollout under pθ(z |x). As using sentence-level reward r(z |x,y) to guide the
learning is found to be sensitive to the algorithm parameters such as the learning rate, Liu et al. (2017)
follow Yu et al. (2017) to use token-level rewards that approximate each partial-sentence reward with
K independent MC rollouts (MC-K) as r̂(z1:t |x,y) = 1

K

∑K
k=1 r(z1:t, z

(k)
(t+1):T |x,y), z

(k)
(t+1):T ∼

pθ(· |x, z1:t). With these token-level rewards r̂(z1:t |x,y), Liu et al. (2017) estimate the gradient as

∇̂θER =
∑T
t=1(r̂(z1:t |x,y)− b(z1:t−1))∇φt ln p(zt;σ(φt))∇θφt. (3)

Following SC, for token t, one may choose baseline b(z1:t−1) = r(z1:t−1, z̃t:T |x,y), where z̃t:T is
a greedy rollout following partial sentence z1:t−1. In addition to being more robust, using token-level
rewards r̂(z1:t) to guide the learning is often necessary when the reward signal is sparse, e.g., in
neural program synthesis, it is common that a full MC roll receives zero reward with high probability.

In addition to these methods mentioned above, the actor-critic method (Sutton, 1988) is used to
reduce gradient variance at the expense of introducing bias (Bahdanau et al., 2016; Zhang et al., 2017).
Several approaches explore beam search instead of sampling based methods (Wiseman & Rush, 2016;
Bunel et al., 2018), also at the expense of introducing bias. Several other methods combine the MLE
and RL objectives for training (Norouzi et al., 2016; Ding & Soricut, 2017).

3 POLICY GRADIENT WITH ADAPTIVE CORRELATED MC ROLLOUTS

Correlated MC samples, if well designed, can be combined to achieve much greater variance reduction
than using the same number of independent ones (Owen, 2013). To reduce gradient variance for
contextual categorical sequence generation and remove the need to construct explicit baselines, we
adapt the augment-REINFORCE-swap (ARS) and ARS-merge (ARSM) estimators of Yin et al.
(2019) to generate correlated MC rollouts. The number of correlated MC rollouts, used to estimate
each token-level partial-sequence reward, is adaptive according to the uncertainty on token generation.
The key idea here is to rewrite the gradient as differently expressed but equivalent expectations,
whose MC samples, generated by sharing the same set of random numbers and hence correlated, are
subsequently merged for variance reduction, without the need of learnable baseline functions.

Denote z ∼ Cat(σ(φ)) as a univariate categorical variable such that P (z = v |φ) = σ(φ)v =

eφv
/∑V

i=1 e
φi . Denote π = (π1, . . . , πV) ∼ Dir(1V) as a random probability vector drawn from

the Dirichlet distribution whose V parameters are all ones. Denoting m � j as the operation of

3

Published as a conference paper at ICLR 2020

swapping the mth and jth elements of a vector, we have πm�j
m = πj , π

m�j

j = πm, and πm�j

i =

πi,∀i /∈ {m, j}.With z := argmini∈{1,··· ,V } πie
−φi , E(φ) = Ec∼Cat(σ(φ))[r(c)] can be reexpressed

as E(φ) = Eπ∼Dir(1V)[r(z)], whose gradient under the ARS estimator can be expressed as

∇φvE(φ) = Eπ∼Dir(1V)[gARS(π, j)v], gARS(π, j)v := [r(zv�j)− 1
V

∑V
m=1 r(z

m�j)](1− V πj), (4)

where j is a reference category randomly selected from {1, . . . , V } and zm�j :=
argmini∈{1,··· ,V } π

m�j

i e−φi . ARSM further improves ARS by adding a merge step as

∇φvE(φ) = Eπ∼Dir(1V)[gARSM(π)v], gARSM(π)v := 1
V

∑V
j=1 gARS(π, j)v. (5)

We refer to z as the true action and zm�j as pseudo actions. These actions are correlated to each other
as they are transformed from the same Dirichlet distributed π vector under different pairwise index
swaps. While there are V (V − 1)/2 unique pairwise swaps, after MLE pre-train with V ∼ 104, the
number of unique pseudo actions that differ from the true action is random and often stays below 10,
and becomes 0 more and more frequently as the progress of RL training reduces model uncertainty.

3.1 ADAPTIVE CORRELATED MC BASED POLICY GRADIENT FOR CATEGORICAL SEQUENCE

Applying the ARSM estimator in (5) to the expected reward shown in (2), we have

∇φtvER = Ez1:t−1∼pθ(· |x)Eπt∼Dir(1V)[gARSM(πt)v], gARSM(πt)v := 1
V

∑V
j=1 gARS(πt, j)v,

gARS(πt, j)v :=
[
r(z1:t−1, z

v�j

t |x,y)− 1
V

∑V
m=1 r(z1:t−1, z

m�j

t |x,y)
]
(1− V πtj),

where zm�j

t := argmini∈{1,··· ,V } π
m�j

ti e−φti , πt ∼ Dir(1V), and r(z1:t−1, z
m�j

t |x,y) =

Ez(t+1):T∼pθ(· |x, z1:t−1,z
m�j
t)[r(z |x,y)]. We can therefore estimate each expectation using reg-

ular MC in the augmented space. Detailed formulations are deferred to Appendix B.1. Note if given
πt, all pseudo actions zm�j

t are equal to true action zt, then gARSM(πt)v = gARS(πt, j)v = 0.

We note while the notation appears cumbersome, its implementation is not difficult, as described in
Algorithm 2, Appendix C. The intuitive explanation of ARSM is that given π1:T , it first generates true
action sequence z1:T (main trajectory) with zt = argmini πtie

φti ; it then performs embarrassingly
parallel MC rollouts for all unique pseudo actions that differ from their corresponding true actions: at
step t, given the true actions z1:t−1, it generates pseudo actions zm�j

t , and for each unique value of
them that differs from zt, it estimates its expected reward by rolling out a full sequence of length T ;
and finally it combines the sampled rewards of the true action sequence and unique pseudo action
sequences, which are correlated to each other, to achieve significant variance reduction.

Despite significant gradient variance reduction, ARSM may become less efficient in computation
when V becomes large (e.g., ∼ 10, 000). In the worst case, for each gradient estimate, it needs to
generate as many as V − 1 unique pseudo action sequences at each token; while in practice, the
actual number is much smaller, it still could be large enough to cause computational issues, especially
if the policy parameter is far from convergence. We note while in theory ARSM enjoys embarrass-
ingly parallel computation for rolling out all unique pseudo action sequences, the acceleration via
parallelization in practice is constrained by the capacity of our own computation platform.

This motivates the following remedy. For large V , we choose K reference categories γ1, . . . , γK ,
randomly sampled from {1, . . . , V } without replacement, to perform the swapping operations for
pseudo action generation, and averaging over their corresponding ARS estimators as

gARS-K(π)v = 1
K

∑K
j=1 gARS(π, γj)v. (6)

We refer to this gradient estimator as the ARS-K gradient estimator. Whether this remedy could be
successful depends on how large K needs to be as V increases. We find via experiments that the
sufficient size of K grows slowly as V increases. For example, we will show in Section 4.2 that for
the image captioning task with V = 9, 788, setting K = 5 already leads to competitive results.

Note during testing, regardless of whether using ARSM, ARS-K, or some other estimators, the
categorical softmax output layer could become the computation bottleneck for random sequence
generation. This motivates us to provide an algorithm to considerably reduce the generation cost
during testing, though at the expense of reduced performance. We describe such a solution below.

4

Published as a conference paper at ICLR 2020

3.2 BINARY-TREE-ARSM FOR COMPUTATIONAL RESOURCE LIMITED APPLICATIONS

The conventional way to generate a word token is to sample from a V -way categorical distribution,
whose probability parameters are obtained via a softmax output layer. This softmax output layer
often becomes the computation bottleneck when V is large, making it difficult to be applied to
resource-constrained environments, such as mobile devices. To mitigate this issue, related to the
hierarchical softmax idea (Morin & Bengio, 2005; Grave et al., 2017; Goodman, 2001), we first
construct a binary tree to allocate each word of the vocabulary to one and only one leaf node of this
tree. A simple solution is to perform binary hierarchical clustering of the words.

Denote ev as the word embedding vector of word v. In this paper, we use agglomerative clustering
(Sibson, 1973) on e1, . . . , eV to recursively merge two closest clusters at a time until there is only
one cluster. The root is linked to V leaf nodes via V overlapping root-to-leaf paths, each of which
can be represented by a unique binary code bv of length D, where D = O(log2 V) is the depth of
the tree. Note the V paths are not restricted to travel through the same number of nodes, but for
simplicity we zero pad them to the same length. Both off-the-shelf embedding vectors (Pennington
et al., 2014) and task-specific ones can be utilized. They provide useful prior information about the
structure of the vocabulary, which we can exploit to facilitate our search within the action space.

With the binary tree, we transform the problem of choosing one out of V categories into that of making
a sequence of binary decisions b = (b1, . . . , bD). If making l < D binary decisions (b1, . . . , bl)
has already led to a leaf node, then the sequence is terminated and bl+1, . . . , bD all become zeros.
There is a one-to-one mapping between the V root-to-leaf paths and V vocabulary words. We denote
ν(b) ∈ {1, . . . , V } as the word that path b is mapped to, and β(v) ∈ {0, 1}D as the path that word
v is mapped to. Note for a binary tree with V leaves, there will be V − 1 non-leaf nodes, each of
which needs a logit φ for its Bernoulli probability. Thus in total we need V − 1 logits φ1, · · · , φV−1.
The computational saving in generating categorical sequences comes from the fact that to generate
a word token we need D φ’s at most rather than all V − 1 φ’s. Therefore, with the binary tree, the
computation for the softmax output layer to generate a token decreases from O(V) to O(log2 V),
which is significant especially for mobile applications. The binary-tree softmax model can be trained
with MLE, or with the binary-tree-ARSM (BT-ARSM) gradient estimator introduced below.

For the binary case, both ARS and ARSM reduce to augment-REINFORCE-merge (ARM) (Yin &
Zhou, 2019), which expresses the gradient of Eb(φ) = Ez∼Ber(σ(φ))[r(z)], σ(φ) = 1/(1 + e−φ), as

∇φEb(φ) = Eπ∼Uniform(0,1)[gARM(π)], gARM(π) := [r(btrue)− r(bsudo)](1/2− π), (7)
where btrue := 1[π<σ(φ)] and bsudo := 1[π>σ(−φ)] are referred to as the true and pseudo actions,
respectively. We note if we represent a V -way categorical variable as a sequence of D = O(log2 V)
binary variables, the number of unique pseudo actions that differ from the true actions is at most D.

In the binary-tree setting, the conditional probability of generating token zt is changed from (1) to

pθ(zt |x, z1:t−1) =
∏Dzt
l=1 Bernoulli

(
btl;σ(φt,bt(1:l−1)

)
)
, (φt1, . . . , φt(V−1)) := Tθ(x, z1:t−1), (8)

where (bt1, . . . , btDzt) := β(zt), φt,bt(1:l−1)
is the parameter of the non-leaf node at the end of

the path defined by bt(1:l−1), and Dzt is the number of non-leaf nodes in the root-to-leaf path that
leads to zt. Similar to the derivation in Section 3.1, we apply the ARSM gradient estimation to the
decomposed binary sequences (BT-ARSM).

We provide the detailed formulations in Appendix B.2 and pseudo code in Algorithm 3, Appendix C.
Intuitively, it first samples the true sequence of binary sequences {(bt1, . . . , btDzt)}

T
t=1; it then per-

forms embarrassingly parallel MC rollouts for all pseudo actions that differ from their corresponding
true actions: at step t, and depth l, given the previous true tokens z1:t−1, and true binary code
bt1, . . . , bt,l−1, it generates pseudo binary code b(sudo)

tl , and if it differs from btl, then we estimate its
expected reward by first rolling out a full binary code up to depth D and rolling out a full sequence
up to length T ; and finally it combines the sampled rewards of the true action sequence and pseudo
action sequences, which are correlated to each other, to achieve significant variance reduction. Note
that if b(sudo)

tl is the same as btl, then the corresponding ARM gradient is zero.

4 EXPERIMENTS

We evaluate our models with both neural program synthesis (NPS) and image captioning.

5

Published as a conference paper at ICLR 2020

Table 1: Comparison of various algorithms in terms of the Generalization score on the Karel dataset.

Methods MLE SC MC-0 MC-2 RL beam ARSM

Generalization (validation) 13.6 12.51 12.64 13.56 14.76 17.07

Generalization (test) 12.76 12.12 12.56 12.76 14.92 16.28

4.1 NEURAL PROGRAM SYNTHESIS

NPS is a challenging representative task in contextual categorical sequence generation. First, the
reward is only available after finishing the whole sequence. Second, the initial reward signals are
often sparse because the generated programs rarely succeed in the beginning of training. We follow
Bunel et al. (2018) to investigate an NPS task: for data sample i consisting of a set of input-output
states {Imi , Omi }m=1,Mi

, the goal is to learn a synthesizer parameterized by θ to generate a program
λi, which will produce a sequence of categorical actions to map input state Imi to output state Omi
(i.e., λi(Imi) = Omi) for all m ∈ {1, . . . ,Mi}. The evaluation metric is Generalization (Bunel et al.,
2018), defined as the proportion of the test instances {Imi′ , Omi′ }m=1,Mi

that satisfy λi′(Imi′) = Omi′
for all m ∈ {1, ...,Mi}. We evaluate on the Karel dataset (Devlin et al., 2017a), consisting of 10, 000
training reference Karel programs1 with 2, 500 validation and 2, 500 test samples. Each program
consists of a sequence of actions to move an agent inside a grid-world from one starting grid (input)
to an end grid (output). The size of the action space V is 53 and average program length is around 20.

Baselines We incorporate five baseline algorithms in our evaluation. (i) MC-2 (Eq 3), using token-
level rewards and greedy baselines. (ii) MC-0, using sentence-level reward and token-level greedy
baselines, which corresponds to the TD-SCST in Rennie et al. (2017). (iii) REINFORCE, using
sentence-level reward and with mini-batch mean as the baseline. (iv) Self-Critic (SC) as in Rennie
et al. (2017). (v) RL beam, the state-of-the-art method for NPS proposed by Bunel et al. (2018)
to reduce the gradient variance while sacrificing the unbiasedness. The objective of RL beam is to
maximize the expected reward under a distribution defined on a space constructed with beam search
BS(pθ, S), where S = 64 is the beam size. Since the vocabulary size of V = 53 is not that large, we
directly apply ARSM (i.e., ARS-53) policy gradient and compare it with the other methods.

We use the code of Bunel et al. (2018) as basis and use the same model architecture except for the
exclusion of the optional grammar checker. The grammar checker, not available for all NPS tasks,
helps adaptively reduce the search (action) space and hence simplifies optimization. Excluding the
optional grammar checker eliminates its confounding influence on the core NPS task, making the
comparison more generic and fair. We use greedy search for both testing and validation. All policy
gradient based methods are fine-tuning a pre-trained (and converged) MLE model.

Results and analysis Figs. 1a and 1b plot against iteration the log variance, and average number
of rollouts (including greedy rollouts used to construct baselines) per step for each method. We
observe that ARSM overall has the smallest gradient variance, and at the beginning ARSM has more
MC rollouts (unique pseudo actions) and hence takes relative longer time per iteration, but soon it
becomes more and more confident (reflected as fewer and fewer pseudo actions per iteration) and
turns faster. We note that the gradient variance at a given iteration is related to both the property of
the gradient estimator and the parameter value at that iteration. Thus having smaller gradient variance
may not necessarily imply better performance if different learning algorithms are not moving their
parameters towards the same solution. This could help explain why SC has lower gradient variance
than both MC-0 and MC-2 do but worse validation and test Generalization scores.

Figs. 1c and 1d plot the Generalization scores against training time on the training and validation
sets. Due to large gradient variance, all methods except ARSM and RL beam either diverge or fail
to improve the training objective. Examining the performance on the training and validation sets
suggests that REINFORCE and SC both diverge quickly; MC-0 stays around the starting point; MC-2
improves upon MLE initially, but then gradually diverges; RL beam reaches a good solution very
fast but then gradually degrades towards worse solutions; and ARSM is the only one that makes
steady improvement as the training progresses. Observing how the gap between training and testing
evolves, we see evidence suggesting that RL beam overfits the training data, possibly due to the
use of biased gradients, while ARSM does not. We note that there is no explicit regularization in

1The original dataset contains 1 million training instances. Bunel et al. (2018) proposed to reduce the dataset
to 10, 000 examples and observed significant improvement of RL upon MLE when the reference program data
is limited. Our experiments are based on the same reduced dataset.

6

Published as a conference paper at ICLR 2020

(a) Log variance (b) Number of rollouts (c) Training generalization (d) Testing generalization

Figure 1: From left to right are the comparisons of various methods in terms of gradient variance,
number of sequence rollouts, training Generalization score, and validation Generalization score.

ARSM. However, since ARSM tends to generate fewer and fewer unique pseudo actions as the
policy becomes more and more confident, this adaptive characteristic may serve as an implicit
regularization during the training process. Moreover, as the policy becomes more confident, the
ARSM estimator has an increasing probability to yield MC gradient estimates that are exactly zeros,
which may also help prevent overfitting as zero gradients will freeze the update of model parameters.
We summarize the validation and test Generation scores in Table 1. Both MLE and RL beam (Bunel
et al., 2018) perform reasonably well, but are outperformed by ARSM with a large margin. Even
though MC-2 seems to improve upon MC-0 and SC, indicating the importance of using token-level
rewards rather than sentence-level reward to guide the learning in this sparse reward scenario, it still
clearly underperforms ARSM, which on average uses much fewer rollouts to estimate token-level
rewards. This demonstrates the advantage of using an adaptive number of correlated MC rollouts
over a fixed number of independent MC rollouts.

4.2 IMAGE CAPTIONING

Image captioning, mapping an image x to a summary sentence y = (y1, . . . , yT), has become a
standard task to compare different policy gradient based RL methods. We conduct our experiments on
the MS COCO dataset (Lin et al., 2014), following the standard data split from Karpathy & Fei-Fei
(2015). We fine-tune a pre-trained MLE model using CIDEr score as the reward. Our implementation
is based on Luo et al. (2018). Details about the experimental setup can be found in Appendix D.

Figure 2: Main and pseudo trajectories for image captioning.

ARS-K for computation-sufficient
deployments We first investigate the
effectiveness of the proposed method
when it is computationally feasible
to use the categorical softmax out-
put layer at the test time. We con-
sider MLE, REINFORCE, SC, and
ARS-K with the same vocabulary size
of V = 9788. For ARS-K, we ex-
periment with several different K val-
ues. We report CIDEr score, and other
commonly used metrics for the test
set in Table 2. We observe that while
ARS-1 underperforms SC, ARS-K quickly improves as K increases: ARS-5 becomes comparable to
SC in performance; ARS-10 and ARS-20 outperform SC by a large margin with statistical significance
(standard error is about 0.2). The superior performance of ARS-K with large K is also evidenced by
Fig. 3. The gradient variance of ARS-20 is significantly lower than other algorithms (Fig. 3b upper).
In Fig. 3c (upper), we compare the average number of correlated MC rollouts of ARS-K for different
K. While in theory the number of unique pseudo actions in ARS-K could be as many as V − 1 at
each step, it can be seen that after MLE pre-training, for each ARS-K (K = 1, 5, 10, 20), on average
that number is small (fewer than 10 for V = 9488 and K = 20) and has an evident decreasing trend
during training. Moreover, it increases slowly as K increases (clearly below a linear increasing rate).

Fig. 2 shows two pictures (see more plots in Appendix E.1) with their main sentences, which are
greedily generated, and pseudo sentences generated by ARS-5 starting from the 7th token and 3rd
token, respectively. Both greedily generated captions contain incorrect information about given

7

Published as a conference paper at ICLR 2020

(a) CIDEr (b) Log variance (c) Rollouts (d) Rollouts vs CIDEr

Figure 3: Comparison of different gradient estimators for image captioning task. “RF” denotes REINFORCE
and “SC” denotes Self-Critic. Upper (lower) row: models using a regular softmax (binary-tree softmax).

images, while the pseudo sentences are semantically close to the greedy generations, however
with interpretable variations in some details. Some pseudo sentences are better than the greedily
generated captions. These pseudo-captions assembled together capture the nuance variations of the
neighborhood of the generation, thus can serve as a good baseline to reduce the variance of the policy
gradient. Note that there are more pseudo actions in the second plot, because the image is more
complex and also there is more uncertainty at the beginning stage of generation (3rd token) compared
to the latter stage of generation (7th token).

BT-ARSM for computation-limited deployments We evaluate the binary-tree ARSM (BT-ARSM)
described in Section 3.2, which decomposes the action space to a sequence of binary actions.

(a) Binary tree constructions and MLE pretraining. We explore three different ways to construct
binary trees over the action space: (i) tree WV : We apply agglomerative clustering to off-the-shelf
pre-trained Word-to-Vector (WV) embeddings (Mikolov et al., 2013) to get a binary tree with a depth
of 25; (ii) tree DIS: We follow tree WV except that we use the word embeddings pre-trained for
image captioning with standard MLE objective and full vocabulary to distill (DIS) the full-softmax
model’s knowledge to the binary tree; (iii) tree RD : We randomly permute the leaves of tree DIS
to produce a tree with no meaningful structure, referred as tree RD. We pre-train all these three
models with MLE, and report the CIDEr score in Table 2. Among these three binary trees, tree DIS
performs the best, indicating that the tree structure has impact on its performance, and a task-specific
pre-trained embedding is preferable when constructing a binary tree. As expected, comparing with the
models trained using regular softmax layer (Table 2), the performance of the models with binary-tree
softmax layers drop. However, the Multi-Adds softmax operations needed for generating a token
is reduced by V/D (∼ 380 in our case) times, leading to a significant improvement in efficiency
especially for deployment in computing resource limited scenarios at the cost of moderately degraded
accuracy.

(b) Fine-tuning using BT-ARSM. We further fine-tune the pre-trained tree DIS model, with binary-
tree-REINFORCE (BT-RF), binary-tree-Self-Critic (BT-SC), and binary-tree-ARSM (BT-ARSM)
respectively. Table 2 shows that BT-ARSM significantly outperforms the other two, which can be
explained by the considerable variance reduction of BT-ARSM as is shown in Fig 3b (lower). Notably,
the performance of BT-ARSM is superior to vanilla softmax model trained with MLE even though it
has been injected with strong inductive bias via binary-tree softmax to reduce its generation cost.

Adaptiveness of ARS-K and BT-ARSM As shown in Fig. 3 and Fig. 4 (in Appendix A), our
proposed methods can adaptively choose the number of correlated MC rollouts in four aspects:
(i)(adapt across samples) in Fig. 3d, we show the 2-D density estimation for the numbers of rollouts
and the CIDEr scores of different samples during the later stage of training. We observe a statistically
significant negative correlation (p < 0.05) between the numbers of rollouts and CIDEr scores,
indicating that our algorithms can adaptively generate more rollouts for harder samples (lower CIDEr
scores) and less rollouts for easier ones (higher CIDEr scores); (ii)(adapt across iterations) as shown
in Fig. 3c, during the training, the number of correlated MC rollouts decreases as the model improves
and converges; (iii)(adapt across sentence positions) as shown in Figs. 4a, 4b, 4d, and 4e, more MC

8

Published as a conference paper at ICLR 2020

Table 2: Performance comparison on the test set of COCO-caption dataset.

Method CIDEr BLEU-4 BLUE-3 BLEU-2 BLEU-1 ROUGE METEOR

Soft Attention (Xu et al., 2015) – 24.3 34.4 49.2 70.7 – 23.9
Hard Attention (Xu et al., 2015) – 25.0 35.7 50.4 71.8 – 23.0
Show & Tell (Vinyals et al., 2015) 85.5 27.7 – – – – 23.7
ATT-FCN (You et al., 2016) – 30.4 40.2 53.7 70.9 – 24.3
SCN-LSTM (Gan et al., 2017) 101.2 33.0 43.3 56.6 72.8 – 25.7
Vanilla Softmax with MLE 93.3 30.4 40.2 53.6 70.7 52.2 24.7
REINFORCE 103.6 31.6 42.9 57.8 74.8 54.0 25.1
Self-Critic (Rennie et al., 2017) 106.5 32.3 43.8 58.7 75.6 54.6 25.6
ARS-1 103.6 30.8 42.4 57.8 75.4 54.0 25.2
ARS-5 106.1 31.6 43.3 58.6 76.1 54.6 25.5
ARS-10 107.7 31.8 43.5 58.8 76.0 54.7 25.7
ARS-20 108.4 32.1 43.8 59.0 76.4 54.8 25.8
tree RD with MLE 77.5 23.1 33.7 48.6 67.1 49.2 22.4
tree WV with MLE 80.2 23.3 34.1 49.3 68.0 49.9 22.9
tree DIS with MLE 84.2 24.9 35.1 49.7 67.6 50.5 23.7
tree DIS with BT-RF 93.6 28.8 39.7 55.0 72.5 52.2 23.7
tree DIS with BT-SC 96.5 29.4 40.5 55.4 72.7 52.8 24.1
tree DIS with BT-ARSM 99.2 29.9 41.2 56.2 73.3 52.7 24.3

rollouts appear at the timesteps in the middle range of the generated sequence, as they are associated
with higher uncertainty; (iv)(adapt across depths) as shown in Figs. 4c and 4f, for binary-tree softmax,
the top layers (close to the root) of the tree are associated with more MC rollouts, since they are more
uncertain about what to predict. More details are provided in Appendix A.

5 CONCLUSION

In this paper, we demonstrate the adaptation of ARSM policy gradient estimator, utilizing token-
level rewards of correlated Monte Carlo (MC) rollouts, to optimize contextual categorical sequence
generation model. We apply the gradient estimators based on this idea to both the regular softmax
model and binary-tree softmax model. The binary-tree softmax model has low cost for generating
categorical tokens and hence is suited for computation-limited scenarios. We conduct empirical study
on two challenging tasks: neural program synthesis and image captioning. Our observations verify
that fewer and fewer correlated MC rollouts are conducted as the model becomes increasingly more
certain during training. In addition, we show with correlated MC rollouts serving as baselines for
each other, our methods show significant reduction of gradient variance and consistently outperform
related baselines. We note that in a cold-start setting where we start from a complete random policy,
it is still challenging to make our methods work efficiently as the number of pseudo actions may be
too large if V is large. We consider it as future work to adapt our methods to this more challenging
setting, where, to our best knowledge, little work has been done except for Ding & Soricut (2017)
and d’Autume et al. (2019).

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Science Foundation under Grant IIS-1812699
and the McCombs Research Excellence Grant. The authors acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used for this research, and the computational
support of Texas Advanced Computing Center.

REFERENCES

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086,
2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

9

Published as a conference paper at ICLR 2020

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems,
pp. 1171–1179, 2015.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent Charlin.
Language GANs falling short. arXiv preprint arXiv:1811.02549, 2018.

Patrick H Chen, Si Si, Sanjiv Kumar, Yang Li, and Cho-Jui Hsieh. Learning to screen for fast softmax
inference on large vocabulary neural networks. arXiv preprint arXiv:1810.12406, 2018.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Inter-
national Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=H1gfOiAqYm.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Sumit Chopra, Michael Auli, and Alexander M Rush. Abstractive sentence summarization with
attentive recurrent neural networks. In NAACL, 2016.

Cyprien de Masson d’Autume, Mihaela Rosca, Jack Rae, and Shakir Mohamed. Training language
GANs from scratch. arXiv preprint arXiv:1905.09922, 2019.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. In Advances in Neural Information Processing Systems, pp. 2080–2088,
2017a.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 990–998. JMLR. org, 2017b.

Nan Ding and Radu Soricut. Cold-start reinforcement learning with softmax policy gradient. In
Advances in Neural Information Processing Systems, pp. 2817–2826, 2017.

Zhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu, Kenneth Tran, Jianfeng Gao, Lawrence Carin,
and Li Deng. Semantic compositional networks for visual captioning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5630–5639, 2017.

Joshua Goodman. Classes for fast maximum entropy training. arXiv preprint cs/0108006, 2001.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the Void: Optimizing control variates for black-box gradient estimation. In ICLR, 2018.

Edouard Grave, Armand Joulin, Moustapha Cissé, Hervé Jégou, et al. Efficient softmax approximation
for GPUs. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 1302–1310. JMLR. org, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
ICLR, 2017.

10

https://openreview.net/forum?id=H1gfOiAqYm
https://openreview.net/forum?id=H1gfOiAqYm

Published as a conference paper at ICLR 2020

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128–3137,
2015.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang, Aaron C Courville,
and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks. In
Advances In Neural Information Processing Systems, pp. 4601–4609, 2016.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy. Improved image captioning
via policy gradient optimization of SPIDEr. In Proceedings of the IEEE international conference
on computer vision, pp. 873–881, 2017.

Ruotian Luo, Brian Price, Scott Cohen, and Gregory Shakhnarovich. Discriminability objective for
training descriptive captions. arXiv preprint arXiv:1803.04376, 2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In ICLR, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
ICML, pp. 1791–1799, 2014.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo gradient
estimation in machine learning. arXiv preprint arXiv:1906.10652, 2019.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
AISTATS, volume 5, pp. 246–252. Citeseer, 2005.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. In Advances In
Neural Information Processing Systems, pp. 1723–1731, 2016.

Art B. Owen. Monte Carlo Theory, Methods and Examples, chapter 8 Variance Reduction. 2013.

John Paisley, David M Blei, and Michael I Jordan. Variational Bayesian inference with stochastic
search. In ICML, pp. 1363–1370, 2012.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. arXiv preprint arXiv:1705.04304, 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In AISTATS, pp.
814–822, 2014.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. In ICLR, 2016.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7008–7024, 2017.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML, pp. 1278–1286, 2014.

11

Published as a conference paper at ICLR 2020

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and Wonyong Sung. SVD-softmax: Fast
softmax approximation on large vocabulary neural networks. In Advances in Neural Information
Processing Systems, pp. 5463–5473, 2017.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants
for program verification. In Advances in Neural Information Processing Systems, pp. 7751–7762,
2018.

Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. The computer
journal, 16(1):30–34, 1973.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. REBAR:
Low-variance, unbiased gradient estimates for discrete latent variable models. In NIPS, pp.
2624–2633, 2017.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4566–4575, 2015.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator. In CVPR, 2015.

Jason D Williams and Steve Young. Partially observable Markov decision processes for spoken
dialog systems. Computer Speech & Language, 21(2):393–422, 2007.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search optimization.
arXiv preprint arXiv:1606.02960, 2016.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. A study of reinforcement learning for
neural machine translation. arXiv preprint arXiv:1808.08866, 2018.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. arXiv preprint arXiv:1502.03044, 2015.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised
text style transfer using language models as discriminators. In Advances in Neural Information
Processing Systems, pp. 7287–7298, 2018.

Mingzhang Yin and Mingyuan Zhou. ARM: Augment-REINFORCE-merge gradient for stochastic
binary networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1lg0jAcYm.

Mingzhang Yin, Yuguang Yue, and Mingyuan Zhou. ARSM: Augment-REINFORCE-swap-merge
estimator for gradient backpropagation through categorical variables. In International Conference
on Machine Learning, 2019.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with
semantic attention. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4651–4659, 2016.

12

https://openreview.net/forum?id=S1lg0jAcYm
https://openreview.net/forum?id=S1lg0jAcYm

Published as a conference paper at ICLR 2020

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines-revised. arXiv
preprint arXiv:1505.00521, 2015.

Li Zhang, Flood Sung, Feng Liu, Tao Xiang, Shaogang Gong, Yongxin Yang, and Timothy M
Hospedales. Actor-critic sequence training for image captioning. arXiv preprint arXiv:1706.09601,
2017.

Minjia Zhang, Wenhan Wang, Xiaodong Liu, Jianfeng Gao, and Yuxiong He. Navigating with graph
representations for fast and scalable decoding of neural language models. In Advances in Neural
Information Processing Systems, pp. 6308–6319, 2018.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

13

Published as a conference paper at ICLR 2020

A ADAPTIVENESS OF ARS-K/BT-ARSM

(a) Rollouts vs. time steps (ARS-20) (b) Rollouts vs. time steps (BT-ARSM) (c) Rollouts vs. depth (BT-ARSM)

(d) Rollouts vs. time steps (ARS-20) (e) Rollouts vs. time steps (BT-ARSM) (f) Rollouts vs. depth (BT-ARSM)

Figure 4: Adaptiveness of MC rollouts with BT-ARSM/ARS-K.

1. Adaptiveness across samples: In Fig. 3d, we show the 2-D density estimation for the numbers of
rollouts and the CIDEr scores for different samples during the late stage of training. We observe a
statistically significant negative correlation (p < 0.05) between the number of rollouts and CIDEr
scores, indicating that our algorithms can adaptively generate more rollouts for harder samples (lower
CIDEr scores) and less rollouts for easier samples (higher CIDEr scores).

2. Adaptiveness across time steps: As shown in Figs. 4a, 4b, 4d, and 4e, it is reasonable that there
will be more MC rollouts at the middle time step of the generated sequence, since the initial words
and end words are more easily to be learned due to their cardinality, and ARSM model will be more
confident about the choices for these words, leading to fewer MC rollouts.

3. Adaptiveness across depths: For binary softmax model, the terms in the vocabulary are represented
as leaf nodes in the tree. As shown in Figs. 4c and 4f, ASRM successfully captures the adaptiveness
of MC rollouts across depths in the tree. The top layers (close to the root) of the tree are associated
with more MC rollouts, since they are more uncertain about what to predict.

4. Adaptiveness across iterations: In Figs. 1b and 3c, we observe that, during training, the number of
correlated MC rollouts decreases as the model improves and converges.

B DETAILED FORMULATIONS

B.1 ARS/M GRADIENT ESTIMATORS

Applying the ARSM estimator in (5) to the expected reward shown in (2), we have

∇φtvER = Ez1:t−1∼pθ(· |x)Eπt∼Dir(1V)[gARSM(πt)v], gARSM(πt)v := 1
V

∑V
j=1 gARS(πt, j)v,

gARS(πt, j)v :=
[
r(z1:t−1, z

v�j

t |x,y)− 1
V

∑V
m=1 r(z1:t−1, z

m�j

t |x,y)
]
(1− V πtj),

where zm�j

t := argmini∈{1,··· ,V } π
m�j

ti e−φti . Thus we can approximate the gradient∇θER as

∇̂θER =
∑T
t=1

∑V
v=1 ĝARSM(πt)v∇θφtv, ĝARSM(πt)v := 1

V

∑V
j=1 ĝARS(πt, j)v,

ĝARS(πt, j)v :=
[
r̂(z1:t−1, z

v�j

t |x,y)− 1
V

∑V
m=1 r̂(z1:t−1, z

m�j

t |x,y)
]
(1− V πtj), (9)

where π1, . . . ,πT
iid∼ Dir(1V); r̂(z1:t−1, z

m�j

t |x,y) is an approximation of
r(z1:t−1, z

m�j

t |x,y) = Ez(t+1):T∼pθ(· |x, z1:t−1,z
m�j
t)[r(z |x,y)], which can be estimated

with r(z1:t−1, zm�j

t , z̃t+1:T |x,y), where z̃t+1:T ∼ pθ(· |x, z1:t−1, zm�j

t) is an MC rollout.

14

Published as a conference paper at ICLR 2020

B.2 BT-ARSM GRADIENT ESTIMATORS

∇φt,bt(1:l−1)
ER = Ez1:t−1∼pθ(· |x)Ebt(1:l−1)∼pθ(· |x,z1:t−1)Eπtl∼Unif(0,1)[gARM(πtl)],

gARM(πtl) =
[
r
(
z1:t−1, bt(1:l−1), b

(true)
tl |x,y

)
− r
(
z1:t−1, bt(1:l−1), b

(sudo)
tl |x,y

)]
(1/2− πtl),

b
(true)
tl := 1[πtl<σ(φt,bt(1:l−1)

)], b
(sudo)
tl := 1[πtl>σ(−φt,bt(1:l−1)

)], (10)

where r(z1:t−1, bt(1:l) |x,y) := Ebt(l+1:Dzt)
,z(t+1):T∼pθ(· |x, z1:t−1, bt(1:l))[r(z |x,y)]. Thus we have

∇θER =
∑T
t=1

∑Dzt
l=1 ∇φt,bt(1:l−1)

ER∇θφt,bt(1:l−1)
, which can be approximated with ∇̂θER =∑T

t=1

∑Dzt
l=1 ĝARM(πtl)(1− 2πtl), where ĝARM(πtl) approximates gARM(πtl) shown in (10) via MC

integration; note if given πtl∼Unif(0,1), b
(sudo)
tl = b

(true)
tl , then gARM(πtl) = 0.

C ALGORITHMS

Efficient Pseudo-Action Computation: To implement ARS-K, we need to compute the correspond-
ing pseudo actions for each reference category j in a reference set J . In other words, given π,φ, we
need to compute zm�j = argmin{i=1,...,V } lnπm�j

i − φi, for all m ∈ {1, . . . , V }, j ∈ J . A naive
implementation would involve taking the minimum over V -dimensional vectors for V · |J | times,
which is computationally expensive when V is large. In the following, we take advantage of the
correlation among pseudo actions and propose an efficient algorithm which only involves taking the
minimum over V -dimensional vectors |J | times. We first explain the notations and the basic ideas,
and then present the algorithm in Algorithm 1.

Let oi,j = lnπi−φj . Denote m1,m2 as the indexes for the top 2 smallest in {oi,i}i=1:V respectively
(this is the only place where we need to take the minimum over whole V -dimensional vectors). Let
ID(oi,j) denote the function returning the second index of oi,j , which means

ID(oi,j) = j.

In the following, we show that it is not necessary to take minimum over whole V -dimensional vectors
for each pseudo actions. We can compute zm�j efficiently by observing:

1. If m1 /∈ {m, j}, the smallest value in lnπm�j − φ can only be among the updated two values
(oj,m, om,j) and the original smallest value om1,m1 . Hence, the index of the smallest value is

zm�j = ID(min(min(oj,m, om,j), om1,m1
)).

2. If m1 ∈ {m, j}, om1,m1
will be updated to a new value, therefore, the above equation does not

hold. But, in the following, we show we can use the second smallest value instead. The index of the
smallest value will be

zm�j = ID(min(min(oj,m, om,j), om2,m2))

Proof. Assume m1 ∈ {m, j}. If m2 /∈ {m, j}, since om1,m1
has been changed, om2,m2

will be the
smallest value in the vector excluding the two updated values. Hence, the smallest value will be
among the three values {oj,m, om,j , om2,m2

}, among which we can find the index of the smallest
item. If m2 ∈ {m, j}, then {m, j} becomes {m1,m2}. Hence, om1,m1 and om2,m2 will be updated.
For any m /∈ {m1,m2}, min(om2,m1 , om1,m2) ≤ om2,m2 ≤ om,m. Therefore, the smallest value
will be among {om2,m1 , om1,m2}. The index of the smallest value will be ID(min(om2,m1 , om1,m2)),
which is equivalent to ID(min(min(oj,m, om,j), om2,m2

)).

15

Published as a conference paper at ICLR 2020

Algorithm 1: Compute Pseudo-Action Matrix for Reference Category Set J in Parallel
input : Batched π and φ, Ref-Cat Set J , ID Function
output : Pseudo-Action Matrix P ;

Compute om1 ,m1, om2 ,m2 = Top2(lnπ − φ);
for j ∈ J,m ∈ {1, . . . , V } (in parallel) do

Compute oj,m = lnπj − φm
Compute om,j = lnπm − φj

end for
Initialize P with size (|J |, V)
for j ∈ J,m ∈ {1, . . . , V } (in parallel by using index matrix) do

if m1 ∈ {j,m} then
P [j,m] = ID(min(min(oj,m, om,j), om1,m1

))
else

P [j,m] = ID(min(min(oj,m, om,j), om2,m2))
end if

end for

16

Published as a conference paper at ICLR 2020

Algorithm 2: ARS-K/ARSM(K = V) policy gradient for fine-tuning a contextual categorical
sequence generation model with a discrete-action space of V actions.
input : MLE pre-trained policy parameter θ, number of reference category K, main trajectory

sample type mt, pseudo trajectory sample type pt
output : Fine-tuned policy parameter θ

while not converged do
Receive random sample x,y;
First, we sample a main trajectory (z1, . . . , zT):
if mt = ’greedily sample’ then

for t = 1 : T , let zt = argmini∈{1,...,V }(−φti), where φt = Tθ(z1:t−1,x);
else

for t = 1 : T , let zt = argmini∈{1,...,V }(lnπti − φti), where πt ∼ Dirichlet(1V) (or let
πti = − ln(Unif(0, 1))), and φt = Tθ(z1:t−1,x);

end if
Second, we compute pseudo actions:
for t = 1 : T do

Let πt ∼ Dirichlet(1V) (or let πti = − ln(Unif(0, 1)) for i = 1, . . . , V and then
normalize them to have a unit norm);

Let j1, ..., jK be K reference categories randomly sampled from {1, . . . , V } without
replacement;

for k = 1, . . . ,K, v = 1, . . . , V (in parallel) do
Let zv�jk

t := argmini∈{1,...,V }(lnπ
v�jk
ti −φti) as the (v, k)th pseudo action;

end for
Let St = unique({zv�j

t }v,j) which means St is the set of all unique values in {zv�j
t }v,j .

Denote the cardinality of St as |St|, where 1 ≤ |St| ≤ V ;
end for
Third, we complete sentences and evaluate the reward for the unique set of pseudo actions:
for t = 1 : T (in parallel) do

if |St| = 1 then
continue

end if
for z̃ts ∈ St (in parallel) do

if t < T then
if pt = ’greedily sample’ then

greedily sample zst+1:T ∼ pθ(zt+1:T | z1:t−1, z̃ts,x)
else

randomly sample zst+1:T ∼ pθ(zt+1:T | z1:t−1, z̃ts,x)
end if

end if
end for
for v = 1 : V, k = 1 : K (in parallel) do

Let f(zv�jk
t) = r(z1:t−1, z̃ts, z

s
t+1:T |x,y) if zv�jk

t = z̃ts;
end for

end for
Finally, we compute the ARSM gradients and update parameters:
for t = 1 : T, k = 1 : K (in parallel) do

Let f̄tk = 1
V

∑V
v=1 f(zv�jk

t);
for v = 1 : V (in parallel) do

Let gtk,v = 1
K

(
f(zv�jk

t)− f̄tk
)
(1− V πtjk), where gtk,v is the vth component of gtk;

end for
end for
for t = 1 : T (in parallel) do

θ = θ + ηθ∇θφtgt, where gt =
∑
k gtk with step-size ηθ

end for
end while

17

Published as a conference paper at ICLR 2020

Algorithm 3: Binary-tree-ARSM policy gradient for fine-tuning a binary-tree contextual categorical
sequence generation model.
input : MLE pre-trained policy parameter θ, binary code to word mapping ν
output : Fine-tuned policy parameter θ;

while not converged do
Receive random sample x,y;
First, we sample a main trajectory (z1, . . . , zT):
for t = 1 : T do

for d = 1 : D do
φt,bt(1:d−1)

= Tθ(z1:t−1,x)ν(bt(1:d−1))

Sample πtd ∼ Uniform(0, 1);
Let btd = 1[πtd<σ(φt,bt(1:d−1)

)];
end for
zt = ν(bt(1:D))

end for
Second, we compute pseudo actions:
for t = 1 : T (in parallel) do

for d = 1 : D do
Let b(1)td = btd;
Let b(2)td = 1[πtd>σ(−φt,bt(1:d−1)

)];

if b(1)td 6= b
(2)
td then

If d < D, sample b(j)t(d+1:D) ∼ pθ(bt(d+1:D) | z1:t−1, bt,1:d−1, b
(j)
td ,x), j = 1, 2;

Let z(j)td = ν(b
(j)
t(1:D)), j = 1, 2;

end if
end for
Let St = unique({z(j)td }d,j) which means St is the set of all unique values in {z(j)td }d,j .

Denote the cardinality of St as |St|, where D ≤ |St| ≤ 2 ∗D.
end for
Third, we complete sentences and evaluate the rewards for the unique set of pseudo actions:
for t = 1 : T (in parallel) do

for z̃ts ∈ St (in parallel) do
If t < T , sample zst+1:T ∼ pθ(zt+1:T | z1:t−1, z̃ts,x);

end for
for d = 1 : D, j = 1 : 2 (in parallel) do

Let f (j)td = r(z1:t−1, z̃ts, z
s
t+1:T |x,y) if z(j)td = z̃ts;

end for
We compute the ARSM gradients and update parameters:
for d = 1 : D (in parallel) do

if b(1)td 6= b
(2)
tl then

Let gt,bt(1:d−1)
= 1

2 (f
(1)
td − f

(2)
td)(1− 2πtd);

θupdate = ηθ∇θφt,bt(1:d−1)
gt,bt(1:d−1)

, with step-size ηθ
end if
θ = θ + θupdate

end for
end for

end while

18

Published as a conference paper at ICLR 2020

D EXPERIMENTAL SETUP DETAILS

D.1 IMAGE CAPTIONING

Image captioning maps an image x to a sentence y = (y1, . . . , yT) that summarizes the image
information. It has become a standard task to compare different RL methods using policy gradient. A
popular evaluation metric for this task is the CIDEr score (Vedantam et al., 2015), which measures the
similarity between the generated caption y and some reference ones. (Rennie et al., 2017; Anderson
et al., 2018; Xu et al., 2015). We conduct our experiments on the MS COCO dataset (Lin et al., 2014)
that consists of 123,287 images. Each image has at least five captions. We use the standard data split
from Karpathy & Fei-Fei (2015), with 113,287 training, 5000 validation, and 5000 testing images.
The vocabulary size V is 9488 and the max caption length T is 16. For the model architecture, we
employ a Fully-Connected (FC) model without attention (Rennie et al., 2017). Image features are
extracted from a pre-trained ResNet (He et al., 2016). Our implementation is based on Luo et al.
(2018). We pre-train a model with MLE until convergence and use it for initialization. The CIDEr
scores between the generated captions and references are used as rewards.

E QUALITATIVE RESULTS

E.1 PSEUDO SENTENCES PRODUCED BY ARS-K ALGORITHM.

Main sentence: a man riding a motorcycle
with a dog.
Pseudo sentence 1: a man riding a motorcycle
with hay on it.
Pseudo sentence 2: a man riding a motorcycle
with pack of sheep.

Main sentence: a group of people flying kites
in a field.
Pseudo sentence 1: a group of teenagers stand-
ing in a field flying kites.

19

Published as a conference paper at ICLR 2020

Main sentence: a man and woman are
standing in a of a table.
Pseudo sentence 1: a man and woman are
standing in an market.
Pseudo sentence 2: a man and woman are
standing in the street.
Pseudo sentence 3: a man and woman are
standing in to a tent.
Pseudo sentence 4: a man and woman are
standing in front of a table.

Main sentence: a city that has a large white
building on it.
Pseudo sentence 1: a city with a red traffic and a
large building.
Pseudo sentence 2: a city intersection with a
traffic light and a street sign.
Pseudo sentence 3: a city bus is driving down
the street.
Pseudo sentence 4: a city street with a city street
with cars parked on it.
Pseudo sentence 5: a city road with a traffic light
and a street sign.

20

	Introduction
	Preliminaries on contextual sequence generation
	Policy gradient with adaptive correlated MC rollouts
	Adaptive correlated MC based policy gradient for categorical sequence
	Binary-tree-ARSM for computational resource limited applications

	Experiments
	Neural program synthesis
	Image captioning

	Conclusion
	Adaptiveness of ARS-K/BT-ARSM
	Detailed formulations
	ARS/M gradient estimators
	BT-ARSM gradient estimators

	Algorithms
	Experimental Setup Details
	Image Captioning

	Qualitative results
	Pseudo sentences produced by ARS-K algorithm.

