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ABSTRACT

We address the problem of teaching an RNN to approximate list-processing al-
gorithms given a small number of input-output training examples. Our approach
is to generalize the idea of parametricity from programming language theory to
formulate a semantic property that distinguishes common algorithms from arbi-
trary non-algorithmic functions. This characterization leads naturally to a learned
data augmentation scheme that encourages RNNs to learn algorithmic behavior
and enables small-sample learning in a variety of list-processing tasks.

1 INTRODUCTION

Since the earliest days of neural network research, some of the most important questions about neural
models have focused on their ability to capture the crispness, systematicity and compositionality that
characterize symbolic computation and human cognition (Fodor & Pylyshyn, 1988; Smolensky &
Legendre, 2006), and to do so with a human-like number of examples (Lake et al., 2019). While
recent studies have demonstrated promising results in training recurrent neural networks (RNNs) to
approximate symbolic algorithms in domains like list manipulation (Grefenstette et al., 2015; Joulin
& Mikolov, 2015), binary arithmetic (Kaiser & Sutskever, 2015), graph traversal (Graves et al.,
2016), and planar geometry (Vinyals et al., 2015), the question of sample efficiency remains very
much open. Difficult algorithmic problems may require tens or hundreds of thousands of labelled
training examples, and even simple tasks on small inputs seem to require more data than should be
necessary (Lake & Baroni, 2018).

Our goal in this paper is to teach RNNs to approximate list-processing algorithms f :: [Int] →
[Int] given a small collection of input-output examples, D = {xi, f(xi)}ni=1. Inspired by the idea
of parametricity (Wadler, 1989) from type theory and functional programming, we hypothesize that
a feature that distinguishes many algorithms from arbitrary functions is that they commute with
some family of element-wise changes to their inputs. We describe a method for learning this family
from the training set D, and show how this learned information can be used to create an augmented
training set for an RNN. Our experiments show that this augmentation scheme makes it possible to
approximate algorithms from small training sets, in some cases requiring only a single example per
input list length.

2 SETUP

RNN inductive biases. Our data augmentation approach is motivated by the failure patterns of
unaugmented training. The confusion matrix in figure 1 shows the performance of an RNN (an
LSTM (Hochreiter & Schmidhuber, 1997) with 128 hidden units) trained with ten examples to copy
lists of two elements. The failure mode is clear: the model acts as an interpolating lookup table: the
model tends to map the regions of input space around each training input xi to the training output
f(xi). This is an entirely appropriate function model for classification, but a lookup table is clearly
a poor example to follow for algorithm learning. Our approach for the remainder of this paper will
be to formulate a semantic property that distinguishes algorithms from lookup tables, and then use
data augmentation to nudge an RNN in an algorithmic direction.
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Figure 1: The confusion matrix for
an RNN trained with ten exam-
ples to implement the copy algo-
rithm. The inputs (rows) and out-
puts (columns) are each pairs of
digits 0-9. A red pixel in cell (i, j)
indicates that the model predicted
output sequence j for input se-
quence i; perfect performance for
this copy task would fill the diag-
onal of the heatmap with red pix-
els. The gray stripes indicate the
ten training examples.

Parametricity. Any computable function is technically an
algorithm, but we have the intuition that some functions are
more “algorithm-y” than others: an algorithm is a function
that “does the same thing” to any input fed to it, while a non-
algorithmic function like a lookup table has different, idiosyn-
cratically defined behavior for each possible input. Put another
way, a change to the input of an algorithm should translate sys-
tematically to a change to its output. In our copy example,
f([1, 9]) = [1, 9]. If we modify the input by replacing the ‘9’
token with a ‘3’, then making the same substitution on the out-
put side produces the correct equation f([1, 3]) = [1, 3]. In an
arbitrary lookup table, by contrast, [1, 9] and [1, 3] are simply
two different table rows, and there is no reason to expect any
systematic relationship between their outputs.

We can make this intuition quantitative by drawing on a fam-
ily of results in type theory and programming language the-
ory based on the idea of type parametricity, and often called
“theorems for free” (Wadler, 1989). The main result is the fol-
lowing: Any parametrically polymorphic (for brevity, we will
simply say “polymorphic” henceforth) function f :: [a]→ [a],
where a is a type parameter1, commutes with element-wise
application of any function g :: a→ a:

f ◦ map g = (map g) ◦ f (1)
An illustrative example: doubling each of the elements of an
integer list and then reversing the result gives the same output
as reversing and then doubling.

Parametricity captures some intuitions about what makes a
function algorithmic; it accounts for the copy example above, for instance, and in general, if a
function commutes with element-wise transformations of its inputs, it cannot depend in a lookup-y
way on the details of its input’s elements.

Since our interest is not limited to polymorphic functions, some generalization of equation 1 is
required. The function drop evens, which removes the even elements from a list of inte-
gers, for instance, is a clearly legitimate algorithm that fails to obey equation 1; g : x 7→ 2x
is a counterexample. But while drop evens does not commute with all element-wise trans-
formations, it does commute with a subset of them, namely those that preserve parity. So this
motivates a hypothesis: an algorithm f :: [Int] → [Int] should have some systematicity in
its definition that is reflected in its commuting with some set of element-wise transformations
G = {g :: Int → Int | f ◦ mapg = mapg ◦ f}. We can draw a high-level analogy here
with techniques from math and physics that characterize an object in terms of its symmetries.

If we can learn G, we can use it to augment our training set to help learn f : given an input-output
training example (x, f(x)), then for any g ∈ G, (g(x), g(f(x)) will also be a valid training example,
and can be use for data augmentation.

3 LEARNING COMMUTING FUNCTIONS

This section describes a technique for learning G from f ’s training data. We parameterize each g
as a collection of swaps {si → ti}mi=1, each of which replaces each instance of an s token with the
corresponding t token. For instance, if g = {3 → 4, 7 → 1}, then g([3, 7, 1]) = [4, 1, 1]. Our
approach to learning g will be to train a classifier C that predicts whether or not a given collection of
swaps should commute with f . Given two training input-output pairs (xi, f(xi)) and (xj , f(xj)),
chosen so that xi and xj have the same length, we first determine whether or not xi and xj are
related by a set of swaps. Supposing there is a swap set g with g(xi) = xj , we then see whether g

also relates the output lists g(f(xi))
?
= f(xj): if it does, then we have a positive training example

of a swap set that commutes with f , and if it does not, then we have a negative example.
1Because f is parametrically polymorphic, a must not be restricted to a particular type class.
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Repeating this process for each pair of length-matched lists in our training set, we obtain a collection
of training examples of positive (commutes with f ) and negative (does not commute with f ) swap
sets. A promising feature of this setup is that while the original learning problem (learning f ) has n
training examples, the problem of learning G has O(n2) examples.

To support small-sample learning, we make the simplifying factorization assumption that each swap
contributes independently to the commutativity of the whole swap set. Our classifier C acts on a
swap set g = {g1, . . . , gm} = {s1 → t1, . . . , sm → tm} by C(g) = smoothed minmi=1c(gi), where
c classifies individual swaps, and smoothed min(v) = −γlog

∑
i e

−vi/γ (Cuturi & Blondel, 2017).
For the experiments in this paper, c consisted of a bilinear layer that combined ten-dimensional
embeddings of si and ti, followed by a RELU nonlinearity and a linear layer with a scalar output.

Per-sequence classification. We have assumed that a given swap can be classified independently
of the input list to which it is to be applied. This assumption is violated by functions like sort:
g = {3 → 6} commutes with sort for the input list [8, 7, 1, 3], but not for the list [5, 7, 1, 3],
for example. To deal with this, we distinguish per-task classification, as described above, from per-
sequence classification, which depends on the input list elements in addition to the swap set. Extend-
ing the factorization assumption from the per-task model, for a swap set g = {g1, . . . gm} and input
sequence x = [x1, . . . xk], the per-sequence classifier predictsC(g, x) = smoothed min({c(gi, xj) |
i = 1, . . .m, j = 1, . . . k}. Here, c extends the per-task classifier by adding a bilinear combination
of the sequence element with the combination of the swap elements.

Augmentation. To use a trained classifier C to generate an augmented training set, we randomly
generate a large collection of candidate swap sets g, recording for each the classifier score C(g).
Each combination of a swap set g and training pair (x, f(x)) gives a candidate augmentation ex-
ample (g(x), g(f(x))). Any given candidate augmentation example could be generated in multiple
ways by starting from different input-output pairs, so we assign to each candidate example the sum
of the scores of the swap sets g that could be used to generate it. We take our augmentation training
set to be the 1000 top-scoring candidates for each list length. For both the per-sequence and per-task
models, if our classifier’s training set is entirely missing either positive or negative examples, the
model reverts to random augmentation.

Related work. Learned data augmentation has been applied in computer vision, where Cubuk et al.
(2018) used a reinforcement learning procedure similar to neural architecture search to learn an
augmentation policy for object recognition, and NLP, where Jia & Liang (2016) used a symbolic
grammar-induction procedure to learn an augmentation model for semantic parsing.

4 EXPERIMENTS

We compare four models: the per-task and per-sequence augmentation models described above, a
random augmentation model that samples swap sets uniformly at random, and a no-augmentation
baseline. We evaluate each on the list-processing functions shown in figure 2. We divide these
functions into three types: polymorphic, token-dependent (depends on the identities of individual
tokens), and order-dependent (depends on the order relations between tokens). These function cate-
gories are used in post-hoc analysis only; they are not explicitly made available to our models during
training or testing. Expecting problem difficulty to scale to some extent with output sequence length,
we also note for each function the length of its output when evaluated on an input list of length n.
Functions that implement a filtering operation will have variable length outputs, but for simplicity,
we group them with functions like copy in the “≈ n” output-length category.

For each target function, we trained our models on even-length lists of lengths 2, 4, 6 and 8, and
tested on all lengths 2-8. All list items were integers in the range [0, 19]. To evaluate our models’
sample efficiency, we considered learning problems with 1, 5, 10, 20, 30, 40, and 50 input-output
examples per input list length. For all problems, our model was an LSTM with two hidden layers of
128 units.

Results. On the polymorphic target functions, all augmentation models, including the random one,
substantially outperformed the non-augmented baseline. This performance is to be expected, as
equation 1 guarantees that these functions commute with all element-wise input transformations.
For functions with output length 1 and n, the augmented models are able to achieve close to perfect
accuracy with only a single example per input list length.
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Figure 2: Model performance (top) when learning the list functions (bottom) as a function of the
number of training examples provided for each input list length. All accuracies reported are mean
sequence accuracy (1 for a completely correct sequence, 0 otherwise).

Moving to the non-polymorphic token-dependent functions, random augmentation not only ceases
to suffice for good performance, but in fact often delivers lower accuracy than the non-augmented
baseline, while both learned augmentation models continue to perform well on most target functions.

For the order-dependent functions, the analysis in section 2 suggests that per-sequence augmenta-
tion should outperform per-task. In practice, the two learned models achieve roughly equal accuracy,
perhaps reflecting the fact that the more expressive per-sequence model requires more data to train
correctly. Moreover, while the learned augmentation models outperform the non-augmented base-
line on the triangle task and on the very few-shot versions of the sorting tasks, their advantage
over the non-augmented baseline is much less marked than on the other function types. Still, the
learned models largely avoid the destructive effects of applying random augmentation.

Future directions. Our augmentation schemes are model-agnostic; it will be interesting in the
future to pair them with models like pointer networks or memory-augmented RNNs. It will also be
interesting to extend the techniques of this paper to domains beyond list processing, for instance to
the geometric algorithms studied in (Vinyals et al., 2015).
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