
Under review as a conference paper at ICLR 2020

MIRROR DESCENT VIEW FOR NEURAL NETWORK
QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantizing large Neural Networks (NN) while maintaining the performance is
highly desirable for resource-limited devices due to reduced memory and time
complexity. NN quantization is usually formulated as a constrained optimization
problem and optimized via a modified version of gradient descent. In this work, by
interpreting the continuous parameters (unconstrained) as the dual of the quantized
ones, we introduce a Mirror Descent (MD) framework (Bubeck (2015)) for NN
quantization. Specifically, we provide conditions on the projections (i.e., mapping
from continuous to quantized ones) which would enable us to derive valid mirror
maps and in turn the respective MD updates. Furthermore, we discuss a numerically
stable implementation of MD by storing an additional set of auxiliary dual variables
(unconstrained). This update is strikingly analogous to the popular Straight Through
Estimator (STE) based method which is typically viewed as a “trick” to avoid
vanishing gradients issue but here we show that it is an implementation method
for MD for certain projections. Our experiments on standard classification datasets
(CIFAR-10/100, TinyImageNet) with convolutional and residual architectures show
that our MD variants obtain fully-quantized networks with accuracies very close to
the floating-point networks.

1 INTRODUCTION

Despite the success of deep neural networks in various domains, their excessive computational and
memory requirements limit their practical usability for real-time applications or in resource-limited
devices. Quantization is a prominent technique for network compression, where the objective is to
learn a network while restricting the parameters to take values from a small discrete set (usually
binary). This leads to a dramatic reduction in memory (a factor of 32 for binary quantization) and
inference time – as it enables specialized implementation using bit operations.

Neural Network (NN) quantization is usually formulated as a constrained optimization problem
minx∈X f(x), where f(·) denotes the loss function by abstracting out the dependency on the dataset
and X ⊂ IRr denotes the set of all possible quantized solutions. Majority of the works in the
literature (Hubara et al. (2017); Yin et al. (2018); Ajanthan et al. (2019)) convert this into an
unconstrained problem by introducing auxiliary variables (x̃) and optimize via (stochastic) gradient
descent. Specifically, the objective and the update step take the following form:

min
x̃∈IRr

f(P (x̃)) , x̃k+1 = x̃k − η ∇x̃f(P (x̃))|x̃=x̃k , (1)

where P : IRr → X is a mapping from the unconstrained space to the quantized space (sometimes
called projection) and η > 0 is the learning rate. In cases where the mapping P is not differentiable,
a suitable approximation is employed (Hubara et al. (2017)).

In this work, by noting that the well-known Mirror Descent (MD) algorithm, widely used for online
convex optimization (Bubeck (2015)), provides a theoretical framework to perform gradient descent
in the unconstrained space (dual space, IRr) with gradients computed in the quantized space (primal
space, X), we introduce an MD framework for NN quantization. In essence, MD extends gradient de-
scent to non-Euclidean spaces where Euclidean projection is replaced with a more general projection
defined based on the associated distance metric. Briefly, the key ingredient of MD is a concept called
mirror map which defines both the mapping between primal and dual spaces and the exact form of

1

Under review as a conference paper at ICLR 2020

the projection. Specifically, in this work, by observing P in Eq. (1) as a mapping from dual space to
the primal space, we analytically derive corresponding mirror maps under certain conditions on P .
This enables us to derive different variants of the MD algorithm useful for NN quantization.

Furthermore, as MD is often found to be numerically unstable (Hsieh et al. (2018)), we discuss a
numerically stable implementation of MD by storing an additional set of auxiliary variables similar
to the existing methods. As will be shown later, this update is strikingly analogous to the popular
Straight Through Estimator (STE) based gradient method (Hubara et al. (2017); Bai et al. (2019))
which is typically viewed as a “trick” to avoid vanishing gradients issue but here we show that it
is an implementation method for MD under certain conditions on the mapping P . We believe this
connection sheds some light on the practical effectiveness of STE.

We evaluate the merits of our MD variants on CIFAR-10/100 and TinyImageNet classification datasets
with convolutional and residual architectures. Our experiments show that the quantized networks
obtained by the MD variants yield accuracies very close to the floating-point counterparts while
outperforming directly comparable baselines. Finally, we would like to emphasize that even though
our formulation does not necessarily extend the theory of MD, we believe showing MD as a suitable
framework for NN quantization with superior empirical performance opens up new ways of designing
MD-inspired update rules for NNs.

2 PRELIMINARIES

We first provide some background on the MD algorithm and NN quantization. Then we discuss the
link between them and provide our MD framework for NN quantization.

2.1 MIRROR DESCENT

The Mirror Descent (MD) algorithm is first introduced in (Nemirovsky & Yudin (1983)) and it has
been extensively studied in the convex optimization literature ever since. In this section we provide a
brief overview and we refer the interested reader to Chapter 4 of (Bubeck (2015)). In the context of
MD, we consider a problem of the form:

min
x∈X

f(x) , (2)

where f : X → IR is a convex function and X ⊂ IRr is a compact convex set. The main concept
of MD is to extend gradient descent to a more general non-Euclidean space (Banach space1), thus
overcoming the dependency of gradient descent on the Euclidean geometry. The motivation for this
generalization is that one might be able to exploit the geometry of the space to optimize much more
efficiently. One such example is the simplex constrained optimization where MD converges at a much
faster rate than the standard Projected Gradient Descent (PGD).

To this end, since the gradients lie in the dual space, optimization is performed by first mapping
the primal point xk ∈ B (quantized space, X) to the dual space B∗ (unconstrained space, IRr), then
performing gradient descent in the dual space, and finally mapping back the resulting point to the
primal space B. If the new point xk+1 lie outside of the constraint set X ⊂ B, it is projected to the set
X . Both the primal/dual mapping and the projection are determined by the mirror map. Specifically,
the gradient of the mirror map defines the mapping from primal to dual and the projection is done
via the Bregman divergence of the mirror map. We first provide the definitions for mirror map and
Bregman divergence and then turn to the MD updates.
Definition 2.1 (Mirror map). Let C ⊂ IRr be a convex open set such that X ⊂ C̄ (C̄ denotes the
closure of set C) and X ∩ C 6= ∅. Then, Φ : C → IR is a mirror map if it satisfies:

1. Φ is strictly convex and differentiable.
2. ∇Φ(C) = IRr, i.e., ∇Φ takes all possible values in IRr.
3. limx→∂C ‖∇Φ(x)‖ =∞ (∂C denotes the boundary of C), i.e.,∇Φ diverges on the boundary of C.
Definition 2.2 (Bregman divergence). Let Φ : C → IR be a continuously differentiable, strictly
convex function defined on a convex set C. The Bregman divergence associated with Φ for points
p,q ∈ C is the difference between the value of Φ at point p and the value of the first-order Taylor
expansion of Φ around point q evaluated at point p, i.e.,

DΦ(p,q) = Φ(p)− Φ(q)− 〈∇Φ(q),p− q〉 . (3)
1A Banach space is a complete normed vector space where the norm is not necessarily derived from an inner

product.

2

Under review as a conference paper at ICLR 2020

Notice, DΦ(p,q) ≥ 0 with DΦ(p,p) = 0, and DΦ(p,q) is convex on p.

Now we are ready to provide the mirror descent strategy based on the mirror map Φ. Let
x0 ∈ argminx∈X∩C Φ(x) be the initial point. Then, for iteration k ≥ 0 and step size η > 0,
the update of the MD algorithm can be written as:

∇Φ(yk+1) = ∇Φ(xk)− η gk , where gk ∈ ∂f(xk) and yk+1 ∈ C , (4)

xk+1 = argmin
x∈X∩C

DΦ(x,yk+1) .

Note that, in Eq. (4), the gradient gk is computed at xk ∈ X ∩ C (solution space) but the gradient
descent is performed in IRr (unconstrained dual space). Moreover, by simple algebraic manipulation,
it is easy to show that the above MD update (4) can be compactly written in a proximal form where
the Bregman divergence of the mirror map becomes the proximal term (Beck & Teboulle (2003)):

xk+1 = argmin
x∈X∩C

〈η gk,x〉+DΦ(x,xk) . (5)

Note, if Φ(x) = 1
2 ‖x‖

2
2, then DΦ(x,xk) = 1

2

∥∥x− xk
∥∥2

2
, which when plugged back to the above

problem and optimized for x, leads to exactly the same update rule as that of PGD. However, MD
allows us to choose various forms of Φ depending on the problem at hand.

2.2 NEURAL NETWORK QUANTIZATION

Neural Network (NN) quantization amounts to training networks with parameters restricted to a
small discrete set representing the quantization levels. Here we review two constrained optimization
formulations for NN quantization: 1) directly constrain each parameter to be in the discrete set; and 2)
optimize the probability of each parameter taking a label from the set of quantization levels.

2.2.1 PARAMETER SPACE FORMULATION

Given a dataset D = {xi,yi}ni=1, NN quantization can be written as:

min
w∈Qm

L(w;D) :=
1

n

n∑
i=1

`(w; (xi,yi)) . (6)

Here, `(·) denotes the input-output mapping composed with a standard loss function (e.g., cross-
entropy loss), w is the m dimensional parameter vector, and Q with |Q| = d is a predefined discrete
set representing quantization levels (e.g., Q = {−1, 1} or Q = {−1, 0, 1}).
The approaches that directly optimize in the parameter space include BinaryConnect (BC) (Cour-
bariaux et al. (2015)) and its variants (Hubara et al. (2017); Rastegari et al. (2016)), where the
constraint set is discrete. In contrast, recent approaches (Bai et al. (2019); Yin et al. (2018)) relax this
constraint set to be its convex hull:

conv(Qm) = [qmin, qmax]m , (7)

where qmin and qmax represent the minimum and maximum quantization levels, respectively. In this
case, a quantized solution is obtained by gradually increasing an annealing hyperparameter.

2.2.2 LIFTED PROBABILITY SPACE FORMULATION

Another formulation is based on the Markov Random Field (MRF) perspective to NN quantization
recently studied in (Ajanthan et al. (2019)). It treats Eq. (6) as a discrete labelling problem and
introduces indicator variables uj:λ ∈ {0, 1} for each parameter wj where j ∈ {1, . . . ,m} such that
uj:λ = 1 if and only if wj = λ ∈ Q. For convenience, by denoting the vector of quantization levels
as q, a parameter vector w ∈ Qm can be written in a matrix vector product as:

w = uq , where u ∈ Vm =

{
u

∑
λ uj:λ = 1, ∀ j

uj:λ ∈ {0, 1}, ∀ j, λ

}
. (8)

Here, u is a m × d matrix (i.e., each row uj = {uj:λ | λ ∈ Q}), and q is a column vector of
dimension d. Note that, u ∈ Vm is an overparametrized (i.e., lifted) representation of w ∈ Qm. Now,
similar to the relaxation in the parameter space, one can relax the binary constraint in Vm to form its
convex hull:

∆m = conv(Vm) =

{
u

∑
λ uj:λ = 1, ∀ j

uj:λ ≥ 0, ∀ j, λ

}
. (9)

3

Under review as a conference paper at ICLR 2020

The set ∆m is in fact the Cartesian product of the standard (d− 1)-probability simplexes embedded
in IRd. Therefore, for a feasible point u ∈ ∆m, the vector uj for each j (j-th row of matrix u)
belongs to the probability simplex ∆. Hence, we can interpret the value uj:λ as the probability of
assigning the discrete label λ to the weight wj . This relaxed optimization can then be written as:

min
u∈∆m

L(uq;D) :=
1

n

n∑
i=1

`(uq; (xi,yi)) . (10)

In fact, this can be interpreted as finding a probability distribution u ∈ ∆m such that the cost L(u) is
minimized. Note that, the relaxation of u from Vm to ∆m translates into relaxing w from Qm to
the convex region conv(Qm). Even in this case, a discrete solution u ∈ Vm can be enforced via an
annealing hyperparameter or using rounding schemes.

3 MIRROR DESCENT FRAMEWORK FOR NETWORK QUANTIZATION

Before introducing the MD formulation, we first write NN quantization as a single objective unify-
ing (6) and (10) as:

min
x∈X

f(x) , (11)

where f(·) denotes the loss function by abstracting out the dependency on the dataset D, and X
denotes the constraint set (Qm or Vm depending on the formulation). Note that, as discussed
in Sec. 2.2, many recent NN quantization methods optimize over the convex hull of the constraint set.
Following this, we consider the solution space X in Eq. (11) to be convex and compact. To employ
MD, we need to choose a mirror map (refer Definition 2.1) suitable for the problem at hand. In fact,
as discussed in Sec. 2.1, mirror map is the core component of an MD algorithm which determines the
effectiveness of the resulting MD updates. However, there is no straightforward approach to obtain a
mirror map for a given constrained optimization problem, except in certain special cases.

To this end, we observe that the usual approach to optimize the above constrained problem is via a
version of projected gradient descent, where the projection is the mapping from the unconstrained
auxiliary variables (high-precision) to the quantized space X . Now, noting the analogy between the
purpose of the projection operator and the mirror maps in the MD formulation, we intend to derive
the mirror map analogous to a given projection. Precisely, we prove that if the projection is invertible
and strictly monotone, a valid mirror map can be derived from the projection itself. This does not
necessarily extend the theory of MD as finding a strictly monotone map is as hard as finding the mirror
map itself. However, this derivation is interesting as it connects existing PGD type algorithms to their
corresponding MD variants. For completeness, we now state it as a theorem for the case X ⊂ IR and
the multidimensional case can be easily proved with an additional assumption that the vector field
P−1(x) is conservative.
Theorem 3.1. Let X be a compact convex set and P : IR → C be an invertible function where
C ⊂ IR is a convex open set such that X = C̄ (C̄ denotes the closure of C). Now, if

1. P is strictly monotonically increasing.
2. limx→∂C ‖P−1(x)‖ =∞ (∂C denotes the boundary of C).

Then, Φ(x) =
∫ x
x0
P−1(y)dy is a valid mirror map.

Proof. This can be proved by noting that ∇Φ(x) = P−1(x). Please refer to Appendix A.

Figure 1: MD formulation where mirror map is de-
rived from the projection P . Note, gk is computed
in the primal space (X) but it is directly used to
update the auxiliary variables in the dual space.

The MD update based on the mirror map derived
from a given projection is illustrated in Fig. 1.
Note that, to employ MD to the problem (11), in
theory, any mirror map satisfying Definition 2.1
whose domain (the closure of the domain) is a
superset of the constraint set X can be chosen.
However, the above theorem provides a method
to derive only a subset of all applicable mirror
maps, where the closure of the domain of mirror
maps is exactly equal to the constraint set X .

We now give some example projections useful for NN quantization (tanh for w-space and softmax
for u-space) and derive their corresponding mirror maps. Given mirror maps, the MD updates are
straightforward based on Eq. (5). Even though we consider differentiable projections, Theorem 3.1

4

Under review as a conference paper at ICLR 2020

does not require the projection to be differentiable. For the rest of the section, we assume m = 1, i.e.,
consider projections that are independent for each j ∈ {1, . . . ,m}.
Example 3.1 (w-space, binary, tanh). Consider the tanh function, which projects a real value to
the interval [−1, 1]:

w = P (w̃) := tanh(βw̃) =
exp(2βw̃)− 1

exp(2βw̃) + 1
, (12)

where β > 0 is the annealing hyperparameter and when β →∞, tanh approaches the step function.
The inverse of the tanh is:

P−1(w) =
1

β
tanh−1(w) =

1

2β
log

1 + w

1− w
. (13)

Note that, P−1 is monotonically increasing for a fixed β. Correspondingly, the mirror map from The-
orem 3.1 can be written as:

Φ(w) =

∫
P−1(w)dw =

1

2β

[
(1 + w) log(1 + w) + (1− w) log(1− w)

]
. (14)

Here, the constant from the integration is ignored. It can be easily verified that Φ(w) is in fact a valid
mirror map. The projection, its inverse and the corresponding mirror map are illustrated in Fig. 2a.
Consequently, the resulting MD update (5) takes the following form:

wk+1 = argmin
w∈(−1,1)

〈η gk, w〉+DΦ(w,wk) =
1+wk

1−wk exp(−2βηgk)− 1

1+wk

1−wk exp(−2βηgk) + 1
. (15)

The update formula is derived using the KKT conditions (Boyd & Vandenberghe (2009)). For the
detailed derivation please refer to Appendix B. A similar derivation can also be performed for the
sigmoid function, where C̄ = X = [0, 1]. Note that the sign function has been used for binary
quantization in (Courbariaux et al. (2015)) and tanh can be used as a soft version of sign function
as pointed out by (Zhang et al. (2015)). Mirror map corresponding to tanh is used for online linear
optimization in (Bubeck et al. (2012)) but here we use it for NN quantization.

Example 3.2 (u-space, multi-label, softmax). Now we consider the softmax projection used in
Proximal Mean-Field (PMF) (Ajanthan et al. (2019)) to optimize in the lifted probability space. In this
case, the projection is defined as P (ũ) := softmax(βũ) where P : IRd → C with C̄ = X = ∆. Here
∆ is the (d− 1)-dimensional probability simplex and |Q| = d. Note that the softmax projection is
not invertible as it is a many-to-one mapping. In particular, it is invariant to translation, i.e.,

u = softmax(ũ + c1) = softmax(ũ) , where uλ =
exp(ũλ)∑
µ∈Q exp(ũµ)

, (16)

for any scalar c ∈ IR (1 denotes a vector of all ones). Therefore, the softmax projection does not
satisfy Theorem 3.1. However, one could define the inverse of softmax as follows: given u ∈ ∆, find
a unique point ṽ = ũ + c1, for a particular scalar c, such that u = softmax(ṽ). Now, by choosing
c = − log(

∑
µ=Q exp(ũµ)), softmax can be written as:

u = softmax(ṽ) , where uλ = exp(ṽλ) , ∀λ ∈ Q . (17)

Now, the inverse of the projection can be written as:

ṽ = P−1(u) =
1

β
softmax−1(u) , where ṽλ =

1

β
log(uλ) , ∀λ . (18)

Indeed, log is a monotonically increasing function and from Theorem 3.1, by summing the integrals,
the mirror map can be written as:

Φ(u) =
1

β

[∑
λ

uλ log(uλ)− uλ

]
= − 1

β
H(u)− 1/β . (19)

Here,
∑
λ uλ = 1 as u ∈ ∆, and H(u) is the entropy. Interestingly, as the mirror map in this case

is the negative entropy (up to a constant), the MD update leads to the well-known Exponentiated

5

Under review as a conference paper at ICLR 2020

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(a) tanh, its inverse, and mirror map

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

(b) shifted tanh and its inverse

Figure 2: Plots of tanh and shifted tanh projections, and their inverses corresponding to the tanh
projection. Note that, the inverses are monotonically increasing and the mirror map is strictly convex.
Moreover, when β →∞, the projections approaches their respective hard versions.

Gradient Descent (EGD) (or Entropic Descent Algorithm (EDA)) (Beck & Teboulle (2003); Bubeck
(2015)). Consequently, the update takes the following form:

uk+1
λ =

ukλ exp(−βηgkλ)∑
µ∈Q ukµ exp(−βηgkµ)

∀λ . (20)

The derivation follows the same approach as in the tanh case above. It is interesting to note that the
MD variant of softmax is equivalent to the well-known EGD. Notice, the authors of PMF hinted that
PMF is related to EGD but here we have clearly showed that the MD variant of PMF under the above
reparametrization (17) is exactly EGD.

Example 3.3 (w-space, multi-label, shifted tanh). Note that, similar to softmax, we wish to extend
the tanh projection beyond binary. The idea is to use a function that is an addition of multiple shifted
tanh functions. To this end, as an example we consider ternary quantization, with Q = {−1, 0, 1}
and define our shifted tanh projection P : IR→ C as:

w = P (w̃) =
1

2

[
tanh (β(w̃ + 0.5)) + tanh (β(w̃ − 0.5))

]
, (21)

where β > 0 and w = C̄ = X = [−1, 1]. When β → ∞, P approaches a stepwise function with
inflection points at −0.5 and 0.5 (here, ±0.5 is chosen heuristically), meaning w move towards one
of the quantization levels in the setQ. This behaviour together with its inverse is illustrated in Fig. 2b.
Now, one could potentially find the functional form of P−1 and analytically derive the mirror map
corresponding to this projection. Note that, while Theorem 3.1 provides an analytical method to
derive mirror maps, in some cases such as the above, the exact form of mirror map and the MD
update might be nontrivial. In such cases, as will be shown subsequently, the MD update can be easily
implemented by storing an additional set of auxiliary variables w̃.

Effect of Annealing. Note that, to ensure a discrete solution, projection P is parametrized by a
scalar β and it is annealed throughout the optimization. This annealing hyperparameter translates
into a time varying mirror map (refer Eqs. (14) and (19)) in our case. Such an adaptive mirror map
gradually constrains the solution spaceX to its boundary and in the limit enforces a quantized solution.
Since this adaptive behaviour can affect the convergence of the algorithm, in our implementation β is
capped at an arbitrarily chosen maximum value, and empirically, the algorithm converges to fully
quantized solutions in all tested cases. We leave the theoretical analysis of annealing for future work.

Numerically Stable form of Mirror Descent. We showed a few examples of valid projections,
their corresponding mirror maps, and the final MD updates. Even though, in theory, these updates can
be used directly, they are sometimes numerically unstable due to the operations involving multiple
logarithms, exponentials and divisions (Hsieh et al. (2018)). To this end, we provide a numerically
stable way of performing MD by storing an additional set of auxiliary parameters during training.

A careful look at the Fig. 1 suggests that the MD update with the mirror map derived from Theorem 3.1
can be performed by storing auxiliary variables x̃ = P−1(x). In fact, once the auxiliary variable x̃k

is updated using gradient gk, it is directly mapped back to the constraint set X via the projection. This
is mainly because of the fact that the domain of the mirror maps derived based on the Theorem 3.1
are exactly the same as the constraint set. Formally, with this additional set of variables, one can
write the MD update (4) corresponding to the projection P as:

x̃k+1 = x̃k − η gk , update in the dual space (22)

xk+1 = P (x̃k+1) ∈ X , projection to the primal space

6

Under review as a conference paper at ICLR 2020

where η > 0, gk ∈ ∂f(xk) and x̃k = P−1(xk). Experimentally we observed these updates to show
stable behaviour and performed remarkably well for both the tanh and softmax.

Note, above updates can be seen as optimizing the function f(P (x̃)) using gradient descent where the
gradient through the projection (i.e., Jacobian) JP = ∂P (x̃)/∂x̃ is replaced with the identity matrix.
This is exactly the same as the Straight Through Estimator (STE) for NN quantization (following the
nomenclature of (Bai et al. (2019); Yin et al. (2018))). Despite being a crude approximation, STE has
shown to be highly effective for NN quantization with various network architectures and datasets (Yin
et al. (2018); Zhou et al. (2016)). However, a solid understanding of the effectiveness of STE is
lacking in the literature except for its convergence analysis in certain special cases (Li et al. (2017);
Yin et al. (2019)). In this work, by showing STE based gradient descent as an implementation method
of MD under certain conditions on the projection, we provide a justification on the effectiveness of
STE. Besides, as shown in Example 3.3, in cases where the MD formulation is nontrivial, the STE
based implementation can be used. The pseudocodes of original and numerically stable versions of
our MD algorithm for tanh are presented in Appendix B.

Comparison against ProxQuant. The connection between the dual averaging version of MD
and STE was recently hinted in ProxQuant (PQ) (Bai et al. (2019)). However, no analysis of whether
an analogous mirror map exists to the given projection is provided and their final algorithm is not
based on MD. In particular, following our notation, the final update equation of PQ can be written as:

x̃k+1 = xk − η gk , assumes xk and gk are in the same space (23)

xk+1 = prox(x̃k+1) , prox : IRr → IRr is the proximal mapping defined in (Bai et al. (2019))

where η > 0, and gk ∈ ∂f(xk). Note that, as opposed to MD (refer to Eq. (22)), PQ assumes the
point xk and gradient gk are in the same space. Then only the formula xk − η gk is valid. This
would only be true for the Euclidean space. However, as discussed in Sec. 2.1, MD allows gradient
descent to be performed on a more general non-Euclidean space by first mapping the primal point xk
to a point x̃k in the dual space via the mirror map. Such an ability enabled theoretical and practical
research on MD for the past three decades.

Convergence of MD in the Nonconvex Setting. We would like to point out that MD is originally
developed for convex optimization, however, in this paper we directly apply MD to NN quantization
where the loss is highly nonconvex and gradient estimates are stochastic, and empirically evaluate its
convergence behaviour and performance. Theoretical analysis of MD for nonconvex, stochastic setting
is an active research area (Zhou et al. (2017a;b)) and MD has been recently shown to converge in the
nonconvex stochastic setting under certain conditions (Zhang & He (2018)). We believe convergence
analysis of MD for NNs could constitute to a completely new theoretical paper.

4 RELATED WORK

In this work we consider parameter quantization, which is usually formulated as a constrained problem
and optimized using a modified projected gradient descent algorithm, where the methods (Courbariaux
et al. (2015); Carreira-Perpinán & Idelbayev (2017); Yin et al. (2018); Bai et al. (2019); Ajanthan et al.
(2019)) mainly differ in the constraint set, the projection used, and how backpropagation through the
projection is performed. Among them, STE based gradient descent is the most popular method as it
enables backpropagation through nondifferentiable projections and it has shown to be highly effective
in practice (Courbariaux et al. (2015)). In fact, the success of this approach lead to various extensions
by including additional layerwise scalars (Rastegari et al. (2016)), relaxing the solution space (Yin
et al. (2018)), and even to quantizing activations (Hubara et al. (2017)), and/or gradients (Zhou
et al. (2016)). Moreover, there are methods focusing on loss aware quantization (Hou et al. (2017)),
quantization for specialized hardware (Esser et al. (2015)), and quantization based on the variational
approach (Achterhold et al. (2018); Louizos et al. (2017; 2019)). We have only provided a brief
summary of relevant methods and for a comprehensive survey we refer the reader to (Guo (2018)).

5 EXPERIMENTS

Due to the popularity of binary neural networks (Courbariaux et al. (2015); Rastegari et al. (2016)),
we mainly consider binary quantization and set the quantization levels as Q = {−1, 1}. We would

7

Under review as a conference paper at ICLR 2020

like to point out that we quantize all learnable parameters, meaning our approach results in 32 times
less memory compared to the floating-point counterparts.

We evaluate two MD variants corresponding to tanh and softmax projections, on CIFAR-10, CIFAR-
100 and TinyImageNet2 datasets with VGG-16 and ResNet-18 architectures. We also evaluate the
numerically stable versions of our MD variants (denoted with suffix “-S”) performed by storing
auxiliary parameters during training as explained in Eq. (22). The results are compared against
parameter quantization methods, namely BinaryConnect (BC) (Courbariaux et al. (2015)), ProxQuant
(PQ) (Bai et al. (2019)) and Proximal Mean-Field (PMF) (Ajanthan et al. (2019)). In addition, for
completeness, we also compare against a standard PGD variant corresponding to the tanh projection
(denoted as GD-tanh), i.e., minimizing f(tanh(x̃)) using gradient descent. The only difference of
this to our MD-tanh-S is that, in Eq. (22), the Jacobian of tanh is directly used in the updates. Note
that, numerous techniques have emerged with BC as the workhorse algorithm by relaxing constraints
such as the layer-wise scalars (Rastegari et al. (2016)), and similar extensions are straightforward
even in our case. Briefly, our results indicate that the binary networks obtained by the MD variants
yield accuracies very close to the floating-point counterparts while outperforming the baselines.

For all the experiments, standard multi-class cross-entropy loss is used. We crossvalidate the hyper-
parameters such as learning rate, learning rate scale, rate of increase of annealing hyperparameter β,
and their respective schedules for all tested methods including the baselines. This extensive crossvali-
dation improved the accuracies of previous methods by a large margin, e.g., up to 3% improvement
for PMF. We provide the hyperparameter tuning search space and the final hyperparameters in
Appendix C. Our algorithm is implemented in PyTorch (Paszke et al. (2017)) and the experiments are
performed on NVIDIA Tesla-P100 GPUs. Our code will be released upon publication.

Algorithm Space CIFAR-10 CIFAR-100 TinyImageNet
VGG-16 ResNet-18 VGG-16 ResNet-18 ResNet-18

REF (float) w 93.33 94.84 71.50 76.31 58.35
BC w 89.04 91.64 59.13 72.14 49.65
PQ w 85.41 90.76 39.61 65.13 44.32
PQ* w 90.11 92.32 55.10 68.35 49.97
PMF u 90.51 92.73 61.52 71.85 51.00
PMF* u 91.40 93.24 64.71 71.56 51.52
GD-tanh w 91.47 93.27 60.67 71.46 51.43

O
ur

s

MD-softmax u 90.47 91.28 56.25 68.49 46.52
MD-tanh w 91.64 92.97 61.31 72.13 54.62
MD-softmax-S u 91.30 93.28 63.97 72.18 51.81
MD-tanh-S w 91.53 93.18 61.69 72.18 52.32

Table 1: Classification accuracies on the test set for different methods for binary quantization.
PQ* denotes performance with biases, fully-connected layers, and shortcut layers in floating-point
(original PQ setup) whereas PQ represents full quantization. PMF* denotes the performance of PMF
after crossvalidation similar to our MD-variants and the original results from the paper are denoted
as PMF. Note our MD variants obtained accuracies virtually the same as the best performing method
and it outperformed the best method by a large margin in much harder TinyImageNet dataset.

5.1 RESULTS

The classification accuracies of binary networks obtained by both variants of our algorithm, namely,
MD-tanh and MD-softmax, their numerically stable versions (suffix “-S”) and the baselines BC,
PQ, PMF, GD-tanh and the floating point Reference Network (REF) are reported in Table 1. Both
the numerically stable MD variants consistently produce better or on par results compared to other
binarization methods while narrowing the performance gap between binary networks and floating
point counterparts to a large extent, on multiple datasets.

Our stable MD-variant perform slightly better than MD-softmax, whereas for tanh, MD updates
either perform on par or sometimes even better than numerically stable version of MD-tanh. We

2https://tiny-imagenet.herokuapp.com/

8

https://tiny-imagenet.herokuapp.com/

Under review as a conference paper at ICLR 2020

0 50 100 150 200 250
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

MD-softmax
MD-tanh
MD-softmax-S
MD-tanh-S

0 50 100 150 200 250
Epochs

20

40

60

80

Va
lid

at
io

n
Ac

cu
ra

cy

MD-softmax
MD-tanh
MD-softmax-S
MD-tanh-S

0 50 100 150 200 250
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

MD-softmax
MD-tanh
MD-softmax-S
MD-tanh-S

0 50 100 150 200 250
Epochs

0

10

20

30

40

50

60

70

Va
lid

at
io

n
Ac

cu
ra

cy

MD-softmax
MD-tanh
MD-softmax-S
MD-tanh-S

Figure 3: Training curves for binarization for CIFAR-10 (first two) and CIFAR-100 (last two) with
ResNet-18. Compared to original MD variants, stable MD variants are less noisy and after the initial
exploration phase (up to 60 in CIFAR-10 and 25 epochs CIFAR-100), the validation accuracies rise
sharply and show gradual improvement afterwards.

believe, the main reason for this empirical variation in results for our MD-variants is due to numerical
instability caused by the floating-point arithmetic of logarithm and exponential functions in Eq. (15)
and Eq. (20). Furthermore, even though our two MD-variants, namely MD-softmax and MD-tanh
optimize in different spaces, their performance is similar in most cases. This may be explained by
the fact that both algorithms belong to the same family where a “soft” projection to the constraint
set (in fact the constraints sets are equivalent in this case, refer Sec. 2.2.2) is used and an annealing
hyperparameter is used to gradually enforce a quantized solution.

Note, PQ (Bai et al. (2019)) does not quantizee the fully connected layers, biases and shortcut layers.
For fair comparison, we crossvalidate PQ with all layers binarized and original PQ settings, and
report the results denoted as PQ and PQ* respectively in Table 1. Our MD-variants outperform
PQ consistently on multiple datasets in equivalent experimental settings. This clearly shows that
entropic or tanh-based regularization with our annealing scheme is superior to a simple “W” shaped
regularizer and emphasizes that MD is a suitable framework for quantization.

Furthermore, the superior performance of MD-tanh against GD-tanh and on par or better performance
of MD-softmax against PMF for binary quantization empirically validates that MD is useful even in
a nonconvex stochastic setting. This hypothesis along with our numerically stable form of MD can
be particularly useful to explore other projections which are useful for quantization and/or network
compression in general.

The training curves for our MD variants for CIFAR-10 and CIFAR-100 datasets with ResNet-18 are
shown in Fig. 3. The original MD variants show unstable behaviour during training which is attributed
to the fact that it involves logarithms and exponentials in the update rules. In addition, we believe,
the additional annealing hyperparameter also contributes to this instability. Regardless, by storing
auxiliary variables, the MD updates are demonstrated to be quite stable. This clear distinction
between MD variants emphasizes the significance of practical considerations while implementing MD
especially in NN optimization. For more experiments such as training curves comparison to other
methods and ternary quantization results please refer to the Appendix C.

6 DISCUSSION

In this work, we have introduced an MD framework for NN quantization by deriving mirror maps
corresponding to various projections useful for quantization. In addition, we have discussed a
numerically stable implementation of MD by storing an additional set of auxiliary variables and
showed that this update is strikingly analogous to the popular STE based gradient method. The
superior performance of our MD formulation even with simple projections such as tanh and softmax
is encouraging and we believe, MD would be a suitable framework for not just NN quantization but
for network compression in general. Finally, some theoretical aspects such as the use of time-varying
mirror maps and the combination of MD and a stochastic optimizer such as Adam are left unattended
in this paper, which we intend to analyze in a future work.

REFERENCES

Gradient theorem. https://en.wikipedia.org/wiki/Gradient_theorem. Accessed:
31-07-2019.

9

https://en.wikipedia.org/wiki/Gradient_theorem

Under review as a conference paper at ICLR 2020

J. Achterhold, J. M. Kohler, A. Schmeink, and T. Genewein. Variational network quantization. ICLR,
2018.

Thalaiyasingam Ajanthan, Puneet K Dokania, Richard Hartley, and Philip HS Torr. Proximal
mean-field for neural network quantization. ICCV, 2019.

Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators. ICLR, 2019.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 2003.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2009.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R© in
Machine Learning, 2015.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online
linear optimization with bandit feedback. Conference on Learning Theory, 2012.

Miguel A Carreira-Perpinán and Yerlan Idelbayev. Model compression as constrained optimization,
with application to neural nets. part ii: Quantization. NeurIPS Workshop on Optimization for
Machine Learning, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. NeurIPS, 2015.

S. K. Esser, R. Appuswamy, P. A. Merolla, J. V. Arthur, and D. S. Modha. Backpropagation for
energy-efficient neuromorphic computing. NeurIPS, 2015.

Yunhui Guo. A survey on methods and theories of quantized neural networks. arXiv preprint
arXiv:1808.04752, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CVPR, 2016.

Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. ICLR, 2017.

Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. Mirrored langevin dynamics. NeurIPS,
2018.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. ICLR, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. JMLR,
2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ICML, 2015.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H S Torr. SNIP: Single-shot network pruning
based on connection sensitivity. ICLR, 2019.

Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. NeurIPS, 2017.

C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep learning. NeurIPS, 2017.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling.
Relaxed quantization for discretized neural networks. ICLR, 2019.

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

10

Under review as a conference paper at ICLR 2020

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. ECCV, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, and Jack Xin. Binaryrelax:
A relaxation approach for training deep neural networks with quantized weights. SIIMS, 2018.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understand-
ing straight-through estimator in training activation quantized neural nets. ICLR, 2019.

Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang. Bit-scalable deep hashing
with regularized similarity learning for image retrieval and person re-identification. TIP, 2015.

Siqi Zhang and Niao He. On the convergence rate of stochastic mirror descent for nonsmooth
nonconvex optimization. CoRR, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, 2016.

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, and Peter Glynn.
Mirror descent in non-convex stochastic programming. CoRR, 2017a.

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, and Peter W Glynn.
Stochastic mirror descent in variationally coherent optimization problems. NeurIPS, 2017b.

Appendices
Here, we first provide the proof of the theorem and the technical derivations. Later we give additional
experiments and the details of our experimental setting.

A DERIVING MIRROR MAPS FROM PROJECTIONS

Theorem A.1. Let X be a compact convex set and P : IR → C be an invertible function where
C ⊂ IR is a convex open set such that X = C̄ (C̄ denotes the closure of C). Now, if

1. P is strictly monotonically increasing.
2. limx→∂C ‖P−1(x)‖ =∞ (∂C denotes the boundary of C).

Then, Φ(x) =
∫ x
x0
P−1(y)dy is a valid mirror map.

Proof. From the fundamental theorem of calculus, the gradient of Φ(x) satisfies, ∇Φ(x) = P−1(x).
Since P is strictly monotonically increasing and invertible, P−1 is strictly monotonically increasing.
Therefore, Φ(x) is strictly convex and differentiable. Now, from the definition of projection and
since it is invertible (i.e., P−1 is one-to-one and onto), ∇Φ(C) = P−1(C) = IR. Therefore,
together with condition (2), we can conclude that Φ(x) =

∫ x
x0
P−1(y)dy is a valid mirror map (refer

Definition 2.2 in the main paper). For the multi-dimensional case, we need an additional condition
that the vector field P−1(x) is conservative. Then by the gradient theorem (gra), there exists a mirror
map Φ(x) =

∫ x

x0
P−1(y)dy for some arbitrary base point x0.

11

Under review as a conference paper at ICLR 2020

B MD UPDATE DERIVATION FOR THE TANH PROJECTION

We now derive the MD update corresponding to the tanh projection below. From Theorem A.1, the
mirror map for the tanh projection can be written as:

Φ(w) =

∫
P−1(w)dw =

1

2β

[
(1 + w) log(1 + w) + (1− w) log(1− w)

]
. (24)

Correspondingly, the Bregman divergence can be written as:

DΦ(w, v) = Φ(w)− Φ(v)− Φ′(v)(w − v) , where Φ′(v) = 1
2β log 1+v

1−v , (25)

=
1

2β

[
w log

(1 + w)(1− v)

(1− w)(1 + v)
+ log(1− w)(1 + w)− log(1− v)(1− v)

]
.

Now, consider the proximal form of MD update

wk+1 = argmin
x∈(−1,1)

〈η gk, w〉+DΦ(w,wk) . (26)

The idea is to find w such that the KKT conditions are satisfied. To this end, let us first write the
Lagrangian of Eq. (26) by introducing dual variables y and z corresponding to the constraints w > −1
and w < 1, respectively:

F (w, x, y) = ηgkw +
1

2β

[
w log

(1 + w)(1− wk)

(1− w)(1 + wk)
+ log(1− w)(1 + w)− log(1− wk)(1− wk)

]
(27)

+ y(−w − 1) + z(w − 1) .

Now, setting the derivatives with respect to w to zero:

∂F

∂w
= ηgk +

1

2β
log

(1 + w)(1− wk)

(1− w)(1 + wk)
− y + z = 0 . (28)

From complementary slackness conditions,

y(−w − 1) = 0 , since w > −1 ⇒ y = 0 , (29)
z(w − 1) = 0 , since w < 1 ⇒ z = 0 .

Therefore, Eq. (28) now simplifies to:

∂F

∂w
= ηgk +

1

2β
log

(1 + w)(1− wk)

(1− w)(1 + wk)
= 0 , (30)

log
(1 + w)(1− wk)

(1− w)(1 + wk)
= exp(−2βηgk) ,

1 + w

1− w
=

1 + wk

1− wk
exp(−2βηgk) ,

w =
1+wk

1−wk exp(−2βηgk)− 1

1+wk

1−wk exp(−2βηgk) + 1
.

The pseudocodes of original (MD-tanh) and numerically stable versions (MD-tanh-S) for tanh are
presented in Algorithms 1 and 2 respectively.

C ADDITIONAL EXPERIMENTS

We first give training curves of all compared methods, and provide ternary quantization results as a
proof of concept. Later, we provide experimental details.

Convergence Analysis. The training curves for CIFAR-10 and CIFAR-100 datasets with ResNet-18
are shown in Fig. 4. Notice, after the initial exploration phase (due to low β) the validation accuracies
of our MD-tanh-S increase sharply while this steep rise is not observed in regularization methods
such as PQ. The training behaviour for both our stable MD-variants (softmax and tanh) is quite
similar.

12

Under review as a conference paper at ICLR 2020

Algorithm 1 MD-tanh

Require: K, b, {ηk}, ρ > 1,D, L
Ensure: w∗ ∈ Qm

1: w0 ∈ IRm, β ← 1 . Initialization
2: w0 ← tanh(βw0) . Projection
3: for k ← 0, . . . ,K do
4: Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch
5: gk ← ∇wL(w;Db)

∣∣
w=wk . Gradient w.r.t. w at wk (Adam based gradients)

6: for j ← 1, . . . ,m do

7: wk+1
j ←

1+wk
j

1−wk
j

exp(−2βηkgkj)−1

1+wk
j

1−wk
j

exp(−2βηkgkj)+1

. MD update

8: end for
9: β ← ρβ . Increase β

10: end for
11: w∗ ← sign(w̃K) . Quantization

Algorithm 2 MD-tanh-S

Require: K, b, {ηk}, ρ > 1,D, L
Ensure: w∗ ∈ Qm

1: w̃0 ∈ IRm, β ← 1 . Initialization
2: for k ← 0, . . . ,K do
3: wk ← tanh(βw̃k) . Projection
4: Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch
5: gk ← ∇wL(w;Db)

∣∣
w=wk . Gradient w.r.t. w at wk (Adam based gradients)

6: w̃k+1 ← w̃k − ηkgk . Gradient descent on w̃
7: β ← ρβ . Increase β
8: end for
9: w∗ ← sign(w̃K) . Quantization

Ternary Quantization. As a proof of concept for our shifted tanh projection (refer Example 3.3),
we also show results for ternary quantization with quantization levels Q = {−1, 0, 1} in Table 2.
Note that the performance improvement of our ternary networks compared to their respective binary
networks is marginal as only 0 is included as the 3rd quantization level. In contrast to us, the baseline
method PQ (Bai et al. (2019)) optimizes for the quantization levels (differently for each layer) as
well in an alternating optimization regime rather than fixing it to Q = {−1, 0, 1}. Also, PQ does
ternarize the first convolution layer, fully-connected layers and the shortcut layers. We cross-validate
hyperparameters for both the original PQ setup and the equivalent setting of our MD-variants where
we optimize all the weights and denote them as PQ* and PQ respectively.

Our MD-tanh variant performs on par or sometimes even better in comparison to tanh projection
results where gradient is calculated through the projection instead of performing MD. This again
empirically validates the hypothesis that MD yields in good approximation for the task of network
quantization. The better performance of PQ in their original quantization setup, compared to our
approach in CIFAR-10 can be accounted to their non-quantized layers and different quantization levels.
We believe, similar explorations are possible with our MD framework as well.

Experimental Details. As mentioned in the main paper the experimental protocol is similar
to (Ajanthan et al. (2019)). To this end, the details of the datasets and their corresponding ex-
periment setups are given in Table 3. For CIFAR-10/100 and TinyImageNet, VGG-16 (Simonyan &
Zisserman (2015)) and ResNet-18 (He et al. (2016)) architectures adapted for CIFAR dataset are used.
In particular, for CIFAR experiments, similar to (Lee et al. (2019)), the size of the fully-connected
(FC) layers of VGG-16 is set to 512 and no dropout layers are employed. For TinyImageNet, the stride
of the first convolutional layer of ResNet-18 is set to 2 to handle the image size (Huang et al. (2017)).
In all the models, batch normalization (Ioffe & Szegedy (2015)) (with no learnable parameters) and

13

Under review as a conference paper at ICLR 2020

0 50 100 150 200 250
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

REF
BC
PQ
PMF
MD-tanh-S

0 50 100 150 200 250
Epochs

20

40

60

80

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PQ
PMF
MD-tanh-S

0 50 100 150 200 250
Epochs

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

REF
BC
PQ
PMF
MD-tanh-S

0 50 100 150 200 250
Epochs

0

10

20

30

40

50

60

70

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PQ
PMF
MD-tanh-S

Figure 4: Training curves for binarization for CIFAR-10 (first two columns) and CIFAR-100 (last two
columns) with ResNet-18. Compared to BC, our MD-tanh-S and PMF are less noisy and after the
initial exploration phase (up to 60 in CIFAR-10 and 25 epochs CIFAR-100), the validation accuracies
rise sharply and closely resembles the floating point network afterwards. This steep increase is not
observed in regularization methods such as PQ.

Algorithm Space CIFAR-10 CIFAR-100 TinyImageNet
VGG-16 ResNet-18 VGG-16 ResNet-18 ResNet-18

REF (float) w 93.33 94.84 71.50 76.31 58.35
PQ w 83.32 90.50 32.16 59.18 41.46
PQ* w 92.20 93.85 57.64 70.98 45.72
GD-tanh w 91.21 93.20 53.88 69.48 50.65

O
ur

s MD-softmax-S u 91.69 93.30 65.11 72.01 52.21
MD-tanh-S w 91.70 93.42 66.15 71.29 52.69

Table 2: Classification accuracies on the test set for ternary quantization. PQ* denotes performance
with fully-connected layers, first convolution layer and shortcut layers in floating point whereas PQ
represent results with all layers quantized. Also, PQ* optimize for the quantization levels as well
(different for each layer), in contrast we fix it to Q = {−1, 0, 1}. GD-tanh denotes results without
using STE and actually calculating the gradient through the projection.

ReLU nonlinearity are used. Only for the floating point networks (i.e., REF), we keep the learnable
parameters for batch norm. Standard data augmentation (i.e., random crop and horizontal flip) is
used.

For both of our MD variants, hyperparameters such as the learning rate, learning rate scale, annealing
hyperparameter β and its schedule are crossvalidated from the range reported in Table 4 and the
chosen parameters are given in the Tables 5 and 6. To generate the plots, we used the publicly
available codes of BC3, PQ4 and PMF5.

All methods are trained from a random initialization and the model with the best validation accuracy
is chosen for each method. Note that, in MD, even though we use an increasing schedule for β to
enforce a discrete solution, the chosen network may not be fully-quantized (as the best model could
be obtained in an early stage of training). Therefore, simple argmax rounding is applied to ensure
that the network is fully-quantized.

3https://github.com/itayhubara/BinaryNet.pytorch
4https://github.com/allenbai01/ProxQuant
5https://github.com/tajanthan/pmf

14

https://github.com/itayhubara/BinaryNet.pytorch
https://github.com/allenbai01/ProxQuant
https://github.com/tajanthan/pmf

Under review as a conference paper at ICLR 2020

Dataset Image # class Train / Val. b K

MNIST 28× 28 10 50k / 10k 100 20k
CIFAR-10 32× 32 10 45k / 5k 128 100k
CIFAR-100 32× 32 100 45k / 5k 128 100k
TinyImageNet 64× 64 200 100k / 10k 128 100k

Table 3: Experiment setup. Here, b is the batch
size and K is the total number of iterations for all
the methods.

Hyperparameters Fine-tuning grid

learning_rate [0.1, 0.01, 0.001, 0.0001]
lr_scale [0.1, 0.2, 0.3, 0.5]

beta_scale [1.01, 1.02, 1.05, 1.1, 1.2]
beta_scale_interval [100, 200, 500, 1000, 2000]

Table 4: The hyperparameter search
space for all the experiments. Chosen
parameters are given in Tables 5 and 6.

CIFAR-10 with ResNet-18
MD-softmax MD-tanh MD-softmax-S MD-tanh-S PMF* GD-tanh BC PQ

learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01
lr_scale 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5
beta_scale 1.02 1.01 1.02 1.02 1.1 1.1 - 0.0001
beta_scale_interval 200 100 200 200 1000 1000 - -

CIFAR-100 with ResNet-18
MD-softmax MD-tanh MD-softmax-S MD-tanh-S PMF* GD-tanh BC PQ

learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.1
lr_scale 0.2 0.3 0.2 0.2 0.3 0.5 0.2 -
beta_scale 1.05 1.05 1.1 1.2 1.01 1.01 - 0.001
beta_scale_interval 500 500 200 500 100 100 - -

CIFAR-10 with VGG-16
MD-softmax MD-tanh MD-softmax-S MD-tanh-S PMF* GD-tanh BC PQ

learning_rate 0.01 0.001 0.001 0.001 0.001 0.001 0.0001 0.01
lr_scale 0.2 0.3 0.3 0.2 0.5 0.3 0.3 0.5
beta_scale 1.05 1.1 1.2 1.2 1.05 1.1 - 0.0001
beta_scale_interval 500 1000 2000 2000 500 1000 - -

CIFAR-100 with VGG-16
MD-softmax MD-tanh MD-softmax-S MD-tanh-S PMF* GD-tanh BC PQ

learning_rate 0.001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.01
lr_scale 0.3 0.3 0.2 0.5 0.5 0.5 0.2 0.5
beta_scale 1.01 1.05 1.2 1.05 1.02 1.1 - 0.0001
beta_scale_interval 100 500 500 500 200 1000 - -

TinyImageNet with ResNet-18
MD-softmax MD-tanh MD-softmax-S MD-tanh-S PMF* GD-tanh BC PQ

learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01
lr_scale 0.2 0.5 0.1 0.1 0.5 0.5 0.5 -
beta_scale (ours) 1.02 1.2 1.02 1.2 1.01 1.01 - 0.0001
beta_scale_interval 200 2000 100 500 100 100 - -

Table 5: Hyperparameter settings used for the binary quantization experiments. Here, the learning
rate is multiplied by lr_scale after every 30k iterations and annealing hyperparameter (β) is multiplied
by beta_scale after every beta_scale_interval iterations. We use Adam optimizer with zero weight
decay. For PQ, beta_scale denotes regularization rate.

15

Under review as a conference paper at ICLR 2020

CIFAR-10 with ResNet-18
REF (float) MD-softmax-S MD-tanh-S GD-tanh PQ PQ*

learning_rate 0.1 0.001 0.01 0.01 0.01 0.01
lr_scale 0.3 0.3 0.2 0.5 0.3 -
beta_scale (ours) - 1.05 1.2 1.02 0.0001 0.0001
beta_scale_interval - 500 1000 500 - -
weight_decay 0.0001 0 0 0 0 0.0001

CIFAR-100 with ResNet-18
REF (float) MD-softmax-S MD-tanh-S GD-tanh PQ PQ*

learning_rate 0.1 0.001 0.001 0.01 0.01 0.001
lr_scale 0.1 0.1 0.5 0.5 0.2 -
beta_scale (ours) - 1.1 1.1 1.02 0.0001 0.0001
beta_scale_interval - 100 500 1000 - -
weight_decay 0.0001 0 0 0 0 0.0001

CIFAR-10 with VGG-16
REF (float) MD-softmax-S MD-tanh-S GD-tanh PQ PQ*

learning_rate 0.1 0.001 0.01 0.01 0.01 0.1
lr_scale 0.2 0.3 0.3 0.3 - -
beta_scale (ours) - 1.05 1.1 1.01 1e-07 0.0001
beta_scale_interval - 500 1000 500 - -
weight_decay 0.0001 0 0 0 0 0.0001

CIFAR-100 with VGG-16
REF (float) MD-softmax-S MD-tanh-S GD-tanh PQ PQ*

learning_rate 0.1 0.0001 0.001 0.01 0.01 0.0001
lr_scale 0.2 0.3 0.5 0.2 - -
beta_scale (ours) - 1.05 1.1 1.05 0.0001 0.0001
beta_scale_interval - 100 500 2000 - -
weight_decay 0.0001 0 0 0 0 0.0001

TinyImageNet with ResNet-18
REF (float) MD-softmax-S MD-tanh-S GD-tanh PQ PQ*

learning_rate 0.1 0.001 0.01 0.01 0.01 0.01
lr_scale 0.1 0.1 0.1 0.5 - -
beta_scale (ours) - 1.2 1.2 1.05 0.01 0.0001
beta_scale_interval - 500 2000 2000 - -
weight_decay 0.0001 0 0 0 0 0.0001

Table 6: Hyperparameter settings used for the ternary quantization experiments. Here, the learning
rate is multiplied by lr_scale after every 30k iterations and annealing hyperparameter (β) is multiplied
by beta_scale after every beta_scale_interval iterations. We use Adam optimizer except for REF for
which SGD with momentum 0.9 is used. For PQ, beta_scale denotes regularization rate.

16

