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Phenotypic image analysis is the task of recognizing variations in cell properties using microscopic image
data. These variations, produced through a complex web of interactions between genes and the environ-
ment, may hold the key to uncover important biological phenomena or to understand the response to a
drug candidate. Today, phenotypic analysis is rarely performed completely by hand. The abundance of
high-dimensional image data produced by modern high-throughput microscopes necessitates computa-
tional solutions. Over the past decade, a number of software tools have been developed to address this
need. They use statistical learning methods to infer relationships between a cell’s phenotype and data
from the image. In this review, we examine the strengths and weaknesses of non-commercial phenotypic
image analysis software, cover recent developments in the field, identify challenges, and give a perspective
on future possibilities.
Introduction
One of the greatest scientific achievements of the past century is

the complete sequencing of the human genome (Venter and Zhu,

2001). This ambitious project in genomics was a ‘‘moonshot,’’ a

ground-breaking exploratory undertaking with unforeseeable

risks and benefits. Today, many believe that the next great chal-

lenge in biology lays in ‘‘phenomics’’—the quantification of the

set of phenotypes that completely characterizes an organism

(the ‘‘phenome’’) (Houle et al., 2010; Rozenblatt-Rosen et al.,

2017). A phenotype is defined as the set of observable charac-

teristics of an organism—its morphology, biochemical proper-

ties, behavior, etc. By collecting and analyzing rich phenotypic

data, we hope to improve our understanding of how genetic

and environmental factors give rise to changes in organisms or

in their behavior, and to better predict important outcomes

such as fitness, reproduction, crop yield, disease, cancerogene-

sis, resistance, or mortality. In contrast to the genome, a com-

plete understanding of the phenome is not possible with current

technology. The complexity and information content of the phe-

nome is vastly greater than that of the genome—therefore it is

crucial that in our quest to understand the phenome, we intelli-

gently choose what to measure and which phenomics tools

to use.

Imaging is a powerful and highly flexible technology for study-

ing phenomics. It can capture spatial and temporal information

with high fidelity from the nanometer scale to the whole organ-

ism. It implicitly represents the morphological characteristics of

the cell, and, using labeling technologies such as fluorescent

tags, it is possible to localize subcellular structures, proteins,
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and other molecules. Images are often cheap and quick to ac-

quire, allowing us to conduct large-scale screening experiments

that, for example, visualize and test phenotypic responses to

genetic perturbations or drug treatments. Recent advances in

microscopy, automation, and computation have dramatically

increased our ability to generate images rich in phenotypic

information, and, today, images are generated orders of magni-

tude faster than they can be manually inspected. Consequently,

to obtain phenotypic readouts we have come to rely on ‘‘pheno-

typic image analysis’’ techniques—computational methods that

transform raw image data into useful phenotypic measurements.

The aim of this review is to provide an overview of phenotypic

image analysis for cell-based image assays—its origins, existing

software solutions, challenges, and perspectives for the future.

We begin with some background including a brief history of

the field, and then provide a critical summary of the predominant

free and open-source tools for performing phenotypic analysis.

We then survey some recent trends in phenotypic analysis,

and discuss some of the main challenges. Finally, we speculate

about future directions that research in phenotypic image anal-

ysis might take.

There are two important remarks regarding the scope of

this review. First, we concentrate on high-level methods for

interpretation and analysis of phenotypic image data, avoiding

intermediate tasks such as image processing, normalization, or

segmentation (Lucchi et al., 2015). Caicedo et al. (2017) provide

a thorough review of these techniques. A second point is that

this article focuses on cell-based assays. Phenotypic profiling

is applied to other types of imaging data including whole
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organisms or tissues sections. Some specialized tools exist for

these types of experiments (Robertson et al., 2017), but they

are beyond the scope of this article.

A History of Phenotypic Image Analysis in Cell-Based

Assays

Fully automated high-throughput screening (HTS) assays allow

researchers to quickly conduct millions of chemical, genetic,

and pharmacological tests to rapidly identify active compounds,

antibodies, or genes that affect a particular biological process.

Some of the first non-automated screens to classify mutations

based on similar phenotypes were performed in the late 1970s

(Brenner, 1974; N€usslein-Volhard and Wieschaus, 1980). Soon

after, advances in automation enabled early high-throughput

drug discovery screens in the 1980s (Pereira and Williams,

2007). Since then, HTS has been widely adopted in academic

and pharmaceutical research, especially for studying effects of

anticancer drugs. However, readouts from HTS are usually uni-

variate, their resolution is often limited to the well level, and

many experiments are not suited to conventional HTS methods

(Thomsen et al., 2005).

High-content analysis applies image analysis methods to

automate cellular measurements, including the quantification

of cellular products such as proteins, or detection of changes

in morphology (Zanella et al., 2010). High-content screening

(HCS) is the combination of high-content analysis and HTS

(Bickle, 2010), offering richer data, higher throughput, and

increased flexibility (Usaj et al., 2016). One of the first studies

to employ a high-content screen aimed to measure drug-

induced transport of a GFP-tagged human glucocorticoid recep-

tor chimeric protein in tumor cells (Giuliano et al., 1997). In the

years that followed, crucial developments toward automated

high-throughput microscopy, such as camera autofocus, plate/

sample positioning, and high-density formats have made HCS

a viable strategy (Rimon and Schuldiner, 2011). HCS has since

become an important tool for detecting changes in fluorescent

reporter genes (Chia et al., 2010; Desbordes et al., 2008), subcel-

lular localization of proteins (Orvedahl et al., 2011; Link et al.,

2009), inferring biological pathways (R€amö et al., 2014), inferring

the mechanism of action of small molecules (Young et al., 2008)

and classifying drugs (Loo et al., 2007). For a review of applica-

tions and approaches related to HCS, see (Boutros et al., 2015;

Usaj et al., 2016; Singh et al., 2014; Zanella et al., 2010).

Starting around 2006, several free and open-source image

analysis software solutions have been released to the research

community. CellProfiler, a software package developed at the

Broad Institute, allows users tomix andmatchmodules to create

their own customized image analysis pipelines (Carpenter et al.,

2006). CellProfiler quickly gained popularity because it put flex-

ible and powerful high-content image analysis (Eliceiri et al.,

2012) into the hands of a wide group of researchers, even those

without extensive programming skills (Kamentsky et al., 2011).

BioConductor (Huber et al., 2015), with the EBImage (Pau

et al., 2010) and imageHTS (Pau et al., 2018) packages, allows

users to create custom image analysis pipelines in the R pro-

gramming language to segment cells and extract features. Other

open-source image analysis tools include Icy (De Chaumont

et al., 2012), BioImageXD (Kankaanp€a€a et al., 2012), and

ImageJ/Fiji (Schindelin et al., 2012). Pharmaceutical companies

have widely adopted these tools in their assays because of their
flexibility and ability to scale to large-scale experiments using

cluster or cloud computing. For live-cell imaging, software solu-

tions include the ADAPT plugin for ImageJ (Barry et al., 2015) and

NeuriteTracker (Fusco et al., 2016). For a comprehensive review

of open-source software solutions for segmenting and quanti-

fying microscopy images, see (Eliceiri et al., 2012; Shamir

et al., 2010; Sommer and Gerlich, 2013). Commercial image

analysis software offer alternative solutions, and are often pro-

vided with HCS systems from microscopy companies. Although

these tools are sufficient for many routine HCS experiments, they

can be difficult to extend or customize for specific assays.

As our ability to perform basic processing on phenotypic im-

age data has increased, the problem of how to make sense of

the data has come to the forefront. Many studies resort to using

only a single measurement or a small set of measurements to

explain phenotypic behavior. Themeasurements and associated

thresholds used to categorize cells are often hand-selected or

designed, sometimes with considerable effort. While this

approach provides straightforward explanations of the analysis,

some have criticized it for over-simplification and a failure to uti-

lize the full potential of the data. The evidence suggests that the

analysis suffers as a result (Singh et al., 2014).

Image-based screens routinely contain millions of cells, and

modern image analysis software is capable of extracting hun-

dreds or even thousands of features to describe each cell.

Humans cannot be reasonably expected to select the optimal

measurements to interpret so many parameters. However, ma-

chine-learningmethods possess this capability. By providing ex-

amples of cells with corresponding annotations describing their

phenotype, machine-learning methods can learn patterns in the

data that are most predictive of cellular phenotype. Models

trained this way can reliably predict the phenotype for cells

they have never seen before. This machine-learning-based para-

digm to phenotypic profiling has become increasingly popular in

recent years.

Machine-Learning Concepts for Phenotypic Analysis

Before introducing the software tools for phenotypic analysis, we

give a brief overview of machine learning and how it is applied for

phenotypic analysis. A glossary of commonly used machine-

learning terminology is provided in Box 1. Machine learning

involves the development of theories and techniques to auto-

matically learn to perform a task from data. There are various

types of tasks, the most common of which are categorization

of samples into certain classes (‘‘classification’’), grouping of

similar samples (‘‘clustering’’), and estimation of real values

from data (‘‘regression’’). A machine-learning system gets an

input sample, processes it, and produces some desired form

of prediction; a category or value. In phenotypic image analysis,

it is common for the input sample to be an image of a cell, and for

the desired output to be the phenotypic category of the cell.

For the machine-learning algorithm to learn how to process an

input sample and produce the desired output, it requires a

training dataset. A training set is a collection of input samples

acquired for the purpose of learning (e.g., a set of 1,000 cell im-

ages with various phenotypes). There are different categories of

learning that can be performed on the data. In supervised

learning, in order to learn how to process the input sample, we

annotate the training samples with their correct output (also

known as ‘‘label’’). Thus, the learning algorithm needs to find
Cell Systems 6, June 27, 2018 637



Box 1. Machine-Learning Terms

ACCURACY

A measure of the performance of a machine-learning system. It reflects how close the predictions of the system are to the actual

measurements (annotations) in a test scenario. For classification tasks, it is usually calculated by the ratio of correctly classified

samples to the total number of samples and is indicated by percentage values.

ACTIVE LEARNING

A learning process that involves obtaining new training samples while learning. The learning system, at several iterations during

learning, chooses which samples should be annotated and added to the training set, thus it is an active process. Usually, the

learning system chooses new samples based on their informativeness. This makes the model efficient in the required amount

of data and minimizes the annotation efforts.

ANNOTATION

Refers to the process of annotating individual datums with the desired labels, or to the labels themselves. For instance, one can

annotate a dataset of cells into several phenotype class labels (the annotations). Annotated data can be used for training a super-

vised machine-learning system, and/or measuring its performance.

CLASS

The task of amachine-learning system can be to predict, for an input sample, a value from a discrete set. Each value in this discrete

set is, then, called a class. For the task of phenotype recognition, each phenotype is considered a class.

CLASSIFICATION

The task of a machine-learning system can be to predict a value from a discrete set. This type of prediction tasks is called clas-

sification. Phenotype recognition is a classification task. If the task is to predict two classes (e.g., existence and nonexistence of a

concept), it is called a binary classification. When the task is to detect more than two concepts it is a multi-class classification task.

A multi-label classification task is when a sample can contain multiple classes at the same time (for example, presence of proteins

within a cell).

CLASS IMBALANCE

Where the number of samples belonging to different classes are highly biased. Most training algorithms try to maximize the

average performance over all samples. When one class has substantially more samples than another, the model will biased in

detecting the larger class over the smaller, as it improves performance. There are different ways to mitigate class imbalance.

One common method is to re-sample the training dataset to make the sample distribution over different classes uniform.

CLUSTERING

Tries to group samples into several clusters bymaximizing the intra-cluster similarity andminimizing inter-cluster similarities. There

are different similarity measures and learning algorithms proposed for clustering. Among the most commonly used algorithms are

k-means, spectral, and agglomerative clustering, as well as density-based methods such as DBSCAN. Clustering is an unsuper-

vised learning algorithm since it requires no annotation.

CROSS-VALIDATION

A technique for testing how well a model generalizes in the absence of a holdout test set. The training data are divided into a num-

ber of subsets, and then the same number of models is built, with each subset held out in turn. Each of those models is tested on

the holdout sample, and the average accuracy of the models on those holdout samples is used to estimate the accuracy of the

model when applied to new data.

DATA TYPES

Whenworking with statistical methods includingmachine learning, it is important to understand the different types of data. Numer-

ical data are expressed as numbers, and often have ameaning such as an intensity measurement. Numerical data can be discrete,

(Continued on next page)
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Box 1. Continued

taking only integer values, or continuous taking any real number. Categorical data represent characteristics that are not expressed

with numbers, such as phenotype. Categorical data can be ordinal if they can be ranked (e.g., the infection level of a cell is: 0, un-

infect; 1, weakly infected; 2, strongly infected) or nominal if it cannot be ordered (e.g., cell line).

DEEP LEARNING

A machine-learning model which applies multiple layers of transformation to the input sample such that the final transformation in

the last layer produces the desired output. Deep networks usually process the raw inputs, which puts them in contrast to traditional

models that require hand-crafted representation of samples. The effectiveness of deep learning mainly comes from this fact:

it learns the representation most suitable for the data.

ENSEMBLE LEARNING

Helps decreasing the variance of amachine-learningmodel by combining different models into an ensemble. Models can overfit to

the training data, which inhibits the generalization of themodel to unseen samples. Making an ensemble ofmodels each of which is

trained on different data and/or with different settings can help alleviate this issue.

FEATURE

The input to a machine-learning model is a set of values. Each of these values is usually called a feature, and the whole set is called

a feature representation or simply representation. These features can be the raw input (e.g., pixel intensities for an input image) or

hand-crafted measurement (e.g., some human-designed filters applied to an image).

FEATURE SELECTION

The selection of a subset of the feature set that is informative for predictive modeling. Feature selection is related to dimensionality

reduction in that it seeks to remove noisy signals from the input data. Feature selection may select features based on performance

and does not modify the features, in contrast to dimensionality reduction methods such as principal-component analysis.

GENERALIZATION

The applicability of a learned model to unseen samples is called generalization. In an ideal case of generalization, a model’s error

does not increase when going from the training set to unseen samples (e.g., the held-out test set). When there is a large gap

between the training and test error, the model is experiencing ‘‘overfitting.’’

INFERENCE

Refers to the process of obtaining the prediction of the model for an input sample.

INSTANCE

A single instance of our data, an input sample.

OVERFITTING

Amodel that does not generalize well to real-world cases although it fits the training data well is overfitting. A common explanation

is that the model has ‘‘memorized’’ the training data rather than understanding the fundamental concepts for the task.

PARAMETER (AND PARAMETER TUNING)

Degrees of freedom of a model. Some parameters of a machine-learning model are automatically learnable from training data and

usingmachine-learning algorithms. Some other parameters of a model are for themachine-learning experts to select for each task

individually. The latter are usually referred to as the hyper-parameters of the model, and the process of selecting them is called

(hyper) parameter tuning.

(Continued on next page)
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Box 1. Continued

REGRESSION

A class of machine-learning tasks where the desired output is from a continuous domain (as opposed to discrete values in

classification tasks). For instance, the location of a cell in an image can be represented by two continuous values, the x and y

coordinates of its center.

REGULARIZATION

A technique to inject expert knowledge intomodeling. Through regularization, one can limit a learnedmodel to a certain family. This

is in contrast to letting the training algorithm be completely free in adapting to the training data. Regularization techniques often

help with generalization of the model.

SUPERVISED, WEAKLY, SEMI-, SELF-, AND UNSUPERVISED LEARNING

Classical machine learning is divided into different categories based on the quality or quantity of annotation provided with the data.

If the desired output of the model is provided for all of the training samples, it is called supervised learning. When this annotation is

only provided for a subset of the training set, it is called semi-supervised learning. If the annotations are provided for all data sam-

ples but are not exactly what is required for the model to output, it is called weakly supervised learning. Unsupervised learning is

when no annotation is available whatsoever. Self-supervised learning refers to the case that the desired output is in the sample

itself and requires no annotation.

TEST SET

A held-out subset of the data that is used tomeasure the generalization performance of a final learned system to unseen examples.

TRAINING

The process of fitting the parameters of a model, often through an optimization procedure, such that a mapping function is learned

between the input data and the desired output.

TRAINING SET

The set, comprising data samples and possibly their annotations, which is used to train the machine-learning model.

TRANSFER LEARNING

Transfer learning involves the process of transferring a model from one task with abundant training data to another (similar) task

with less or no annotated training data.

VALIDATION SET

A held-out set that is used to tune the hyper-parameters of a machine-learning model as well as diagnosing its problems.
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the mapping between the input samples and the labels. Most

commonly used machine-learning algorithms fall into the super-

vised category. On the other hand, if no label is provided with the

training samples, we call this ‘‘unsupervised learning.’’ In this

case, it is the algorithm’s job to not only learn the mappings

from the training examples to categories, but also to determine

a reasonable set of categories from the training set. For instance,

if we are not aware of the phenotype categories a priori, it is an

unsupervised learning task to find those categories as well as

to assign samples to them.

Different machine-learning models have different degrees of

freedom (also known as ‘‘parameters’’) to learn the task at

hand. Most of these parameters are automatically learned from

training data using the algorithms provided with themodel. How-
640 Cell Systems 6, June 27, 2018
ever, some other parameters are left for the machine-learning

experts to select for each task and training data individually.

The latter are usually referred to as ‘‘hyper-parameters’’ of the

model and the process of selecting them is called (hyper)

‘‘parameter tuning’’ (Bermudez-Chacon and Smith, 2015). Since

parameter tuning is a manual process, it makes the training

cumbersome and inefficient. Thus, models with less hyper-pa-

rameters are preferred.

When dealing with machine-learning models, there is a trade-

off between providing field-expert knowledge to the model and

letting the model to be completely free to learn everything from

data. The former makes the learning process easier, but at the

cost of being suboptimal, while the latter has the potential to

be optimal but might be very hard to learn in practice and



Table 1. Links to Software

Software Link to Code or Executable References

CellProfiler cellprofiler.org Carpenter et al., 2006

BioConductor bioconductor.org Huber et al., 2015

Icy icy.bioimageanalysis.org De Chaumont et al., 2012

BioImageXD bioimagexd.net Kankaanp€a€a et al., 2012

ImageJ/Fiji fiji.sc Schindelin et al., 2012

ADAPT plugin bitbucket.org/djpbarry/adapt Barry et al., 2015

NeuriteTracker github.com/sgbasel/neuritetracker Fusco et al., 2016

CPA cellprofiler.org/cp-analyst Jones et al., 2008

CellClassifier pelkmanslab.org/?page_id=63 R€amö et al., 2009

Enhanced CellClassifier provided as supplementary material with the author’s permission Misselwitz et al., 2010

Advanced CellClassifier cellclassifier.org Horvath et al., 2011

Phaedra phaedra.io Cornelissen et al., 2012

cellXpress cellxpress.org Laksameethanasan et al., 2013

HCS-Analyzer hcs-analyzer.ip-korea.org Ogier and Dorval, 2012

Ilastik ilastik.org Sommer et al., 2011

Trainable Weka Segmentation imagej.net/Trainable_Weka_Segmentation Arganda-Carreras et al., 2017

CecogAnalyzer cellcognition.org Held et al., 2010

CellCognition Explorer software.cellcognition-project.org/explorer Sommer et al., 2017

Cytomine cytomine.coop Marée et al., 2016a

WND-CHARM github.com/wnd-charm/wnd-charm Orlov et al., 2008

CP-CHARM github.com/CellProfiler/CPCharm Uhlmann et al., 2016

PhenoRipper awlab.ucsf.edu/Web_Site/PhenoRipper Rajaram et al., 2012

HTX github.com/CarlosArteta/htx Arteta et al., 2017

PhenoDissim bioconductor.org Zhang and Boutros, 2013

CellOrganizer cellorganizer.org Murphy, 2012
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requires a lot of training data. An important instance of this ques-

tion relates to how input samples are represented to a model.

The samples’ representation can be their raw sensory measure-

ments (e.g., pixel values, in case of an image) or some higher-

level information, designed by experts of the field and extracted

from the measurements (e.g., indicators for size, shape, and

texture of the cell). Many classic machine-learning methods

require the hand-crafted representations to work well, while

more recent and highly successful techniques including deep

learning can automatically learn representation (although they

require an abundance of training data).

Below, we describe the most popular software tools currently

available that use machine learning to analyze cell-based

assays. These tools vary substantially in terms of usability, func-

tionality, interfaces, and performance. Links to the source code

or executables of the software discussed in this review are pro-

vided in Table 1. We discuss these differences and provide a

summary of the various features (Table 2).

Free and Open-Source Tools for Phenotypic Image
Analysis
Over the past 10 years, a number of free and open-source soft-

ware tools have been developed that are capable of performing

phenotypic analysis on images of cell-based assays. One of the

most well known is CellProfiler Analyst (CPA) (Jones et al., 2009).

CPA features a graphical user interface (GUI) allowing the user to

define a set of phenotypes and annotate individual cells accord-
ingly (Figure 1A). Annotations created by the user can be used to

train a supervisedmachine-learning algorithm. The user can then

ask the software to ‘‘score’’ cells in a desired image or in multiple

images. Scoring cells applies the trained machine-learning

model to predict the phenotype of unseen cells.

The first version of CPA, published in 2008, marked an impor-

tant milestone in phenotypic analysis (Jones et al., 2008). For

the first time, biologists could easily apply modern statistical

learning methods to recognize single-cell phenotypes automat-

ically. It directly interfaced with the popular image analysis

software CellProfiler, which provided cell segmentations and

extracted measurements. The initial software release had

several limitations: only two phenotypic classes (positive and

negative) could be defined for classification, only one machine-

learning algorithm, GentleBoost, was supported (Friedman

et al., 2000), and the GUI made it difficult to explore the data

effectively. Despite these limitations, the software saw wide-

spread use. Recent updates have addressed many of these

issues (Dao et al., 2016)—it is now possible to define multiple

phenotypes, perform inference for single cells or whole

images, and several machine-learning algorithms are supported

(AdaBoost, Support Vector Machine [SVM], GradientBoost,

Logistic Regression, Linear Discriminant Analysis, k-Nearest

Neighbors, and GentleBoost). CPA now features an image

viewer which allows the user to visualize scored cells within

the image, and a plate heatmap viewer, which displays well-level

readouts using a color-coded plate layout. CPA also allows the
Cell Systems 6, June 27, 2018 641
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Table 2. Cell Classification Software Comparison

CellProfiler

Analyst

(v.2.2.1)

Cell

Classifier

Enhanced

Cell

Classifer

Advanced

Cell

Classifier

(v.3.0)

Phaedra

(v.1.0.1)

cellXpress

(v.1.4.2)

HCS-

Analyzer

(v.1.0.4.3)

Ilastik

(v.1.2.2.4)

Trainable

Weka

Segmentation

(v.3.2.13)

Cell

Cognition

(v.1.6.0)

Cell

Cognition

Explorer

(v.1.0)

WND-

CHARM

(v.1.60)

Cytomine

(v.1.0)

CP-

CHARM

Pheno

Ripper

(v.2.0)

Documentation

User guide C C C C C C C C C B C B C B C

Website C C B C C C C C C C C C C C C

Video

tutorial

C B B C B B C B B B B B C B C

Open

source

code

C C C C B B C C C C C C C C C

Test

dataset/demo

C B C C C C C C C C C C C C C

Usability

No

programming

experience

required

C C C C C C C C C C C B C C C

User-friendly

GUI

C C C C B B C C C B C B B B C

Intuitive

visualization

settings

C C C C C C B C B C C B C B C

Does not

require

commercial

licence

C M M C C C C C C C C C C C C

Portability

on Win/

Linux/Mac.

C C C C Win/

Mac

Win/

Linux

Win C C C C C Linux C Win/

Mac

Functionality

Plate/image

selection

C C C C C C C C B C B B C B C

Time-lapse

analysis

B B B B B B B C B C B B B B B

3D analysis B B B B C B B C C B B B B B B

Cell

segmentation

B B B B B C B C C C C B C B B

Cell feature

extraction

B B B B B C B C C C C C C C B

(Continued on next page)
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Table 2. Continued

CellProfiler

Analyst

(v.2.2.1)

Cell

Classifier

Enhanced

Cell

Classifer

Advanced

Cell

Classifier

(v.3.0)

Phaedra

(v.1.0.1)

cellXpress

(v.1.4.2)

HCS-

Analyzer

(v.1.0.4.3)

Ilastik

(v.1.2.2.4)

Trainable

Weka

Segmentation

(v.3.2.13)

Cell

Cognition

(v.1.6.0)

Cell

Cognition

Explorer

(v.1.0)

WND-

CHARM

(v.1.60)

Cytomine

(v.1.0)

CP-

CHARM

Pheno

Ripper

(v.2.0)

Supervised

classification

C C C C C C C C C C C C C C B

Automated

phenotype

discovery

B B B C B B B B B B C B B B C

Active

learning

C B C C B B B C B B B B B B B

Similarity

search

C B B C B B B B B B C B C B B

Output

Visual

cell

classification

C C C C C B B C B C C B C B C

Feature-

based

statistics

B B B C C C C B B C B B C B B

Class-

based

statistics

C C C C C B C C C C C C C C C

Plate-

based

statistics

C C C C C C C B B B C B B B B

C, available/yes; B, not available/no; GUI, graphical user interface; M, MATLAB.
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Figure 1. Free Software Tools for Phenotypic Image Analysis
This review covers phenotypic image analysis tools with a variety of capabilities (some overlapping). Here, we highlight key features of four software packages.
(A) A graphical user interface in CellProfiler Analyst allows users to fetch thumbnail images of cells from their data and drag-and-drop them into phenotypic
classes. This method of annotation facilitates the training of a machine-learning algorithm, which then scores every cell in the dataset based on rules it learned
from the training data.
(B) Finding novel phenotypes in a large dataset can be challenging. Advanced Cell Classifier v.2.0 helps users mine their data and identify novel phenotypes by
organizing cells into a browsable tree where each node contains a group of cells with similar appearance. A new phenotypic class can be defined by selecting a
cell or group of cells from the tree.
(C) HCS-Analyzer can display information about pathways involved in a certain phenotype. The software will parse the genes associated with the phenotype and
gather the related pathways by interfacing with the Kyoto Encyclopedia of Genes and Genomes database.
(D) Ilastik features a simple, user-friendly process for interactively training a classifier to recognize objects or phenotypes. The user draws on the image to indicate
a region belonging to a certain class or phenotype, this information is fed to a machine-learning algorithm which immediately displays the updated classifier
predictions. The user can then identify and correct any mistakes made by the classifier.
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user to explore their results using scatterplots, boxplots, density

plots, and histograms. The GUI has been updated to include a

gallery view, and it is now easier to fetch batches of cells for

annotation (e.g., a trained classifier can retrieve cells from an im-

age that it predicts are of a certain phenotype).

Following the release of CPA, several other software packages

have appeared which also support machine-learning analysis

applied tomicroscopic imagesof cell-basedassays. CellClassifier

(R€amö et al., 2009) and Enhanced CellClassifier (Misselwitz et al.,

2010) were released shortly after CPA.Both packagesoffer similar

functionalities.One important difference is themethodused tofind

cells for annotation. In CPA, the software fetches randomly

selected thumbnail images of cells and presents them for the

user toannotate.While thismaybeamoreefficient approach, it re-

moves control from the user to choosewhich cells aremost useful

for annotation. Thumbnails of cells often fail to provide contextual
644 Cell Systems 6, June 27, 2018
information (e.g., appearance of its neighborhood). CellClassifier

and EnhancedCellClassifier give the usermore freedom tomanu-

ally browse through images and choose which cells to annotate

(although this approach may be more time consuming). CPA,

CellClassifier, and Enhanced CellClassifier all rely on features ex-

tracted using external software such as CellProfiler for classifica-

tion. CellClassifier and Enhanced CellClassifier implement one

machine-learning algorithm, SVM, but they do supportmulti-class

classification (i.e., they can classify more than two phenotypes).

An important shortcoming common to these tools is that they

assume the user has prior knowledge of the interesting pheno-

types present in the data, or they can easily be found by manual

inspection. This can be a dangerous assumption, as rare but

important phenotypic classes can potentially be overlooked. In-

vestigators often collect large image datasets for original

research that are the first (and only) of their kind. In many cases,
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it is not clear beforehand which phenotypes are interesting or

how they will appear. Even after the data are collected, the scale

of the data often makes it impractical or impossible to identify all

the important phenotypes by inspection.

To address this problem, we released an update to the

phenotypic image analysis software package Advanced Cell

Classifier (ACC) (Horvath et al., 2011) in 2017 with data explo-

ration and phenotype discovery tools (Piccinini et al., 2017).

ACC includes a phenotype finder tool that helps users identify

novel phenotypes in their data by organizing the cells into a

browsable hierarchy that groups cells by their appearance

(Figure 1B). It also features example-based mining of the

data—more examples of cells of a rare phenotype can be

found quickly by providing the tool with a query example. The

software features active learning for annotation, which makes

more efficient use of the expert’s time by prioritizing the most

informative examples and presenting them for annotation.

Active learning helps train an accurate classifier more efficiently

and avoids redundant annotations (Smith and Horvath, 2014).

In addition to these discovery tools, ACC shares many similar

functionalities to CPA such as an interactive GUI to view im-

ages, support for 16 machine-learning algorithms, data visual-

izations, and an interface with CellProfiler.

Phaedra (Cornelissen et al., 2012) and cellXpress (Laksamee-

thanasan et al., 2013) are open-source platforms for visualiza-

tion and analysis of HCS data. They feature intuitive and

user-friendly GUIs allowing similar data visualizations as CPA,

including plate heatmaps, charts, tables, image viewers, and

dose-response curves. In contrast to previous tools, cellXpress

does not require external software such as CellProfiler to

perform image analysis, it is a self-contained solution. Phaedra

allows image analysis data to be imported from Columbus

commercial software or a MATLAB interface to define your

own custom image analysis (importing CellProfiler image anal-

ysis data is a planned feature). Neither Phaedra or cellXpress

have native support for automatic phenotype classification,

nor do they provide a GUI for the user to directly annotate im-

ages for training. cellXpress allows cell and feature data to be

exported, which can be loaded in R, a scripting language for

statistical computing. There is no GUI for annotating individual

cells, so phenotypes must be identified at the well level. The

user must be proficient with the R scripting language and ma-

chine learning to perform the analysis, although some instruc-

tions are provided in the cellXpress documentation. cellXpress

has an advantage over other software in processing speed.

Most other software packages are written in relatively slow

scripting languages such as Python or MATLAB, while cellX-

press is written in C++, which is compiled to fast machine

code and uses dynamic job scheduling and parallel processing

to make full use of multi-core central processing units. Phaedra

supports single-cell annotations by selecting groups of cells in

an image, table, or plot, but only for manual classification. For

data mining, Phaedra uses an interface to the Konstanz Infor-

mation Miner (KNIME) graphical framework (Berthold et al.,

2009). While KNIME is a very flexible GUI, a user must define

a custom workflow in order to perform phenotype classifica-

tion, which may be challenging for non-experts. An important

feature offered by Phaedra is support for JPEG2000 (Taubman

and Marcellin, 2012) and HDF5. This solves an important issue
ignored by most other software packages—efficient image

compression for quick network access and efficient storage.

HCS-Analyzer (Ogier and Dorval, 2012), like Phaedra and

cellXpress, is a software solution designed for high-content

screening. HCS-Analyzer works with features extracted by

another image-processing software such as CellProfiler or Co-

lumbus. It does not work with the original images, so it is not

possible to visualize the cells or to annotate them by their

appearance. Data can be imported through a comma-separated

value file, and the GUI allows the user to visualize the extracted

features in a number of ways including plate heatmaps, histo-

grams, scatterplots, dose-response curves, and hierarchical

tree maps. Phenotype classification is performed either in a su-

pervised (SVM, neural network, k-nearest neighbors, or random

forest) or unsupervised manner (k-means, expectation maximi-

zation, or hierarchical clustering). Unsupervised phenotype clas-

sification requires the user to provide the number of classes and

features that should be considered, and the algorithm groups

cells without any labeling. HCS-Analyzer features an error iden-

tification and correction system that automatically identifies and

corrects systematic errors, such as edge or dispensing effects. It

does this by clustering features and testing if the plate geometry

explains the feature clusters. HCS-Analyzer software interfaces

with the Kyoto Encyclopedia of Genes and Genomes database

(Kanehisa and Goto, 2000), and is able to compute and visualize

gene and pathway information relevant to hits from the screen

data (Figure 1C).

Ilastik is a simple, user-friendly tool for segmentation, classifi-

cation, and analysis (Sommer et al., 2011). At the core of Ilastik is

an innovative interactive training process that allows the user to

iteratively train and correct the machine-learning model using

online semi-supervised learning. The user annotates by drawing

on the image with a brush tool to indicate regions belonging to a

certain class or phenotype, and this information is fed to a ma-

chine-learning algorithm, which immediately displays the up-

dated classifier predictions (Figure 1D). This approach allows

the user to easily identify and correct the classifier’s mistakes.

Ilastik’s approach gives it great versatility—it can be used for

pixel classification, object classification, tracking, counting,

and segmentation in images (Palazzolo et al., 2012) and volumes

(Nunez-Iglesias et al., 2013). To work in real-time, Ilastik must

preprocess image features and retain them in memory, which

limits Ilastik to work with only a small set of images at once (typi-

cally less than ten). If the user is satisfied with prediction results,

a batch mode can be used to apply the trained model on larger

amounts of data. However, if interesting biological phenomena

appear outside of the image set retained in memory for interac-

tive learning, they will likely be missed. Ilastik supports HDF5

files, import/export from Fiji, and can export segmentations to

CellProfiler. Trainable Weka Segmentation (TWS) (Arganda-Car-

reras et al., 2017) mimics the interactive training process from

Ilastik and integrates it as a plugin for the popular software

Fiji/ImageJ. Like Ilastik, the interface of TWS allows the user to

iteratively train and correct the classifier, and supports 2D and

3D image data. TWS offers some improvements over Ilastik.

While Ilastik uses a random forest classifier, and relatively few

image features, TWS supports all the machine-learning algo-

rithms supported by Weka (Frank et al., 2016) and over 20 fea-

tures for 2D images. It is also possible to employ user-designed
Cell Systems 6, June 27, 2018 645
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image features or classifiers in TWS. Although it is designed for

segmentation, pixel-based classification in TWS can be used

to recognize phenotypes.

CellCognition (Held et al., 2010) is a computational frame-

work capable of performing phenotype recognition in time-

lapse data. CecogAnalyzer is an application built on top of

the CellCognition framework that detects and segments cells

in fluorescence images, extracts features, tracks the cells

over time, and classifies cellular phenotypes. A notable feature

of CecogAnalyzer is the ability to reliably recognize time-

dependent phenotypes, such as stages of mitosis. A GUI al-

lows the user to visualize the data and create annotations for

training. The machine-learning models behind CecogAnalyzer

includes an SVM that predicts the phenotypic classes at indi-

vidual times steps, and a Hidden Markov Model (HMM) that

corrects noise in the predictions and enforces smoothness

over time. CecogAnalyzer is designed to be used on time-lapse

data, but it is possible to apply it to static images. It lacks some

of the data visualizations offered by other software such as the

plate heatmap. CecogAnalyzer supports multi-well plates and

batch processing, which allows large experiments to be pro-

cessed in a cluster environment.

CellCognition Explorer is an all-in-one software tool for image

preprocessing, image segmentation, feature extraction, and

supervised phenotype classification (Sommer et al., 2017).

CellCognition Explorer is developed by the same team as

CecogAnalyzer, but is not intended for temporal data. Like

the phenotype finder and similar cell search tools in Advance

Cell Classifier v.2.0, CellCognition Explorer aims to help the

user to quickly discover abnormal cell morphologies within

large datasets through powerful tools to mine datasets for

rare phenotypes. It uses novelty detection algorithms to auton-

omously learn intrinsic cell-to-cell variability in an untreated

negative control population, which sensitizes a classifier toward

perturbation-induced phenotypes. Abnormal cells are then

scored based on weighted distance to the mean of a control

population (using a choice of metrics). CellCognition Explorer

is designed to work with conventional hand-designed cell-

based measurements of intensity, shape, texture, granularity,

etc., or, it can work with unsupervised features learned using

auto-encoders through a separate module. CellCognition Ex-

plorer includes a responsive cell gallery GUI that allows cells

to be interactively sorted according to their similarity, treat-

ment, or classification.

Cytomine is an internet application that allows remote visuali-

zation, collaborative annotation, and (semi-)automated analysis

of very large high-resolution images (Marée et al., 2016a). It

uses modern web technologies, databases, and machine

learning to organize, explore, share, and analyze multi-gigapixel

imaging data. Cytomine was originally developed to analyze

bright-field cytology and histology images, but it has been

applied to various other types of imaging datasets, including

fluorescent cell images. Cytomine supports image segmenta-

tion, object retrieval, interest point detection, and object sorting.

Users can upload an image to a project and collaboratively anno-

tate the image. Every time a user annotates a new object in the

image, an unsupervised, incremental, content-based image

retrieval method displays similar annotations in the database.

Finally, a scale invariant recognition model can be applied in
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order to analyze the content of the images at different resolutions

andmake predictions for novel annotations (Marée et al., 2016b).

WND-CHARM is a software tool that takes a holistic approach

to phenotype analysis. It is designed to remove the need for

parameter tuning (Orlov et al., 2008). It not only relies on sin-

gle-cell segmentation for analysis, but considers the image as

a whole. WND-CHARM computes a number of features on the

entire image, including polynomial decompositions, high-

contrast features, pixel statistics, and texture features. It selects

the most informative features according to Fisher’s discriminant

score, which finds features that maximize distance between

classes and minimize distance within classes. It then performs

classification using weighted-neighbor distances on the

selected features. For training, WND-CHARM only requires im-

age-level annotations, and therefore does not provide a GUI

for annotating. For simple assays, the holistic parameter-free

approach of WND-CHARM is appealing, but it may struggle to

correctly identify images with subtle phenotypes or heteroge-

neous populations. WND-CHARM is a command-line tool, which

requires some technical expertise to operate. Recently, a new

implementation of WND-CHARM with a GUI was released to

interface with CellProfiler called CP-CHARM (Uhlmann et al.,

2016). However, it requires external modules to execute and is

not supported by all releases of CellProfiler (support for versions

2.0.11710 and version 2.1.0).

PhenoRipper, like WND-CHARM, uses a segmentation-free

approach to phenotypic profiling in an effort to make it fast and

simple (Rajaram et al., 2012). PhenoRipper breaks the image

down into a square grid of blocks, and performs analysis on

the blocks rather than cells. As such, it does not quantify some

important properties of the cell such as area or average intensity.

The user is asked to provide only a few simple parameters: an in-

tensity threshold to segment cells, and the number of pixels that

make up a block. PhenoRipper uses the intensity threshold to

separate cells from the background. Each cell is composed of

multiple blocks, and PhenoRipper uses an unsupervised

approach to group blocks with similar appearance into a fixed

number of clusters. Analysis is performed on the classified

blocks within each image. The results can be explored through

several different visualizations provided with the software,

including a clustergram to visualize how block types correlate

with experimental conditions.

Perspectives and Challenges
Over the past decade, we have witnessed many changes to the

way phenotypic image analysis is performed, as demonstrated

by the diversity of approaches in the software listed above.

Recent advances in screening technologies and artificial intelli-

gence suggest dramatic and exciting shifts in the near future.

But, while we look ahead, we must also acknowledge the limita-

tions of the current technologies, and the fact that some of the

challenges we face today will become more pronounced as we

demand more from phenotypic image analysis. In this section,

we provide an outlook on what we perceive as future directions

and challenges in phenotypic image analysis.

Big Data and Phenotypic Image Analysis

Our capacity to generate and store image data far outstrips our

ability to analyze it manually. This fact is the impetus for pheno-

typic image analysis. But even using software to automate
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phenotypic image analysis, there is no guarantee that our ability

to transfer and process image data is sufficient to handle the rate

at which we can now generate it. Indeed, there are many cases

where images can be acquired faster than they can be pro-

cessed and stored. Pushing the limit of modern high-throughput

microscopes, it is possible acquire 5–10 images per second in

simplified assays. At this rate, an entire 384-well plate can be

imaged in 3–4 min. A high-throughput laboratory running just a

single microscope has the potential to generate over 10 TB of

raw image data on a daily basis (the typical camera resolution

of an HCS microscope varies between 1 and 4 megapixels,

with each pixel encoded in 8, 12, or 16 bits, and the typical file

size being 1–8 MB for an image of a single field). The time

required to perform basic image processing using current soft-

ware can be orders of magnitude slower than image acquisition.

Image processing, segmentation, and feature extraction can

take up to several minutes per image.

Traditionally, data have been stored and processed in-house,

but the throughput of modern microscopes creates computa-

tional demands too great for modest laboratory resources. To

obtain results in a reasonable time, high-performance computing

(HPC) is required. However, moving the data to anHPC cluster or

cloud computing infrastructure introduces a new bottleneck—

transfer speed. The challenge is: how can we adjust our data

pipelines so that processing keeps pace with the rate we

generate data? One potential solution is improved compression.

Solutions such as JPEG2000 (Taubman andMarcellin, 2012) and

HDF5 (Dougherty et al., 2009) can reduce the volume of complex

image data by orders of magnitude. Another solution is to

perform real-time image preprocessing at the microscope. This

approach can reduce the data throughput by extracting essential

features and avoid working with raw images altogether.

Understanding the Data: Quality and Completeness

Annotation, the process of creating an expertly labeled dataset

for supervised learning is arguably one of the most important

steps in a phenotypic screen. However, worryingly little atten-

tion is given to this crucial step of the analysis. As a result, da-

tasets used for phenotypic image analysis are frequently too

small, uninformative, or incomplete. In many of the software so-

lutions described in the previous sections, annotation collection

and training the algorithm are done simultaneously, in what is

known as online learning. A few examples are annotated, the

classifier is updated, then more annotations are collected,

etc. Typically, only a few hundred to a few thousand examples

are collected in total. There is often little or no feedback to

check if enough annotations have been collected for training

to converge or for the classifier to generalize. Some software

tools provide cross-validation accuracy or a confusion matrix

when the model is trained, but this is the extent of anno-

tating/training feedback.

It is often unknown which phenotypes will be present in an

experiment or how they will appear. If a phenotype is rare or

the dataset is large, phenotypes are likely to be overlooked.

Some methods for data mining and discovery exist that

can help ensure completeness of training data (Figure 2A).

ACC provides a tool to help uncover rare phenotypic classes.

CellCognition Explorer features a novel phenotype detection

framework. HTX provides a method to concisely visualize cell

similarity over an entire screen (Arteta et al., 2017). A method
for computing phenotypic dissimilarity between cell popula-

tions, PhenoDissim, is available as an R package (Zhang and

Boutros, 2013). Another common issue with annotations

is class imbalance—certain phenotypes may occur less

frequently causing imbalanced datasets, which impede classi-

fication performance. In practice, it may be difficult to find suf-

ficient examples of a particular class. To address this, ACC and

CellCognition Explorer can find cells with similar appearance

when provided with an example. CPA makes it possible to

use a trained classifier to find examples predicted to be of a

certain class.

The interface used for annotation directly affects quality and

quantity of the annotations, and consequently affects the per-

formance of the classifier. Unfortunately, many existing tools

provide inadequate functionalities, or exclude annotation

completely. A good GUI should be responsive, intuitive, efficient,

and provide useful feedback as to how the training is progress-

ing. Some GUIs work with thumbnail images of cells. While this

can increase efficiency, it can also be important to view the

cell in the context of the full image. Some interfaces, such as

ACC, use active learning to suggest examples that the classifier

is least certain about in order to avoid wasting effort on uninfor-

mative examples.

Few phenotypic image analysis tools make use of unsuper-

vised, semi-supervised, or weakly supervised learning. In light

of the high cost of collecting expert annotated data, this seems

to be amissed opportunity. Semi-supervised systems take unla-

beled data into account as well as annotated examples. Weakly

supervised (or bootstrapping) methods use a form of self-

training on even fewer annotated examples. Among the software

listed above, HCS-Analyzer and PhenoRipper are the only pack-

ages to support unsupervised learning out of the box.

Continuous Modeling of Biological Processes

Many interesting biological processes are continuous by nature.

For example, cell differentiation (Trapnell et al., 2014), cell devel-

opment (Bendall et al., 2014), cell adhesion, and cell death. Many

other biological processes have important continuous aspects,

such as endocytosis or drug uptake. Most existing phenotypic

analysis tools rely on machine-learning algorithms designed for

classification, even though discrete categorization does not

reflect the biological reality. To make use of these tools, re-

searchers are facedwith the difficult task of defining artificial cut-

offs to discretize inherently continuous processes. For example,

the continuous process of infection of a cell by a pathogen might

be arbitrarily broken into ‘‘uninfected,’’ ‘‘weakly infected,’’ and

‘‘strongly infected.’’ CellCognition was one of the first attempts

to apply machine learning to recognize patterns in a continuous

biological process (Held et al., 2010). In a pioneering effort to

model the cell cycle, it predicted each cell to be in one of seven

mitotic states at every step in a time series, and it enforces prob-

able transitions between these states with an HMM. However,

the underlying modeling in CellCognition is not truly contin-

uous—the cell cycle is broken into discrete phases by the clas-

sifier. Another recent work using deep learning to classify cell

phases from raw images suffers from the same problem (Eulen-

berg et al., 2017).

Regression algorithms, in contrast to classification methods,

are designed tomake continuous-valued predictions. In an effort

to characterize the process of influenza A entry to human cells,
Cell Systems 6, June 27, 2018 647



Figure 2. Trends in Phenotypic Image Analysis
In this figure, we highlight some of the most promising developments in phenotypic image analysis (according to the authors).
(A) Novelty detection methods can help identify rare phenotypes buried within large datasets. Given a set of annotations of known phenotypes, these methods
can predict which cells are most dissimilar to the known population and present them to the user. The outliers are likely to be novel phenotypes.
(B) Many biological processes are continuous by nature and cannot be discretely categorized. One way to train a machine-learning algorithm to recognize
continuous processes such as cell differentiation is to sort cells by appearance in a 2D plane. The locations in the embedded space can be used to train
regression algorithms to make continuous-valued predictions between phenotypic extremes.
(C) In the traditional paradigm to learning, dedicated algorithms process the raw input data, extract hand-designed features, and then provide the features to a
machine-learning algorithm, which is designed to perform classification. In contrast, deep learning is an end-to-end approach to learning that takes raw images
as input and produces the desired output. The internal representations necessary for classification are learned automatically instead of being designed by hand
and provide unprecedented discriminatory power.
(D) New hyperspectral imaging technologies such as imaging mass spectrometry and Raman spectrometry, which perform molecular profiling, can be multi-
plexed with traditional light microscopy. This rich combination of information describing the phenotype and genotype can provide new insights that neither
modality could accomplish alone.
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Yamauchi et al. (2011) and Banerjee et al. (2014) used a regres-

sion algorithm to predict the ratio of scattered to packed endo-

somes within the cell. Software designed for these studies

tasked experts to sort cells according to the phenotype using

a GUI. Users arranged thumbnails of cells with one extreme

phenotype on one side of a continuum (packed endosomes),

and the other extreme phenotype on the other (scattered endo-

somes). The machine-learning algorithm used this arrangement

of the training data to predict the scattering index of new cells.

While the regression approach in this work modeled the contin-

uous process of infection with better fidelity, it had important

shortcomings. Some biological processes are difficult to model

in a 1D space, such as mechanisms with conditional depen-
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dencies, cycles, or branching. One solution is tomodel biological

processes in higher-dimensional spaces, such as a 2D regres-

sion plane—an embedded space where phenotypes are sorted

by appearance (Figure 2B). By arranging training data in this

visually intuitive manner, the user can train a machine-learning

algorithm to model phenotypic extremes and the continuous

biological processes between these extremes. This capability

is implemented in the latest version of ACC.

We have only taken the first steps toward an accurate and

intuitive solution to model biological processes in a continuous

way. There is a great need to improve our models of continuous

processes, and efforts will likely continue and better tools will be

developed in the coming years.
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Deep Learning

Deep learning is an end-to-end approach to learning. It takes raw

data (images in the case of phenotypic profiling) as input and

produces the desired output by learning from training examples.

This eliminates the need for hand-crafted features, which are

cumbersome to design and give suboptimal discriminatory po-

wer. In deep learning, a network of artificial neurons organized

into layers embeds all the necessary processing. Each layer

takes the output of the previous layer as input, and applies sim-

ple operations that transform the previous representation into a

higher, slightly more abstract representation. Although the indi-

vidual computations are simple, unprecedented discriminatory

power is achieved through the compositional nature of the archi-

tecture. Modern networks may contain hundreds of layers (He

et al., 2016). In contrast to the traditional approach (image pro-

cessing, feature extraction, and classification), the end-to-end

approach of deep learning is attractive because it offers a holistic

solution and often yields better performance (Figure 2C).

Deep networks have been successfully applied to different

visual recognition tasks since their ground-breaking perfor-

mance in the 2012 ImageNet challenge (Krizhevsky et al.,

2012) including pose estimation, object tracking, object retrieval,

activity recognition, super-resolution, etc. The state-of-the-art

for several important tasks used in phenotypic image analysis

is now dominated by deep learning approaches, including se-

mantic segmentation, feature extraction, image enhancement,

and object recognition.

One of the first works to use deep learning for phenotypic im-

age analysis was U-Net (Ronneberger et al., 2015). U-Net is a

novel deep network architecture designed to learn segmenta-

tion. It achieved first place in the cell-tracking challenge of the

IEEE International Symposium on Biomedical Imaging 2015.

However, it does not address phenotypic cell classification.

One of the first studies to apply deep learning for phenotype

recognition was (D€urr and Sick, 2016). They applied a deep con-

volutional network on 40,000 images from the Broad Bioimage

Benchmark Collection (BBBC022v14, the ‘‘Cell Painting’’ assay

[Gustafsdottir et al., 2013]). They show superiority of the end-

to-end deep learning approach compared with a traditional

pipeline using hand-designed CellProfiler features and ma-

chine-learning methods such as SVM, random forests, and

Fisher linear discriminant. A similar study by Pawlowski et al.

(2016) showed that off-the-shelf features from networks trained

on conventional images outperform the traditional paradigm.

Deep networks have a number of advantages over the tradi-

tional paradigm. One advantage is that deep networks can learn

to domultiple tasks using the same network. For example, Kraus

et al. (2016), perform segmentation and phenotypic classification

in a unified network. Due to its ability to model highly complex

functions, deep learning can tackle problems that are infeasible

with traditional approaches. Kraus et al. (2017) used deep net-

works for subcellular protein localization and show that, unlike

traditional approaches, the models can be successfully trans-

ferred to datasets with different genetic backgrounds acquired

from other laboratories, evenwith abnormal cellular morphology.

Another important aspect of deep learning is that the features

learned are highly general and thus transferable (Azizpour

et al., 2016), even to unseen tasks and images. P€arnamaa and

Parts (2017) trained a deep network on subcellular localization
of certain proteins, and transferred the learned features to un-

seen proteins and cellular compartments where only a few im-

ages were available. Winsnes et al. (2016) also address protein

subcellular localization for HCS using deep networks with

multi-label classification. Deep networks can be taught to imitate

data or the output of another algorithm by providing data sam-

ples and the corresponding results of the algorithm using gener-

ative adversarial networks (GANs) (Goodfellow et al., 2014).

Sadanandan et al. (2017a) use this approach to segment

bright-field images of cells, while Arbelle and Raviv (2017) use

this approach to segment cells in fluorescence images. Deep

networks have recently been employed to perform other

advanced phenotypic analyses, such as novelty detection (Som-

mer et al., 2017; Sailem et al., 2017), phenotypic changes due to

malignancy (Wieslander and Forslid, 2017), classification of

label-free cells in phase contrast imaging (Chen et al., 2016),

and spheroid segmentation in various microscopy conditions

(Sadanandan et al., 2017b). Deep networks have also been

used to improve the quality of microscopy images, by increasing

resolution beyond the diffraction limit (Zhang et al., 2018) and by

restoring defects in the image (Weigert et al., 2017).

The majority of these deep learning works use open-source

deep learning frameworks such as Caffe, TensorFlow, and

PyTorch. As a result, the code is more easily shared, adopted,

and improved upon. Many of these deep learning works publi-

cize their code (Ronneberger et al., 2015; Kraus et al., 2016;

P€arnamaa and Parts, 2017; Sommer et al., 2017) and are inte-

grated with existing phenotypic analysis software.

Considerable progress has been made by deep learning in

phenotypic analysis of cell images, and we can expect acceler-

ated progress in the future. Deep networks flourish with large

amounts of training data—but, so far, the datasets used for

training deep networks in bioimaging have been mostly small

scale (Ching et al., 2018). Large biomedical datasets are starting

to emerge; such asMedical ImageNet (Medical Image Net, 2018)

and BBBC (Ljosa et al., 2012). Features trained on these large

datasets can be transferred to similar tasks with less training

data, replacing hand-crafted features. In the same manner,

expert-designed pipelines used for image preprocessing and

filtering may be replaced by deep networks. We can also expect

novel problems to be addressed with deep learning, which are

currently unexplored due to their complex nature.

Deep learning has many advantages, but it comes with its own

challenges. One is that deep learning in tasks other than fully su-

pervised learning has not been particularly successful—this in-

cludes unsupervised, semi-supervised, and active learning.

Furthermore, tuning the hyper-parameters of a deep network is

time consuming and requires substantial practical experience.

It can be costly to train a deep network from scratch on a new

task. Moreover, due to the complex structure of deep networks,

interpreting its decisions is harder than linear models.

Interpretability of Machine Learning

While sophisticated machine-learning algorithms can outper-

form humans at recognizing phenotypes (Horvath et al., 2011),

the models they employ can be difficult to interpret. This is

problematic because our goal is often not just to recognize phe-

notypes with the greatest accuracy, but also to gain an under-

standing of what factors are most predictive of a phenotype.

This understandability can lead to crucial biological insights.
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Unfortunately, the reasoning behind the predictions of many of

the most powerful classification algorithms cannot be easily ex-

plained. Predictions from SVMs with complex kernels, random

forests, boosting, and neural network-based approaches

(including deep learning) are often impossible to explain. Their

decision is based on a highly complex non-linear combination

of the input feature values. Some classification models are

more interpretable. Decision trees, for example, can be readily

interpreted as a series of binary decisions (e.g., is the mean

cell intensity greater than a certain value? If so, is a certain

texture present above a threshold value?). GentleBoost is the

default classification method in CPA, which relies on a linear

combination of a series of simple rules (e.g., intensity higher

than a threshold). So long as the number of rules remains small,

the explanation can be more-or-less understood.

As a general rule, more interpretable models are outperformed

by their ‘‘black box’’ counterparts. But there are methods to

demystify these models. Methods such as sequential feature

selection (Aha and Bankert, 1996) can provide insight on how

important a particular measurement is for classification, and

local interpretable model-agnostic explanations can highlight

regions of the image that are more sensitive for classification (Ri-

beiro et al., 2016). The interpretability problem is most apparent

in deep learning, where many have criticized the black box na-

ture of such complex networks (Castelvecchi, 2016). Various

ways have been proposed to detect the regions of the input

signal that are most responsible for the final prediction of a

deep network (Oquab et al., 2015). However, since the most

successful networks have on the order of one hundred layers,

it is prohibitively hard to explain how those regions contributed

in the final prediction.

Generative Modeling

Computational models of the a cell, including the cell phenotype,

can be distinguished as either discriminative or generative.

Discriminative models which learn to recognize the state of a

cell based on observations such as its appearance, or generative

models, which can synthesize new examples of cells in a partic-

ular state. The software reviewed above, and indeed most

profiling methods, use a discriminative approach. Generative

approaches capture variation in a population and encode it as

a probability distribution, or generative models, which can use

this information to synthesize new examples of cells in a partic-

ular state. The CellOrganizer software package is able to

generate models of individual cells by modeling the structure

of subcellular compartments on data from high-resolutionmicro-

scopy images (Murphy, 2012). CytoGAN is a recent approach

that trains GANs to synthesize realistic cell images that are useful

for exploring morphological variations within or between popula-

tions of cells (Goldsborough et al., 2017). A similar work, using

data from the Allen Cell Explorer, trained conditional auto-en-

coders to learn variation in cell structure and organization in

order to synthesize high-quality single-cell images of a desired

phenotype (Johnson et al., 2017).

Correlative Microscopy

In this article, we have mainly focused on how computational

factors may impact phenotypic analysis under the assumption

that the data sources will remain more-or-less as they are today.

However, promising lines of research suggest that conventional

light microscopy data may soon be combined with molecular
650 Cell Systems 6, June 27, 2018
profiling (e.g., mass spectrometry or Raman spectroscopy) or

other imaging modalities, such as super-resolution or electron

microscopy. These approaches promise great potential for

discovering relevant spatial molecular information and building

genotype-phenotypemaps (Masyuko et al., 2013). Hybrid correl-

ative techniques have gained recent attention for their ability to

make the best of both worlds. These techniques combine spec-

tral ormolecular informationwith optical data.We foresee that, in

the future, these combined data will provide new insights that

neither modality could alone (Figure 2D).

Imaging mass spectrometry (Bodzon-Kulakowska and Suder,

2016; Palmer et al., 2017) is a technique designed to systemati-

cally measure the spatial molecular distribution of biomarkers,

metabolites, peptides, or proteins by their molecular masses. It

generates a hyperspectral image in which each pixel contains

a mass spectrum with dimensions on the order of 10,000. How-

ever, the resolution is limited (typically 1–5 mm). One important

computational task is to correlate the molecular profiling data

with a light microscopy image, and to intelligently interpret the

multiplexed data. This technique has gained increasing popu-

larity recently (Liu et al., 2017), Another approach is Raman spec-

troscopy, which provides a structural fingerprint that can be

used to identify molecules. It provides very high-dimensional

spectral data, usually tens of thousands of dimensions, and its

spatial resolution is in the range of optical microscopy limits

(Smith and Dent, 2005). It is capable of single-cell analysis as

well (Wagner, 2009; Schie and Huser, 2013). Finally, correlative

light electron microscopy is a well-established technology for

highly detailed spatial analysis of objects identified by light

microscopy. The spatial resolution of electron microscopy can

be few thousand times higher than light microscopy (Razi and

Tooze, 2009).

Summary

In the past decades, the push toward systems biology has

encouraged a holistic approach to understanding interactions

between biological systems. As a result, biology has become

much more interdisciplinary as fields such as genomics, prote-

omics, and bioinformatics become increasingly important. New

technologies and tools are constantly being developed, many

of which require highly specialized knowledge. One of the

most important changes is our reliance on computational

methods. Methods such as phenotypic image analysis are

used routinely in research and in the pharma industry, where

the search for new drugs or fundamental biological knowledge

requires software analysis of images on a massive scale. These

tools are becoming increasingly more powerful, but knowledge

and training are required to properly apply these methods.

More biologists are becoming competent users of these soft-

ware tools (and even developers). As biologists become more

computationally literate, they are increasingly able to solve

problems themselves and develop a more complete under-

standing of the data. As a result, the quality of the science im-

proves. By the same token, as computer scientists improve

their knowledge of biology, they will be better able to recognize

opportunities to apply their skill sets. The benefits of fostering

interdisciplinary thinking are clear, and we should invest re-

sources into broadening the knowledge of developers and

experimentalists, so that the line between the two starts to

disappear.
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voost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Montagner, Y.L.,
et al. (2012). Icy: an open bioimage informatics platform for extended repro-
ducible research. Nat. Methods 9, 690.

Desbordes, S.C., Placantonakis, D.G., Ciro, A., Socci, N.D., Lee, G., Djaballah,
H., and Studer, L. (2008). High-throughput screening assay for the identifica-
tion of compounds regulating self-renewal and differentiation in human embry-
onic stem cells. Cell Stem Cell 2, 602–612.

Dougherty, M.T., Folk, M.J., Zadok, E., Bernstein, H.J., Bernstein, F.C., Eliceiri,
K.W., Benger, W., and Best, C. (2009). Unifying biological image formats with
HDF5. Commun. ACM 52, 42–47.

D€urr, O., and Sick, B. (2016). Single-cell phenotype classification using deep
convolutional neural networks. J. Biomol. Screen. 21, 998–1003.

Eliceiri, K.W., Berthold, M.R., Goldberg, I.G., Ibáñez, L., Manjunath, B.S., Mar-
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