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ABSTRACT

Training recurrent neural networks (RNNs) on long sequences using backpropaga-
tion through time (BPTT) remains a fundamental challenge. It has been shown that
adding a local unsupervised loss term into the optimization objective makes the
training of RNNs on long sequences more effective. While the importance of an
unsupervised task can in principle be controlled by a coefficient in the objective
function, the gradients with respect to the unsupervised loss term still influence all
the hidden state dimensions, which might cause important information about the
supervised task to be degraded or erased. Compared to existing semi-supervised
sequence learning methods, this paper focuses upon a traditionally overlooked
mechanism — an architecture with explicitly designed private and shared hidden
units designed to mitigate the detrimental influence of the auxiliary unsupervised
loss over the main supervised task. We achieve this by dividing RNN hidden space
into a private space for the supervised task or a shared space for both the supervised
and unsupervised tasks. We present extensive experiments with the proposed frame-
work on several long sequence modeling benchmark datasets. Results indicate that
the proposed framework can yield performance gains in RNN models where long
term dependencies are notoriously challenging to deal with.

1 INTRODUCTION

Recurrent neural networks (RNNs) are widely considered the de facto tool for modeling sequences
with a deep learning approach. Training RNNs usually relies on the use of backpropagation through
time (BPTT). It is well known that unfortunately, it becomes difficult for BPTT to transmit gradients
through very long computational graphs, as gradients tend to explode or vanish (

). Figure 1-(a) glves an example in an oversimplified setting, where the hidden state at the ﬁrst
time-step does not receive gradients. To make the BPTT-based training more effective, architectures
such as the long short-term memory (LSTM) ( , ) RNN and gated
recurrent unit (GRU) ( , ) RNNs, use parameterized gates which can make gradient
flow more effective over long sequences.

Recently, strong evidence in ( , ) suggests that simultaneously learning supervised
and unsupervised tasks can also enhance an RNN’s ability to capture long-term dependencies. By
injecting unsupervised tasks locally along the sequence the unsupervised tasks can be harnessed to
provide local and reliable gradients to more effectively optlmlze RNNs for long sequence learning
tasks. Recent work using this strategy ( , ), could
be characterized as employlng semi-supervised learmng archltectures cons1st1ng of two distinct types
of RNNss, one for the primary supervised task and another for the auxiliary unsupervised tasks which
are injected locally along the sequence. More concretely, the RNN for an unsupervised task updates
is instantiated periodically along the sequence and its hidden states are reinitialized occasionally;
whereas, the RNN for the supervised tasks operates at every time-step. Figure 1-(b) shows how
gradients flow in this architecture.

Despite the ability of these new semi-supervised architectures to mitigate the problem of long-distance
BPTT, these approaches risk impairing the training of the main task by contaminating the entire
representation-space with the unsupervised loss gradients.The challenge we address here is how
to properly coordinate supervised and unsupervised tasks. Common wisdom for semi-supervised
learning ( , ) typically follows one of the two procedures discussed below. The
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first widely used approach is to weight supervised and unsupervised loss functions with varying
coefficients empirically. However this method cannot radically address aforementioned problem
since representations for supervised and unsupervised learning are still entangled in same space. It is
true that the contribution of the unsupervised task can in principle be controlled by a coefficient in
the objective function, but the gradients with respect to the unsupervised loss term still influence all
the hidden state dimensions, which might cause important information about the supervised task to
be erased accidentally. The second approach coordinates these two types of learning by specifying
a training order and separating them into different learning phases. For example, these approaches
usually first pre-train a model under unsupervised setting, then use the model for supervised learning

( ; )-

While these methods can provide rich auxiliary knowledge which are potentially useful for the main
task, there is no guarantee that this asynchronous learning fashion could let the main task utilize the
auxiliary information well, and therefore long-term dependencies are still difficult to capture. It is
thus crucial to ask: how exactly can auxiliary unsupervised tasks best serve the main supervised
learning task for long-term dependencies learning?

On the other hand, it has been demonstrated that dividing an RNN’s representational space into
different groups is useful for modeling long-term dependencies. One such example is clockwork
RNNS ( , ), where each group is responsible for a subset of hidden states and each
processes input at different clock speeds. It is also possible to let each layer represent a group, and
each group may run at different time scales ( , ; , .

With the above analysis in mind, we propose to solve the long-term dependency problem by enabling
the two RNNss to have a shared feature space for both supervised and unsupervised tasks, and allowing
an RNN to have a private space dedicated for the supervised task. The key insight is to associate
different time-scale updating operations of distinct RNNs with different representational spaces.
Through the shared feature space, the RNNs form an interface to exchange features useful for both
of them with less inference. As a side-product, the proposed variant of RNNs trains and evaluates
slightly faster since the architecture by design introduced an inductive bias that the modules for
auxiliary tasks should have less parameters. Figure 1-(c) shows how the gradients flow through the
hidden states during the backward pass of BPTT for the proposed architecture. It is clear that the
lower (blue) space is not allowed to receive gradients from the unsupervised task.

Our primary contribution is introducing a private-and-shared feature space architecture for semi-
supervised sequential learning tasks, which is motivated through the lens of gradient flows. While the
modification is simple, its application on modeling long-term dependencies has shown significant
improvement over other state-of-the-art algorithms to our knowledge, and thus we believe it will be
of broad interest to the community. In Section 3, we describe the proposed method. In section 4, we
present the experiments. In section 5, we give an analysis of our method and experiments.

2 RELATED WORK

( , ) show that a generic temporal convolutional network (TCN) outperforms some
RNN variants on several benchmark datasets. However, compared with TCNs, RNNs require lower
memory for inference and can handle potential parameter change for a transfer of domain ( ,

). Furthermore, ( R ) show that RNNs with an auxiliary unsupervised loss still
outperform TCNs in terms of accuracy on long sequence learning tasks. More importantly, RNNs
can model, in principle, infinitely long dependencies with a finite number of parameters.

Unsupervised learning is often introduced in a pre-training fashion. For example, ( ,

) show that for natural language understanding tasks, generative pre-training of a language
model on a large amount of unlabeled text followed by discriminative fine-tuning leads to significant
improvement. As another example, in ( ) ), after pretraining the model with unlabeled
data, the authors fix the weights and add additional task-specific model capacity, making it possible
to leverage large, rich and universal representations for the downstream tasks. It should be noted that
( , ) utilizes additional datasets, whereas we do not.

( , ) propose RNN-AE (AutoEncoder) to form an auxiliary unsupervised task to aid
RNNs in handling long sequencse, i.e. r-RNN (reconstruction) and p-RNN (prediction). The --RNN
approach tries to reconstruct the original input from the internal representation.



Under review as a conference paper at ICLR 2019

Supervised Loss

o (J 0000010

Unsupervised Loss Supervised Loss

© ®

“eemixing gradients™ B

Unsupervised Loss Supervised Loss

)4 ?
o 3 B8=8 0B

mixing gradients

Figure 1: Schematic about gradient flows of different architectures during the backward pass. Each
cube indicates a set of hidden states at a time-step. Shading means the signal strength of gradients — a
darker color is associated with more reliable gradients. Arrows indicate gradient flows, and those
thicker ones represent more reliable gradients. Blue filling indicates gradients w.r.t. the supervised
loss. Yellow filling indicates gradients w.r.t. the unsupervised loss. Green filling represents a mixture
of the supervised and unsupervised gradients. White filling means there is no gradient flowing through
the hidden states. (a) Gradient flows of a typical RNN with a supervised loss. (b) Gradient flows of a
semi-supervised RNN ( , ). (c) Gradient flows of our proposed method, which consists
of a shared and private spaces.

Skim-RNN ( , ) dynamically decides to update only a small fraction of the hidden state
for relatively unimportant input tokens. A skim-RNN contains multiple RNNs that have a shared
space and also have private spaces on which they operate. However a skim-RNN only considers
supervised tasks and aims at accelerating the inference speed. In contrast, our method is specifically
designed for long sequence learning problems with an unsupervised loss. Furthermore, a skim-RNN
only uses one RNN at each time-step which is determined by a reinforcement learning agent, whereas
ours always use multiple RNNs. As a side-effect of not relying on reinforcement learning algorithms,
our method is easier to train in practice.

The hidden state of our proposed RNN also has multiple subsets, but they run at the same clock speed.
Even more importantly, we introduce an inductive bias that different hidden sub-spaces should be
responsible for different tasks.

3 METHODOLOGY

We will discuss these methods in detail. We first briefly explain our version of the RNN-AE and its
key differences with that introduced by ( , ); then, we dive into our method of inducing
a private-and-shared structure.

3.1 LOCAL RECONSTRUCTION AND PREDICTION

Following ( , ), we add the unsupervised tasks of local sequence reconstruction and
prediction at various anchor points within the input sequence. We sample n anchors at locations
ai, as, ..., a, among the input sequence and at anchor a;, we obtain an unsupervised loss. This loss is
generated through local reconstruction and/or prediction within a neighbourhood of the input z,,. It
uses an auxiliary RNN with GRUs, initialized by f(h,,) which is a function of the hidden state at the

anchor time step. In ( , ), f is simply the identity function f(x) = x. This generates a
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total unsupervised loss as the sum of auxiliary loss at each anchor location, and its gradient flows
back to each anchor neighbourhood to improve long-term dependency.

There are some important differences in our implementation: Instead of randomly sampling the
anchor locations over the entire sequence, we evenly divide the input into as many sub-sequences as
there are anchors and only sample each anchor within its corresponding region. This is to ensure that
reconstruction spans most if not all of the input sequence; this way, gradient flows back to a higher
percentage of the input. During reconstruction, we ask the r-RNN to reconstruct the local sequence
backward (as we found that backwards reconstruction worked better in practice). Furthermore, in
various task setting, we include both unsupervised prediction and reconstruction instead of using
only one of the two. And lastly, and most importantly, rather than using the entire hidden state
of the anchor to do reconstruction and prediction, we only use a part of the state vector for these
unsupervised tasks; this is the point we expand on next.

3.2 PRIVATE-AND-SHARED STRUCTURE

We propose to divide the hidden space of the main RNN into task-specific sub-spaces. More concretely,
ignoring the time step suffix, we take the d-dimension state vector h = [hq, ha, ..., hg]T and split
it into h® and h? (shared and private state) where h® = [hy, ho, ..., h,]T and h? = [hy41, ..., ha]T;
aka. h = [h®T||hPT]|T where [a||b] denotes in the concatenation of @ and b. At each anchor step,
when the main RNN state vector at that step is needed to initialize the auxiliary RNN, only h? is
sent, and h? remains untouched. On the other hand, at the terminal time step, we use the entire state
vector h to predict a class label. In this sense, h® is the section of state vector that is shared by the
reconstruction task and the final classification; kP is private in the sense that it is the section of state
vector that is reserved for only the supervised task.

The intuition here is that we want to disentangle the feature space so the learned features from the
unsupervised tasks do not affect the entire state vector which is later used for the supervised task. In
doing so, we create an uncontaminated region learned solely through the supervised task; naturally, it
would capture more specific features for the supervised tasks than the shared region that’s used both
for the unsupervised and supervised task.

This way, we overcome the negative side effects of RNN-AE while retaining its ability to introduce
gradient at all time steps. Thus we are able to facilitate the learning of long-term dependency without
hindering the model’s ability to perform supervised task.

4 EXPERIMENTS

The experiments are designed to answer a key question: Since we divide hidden states into sub-spaces,
compared with RNNs with a holistic hidden space, is our proposed method indeed more effective?

We evaluate our proposed methods on two benchmark tasks: image classification and sentiment
analysis. For image classification, we used pixel-level sequential MNIST, Fashion-MNIST and
CIFAR-10 as our datasets. For sentiment analysis, we use the IMDB movie reviews corpus. Detailed
information about the datasets is given in Table 1.

In order to compare with state-of-the-art results fairly, we re-implement and re-run all the baseline
methods. For all of our experiments, including the baseline and re-implementations, we grid search
our hyperparameters using a validation set to find the optimal values. For faster convergence, we
adopt SGDR ( , ) as the optimizer throughout this paper. We incorporate
early stopping with patience of 50 epochs to avoid overfitting, which is also based on a validation set.

As shown in Table 3, our proposed method achieves better outcome on both MNIST and CIFAR-10
than previous competitive results. Table 2 provides a more comprehensive list of the experiments
along with the hyperparameters used for each one. The top row(s) of each sections, the ones without
parameters, are baseline results run with GRU. As the share proportion parameter reaches 100%, our
model reduce to the RNN-AE model introduced in ( s ), thus the rows with ”100%” as
the value for the “shared” hyperparameter are results for ( , ). As previously mentioned,
the hyperparameters for these cases are also grid searched to ensure fair comparison.
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Dataset Mean Length # Classes Train Set Size Valid. Set Size
Sequential MNIST 784 10 50K 10K
Sequential CIFAR10 1024 10 45K 15K
Sequential Fashion-MNIST 784 10 50K 10K
IMDB 1430¢ 2 20K 22K
Table 1: Key statistics of the datasets used in this paper.
“We use one-hot character-level embedding and remove the inputs with length less than 500.
Tasks Accuracy Unsup. Type Sharing Schema Sampling Opts. #Param.
Pred. Rec. Shared Private #Anchor Rec Len.
98.5% - - - - 90K
4 98.8% v’ 100% 0% 1 50 IM
é 98.5% Vv’ 100% 0% 20 30 IM
= 98.8% v 30% 70% 1 50 76K
98.9% v’ v’ 30% 70% 40 20 84K
- 90.5% - - - - 11K
o 90.4% v 100% 0% 5 32 12K
z 90.8% v’ 60% 40% 20 30 12K
z 90.4% v’ v’ 50% 50% 5 30 11K
- 70.8% - - - - 3.1M
= 68.9% - - - - 5.4M
; 73.5% N 100% 0% 20 30 5.4M
= 75.1% v’ 40% 60% 20 30 3.9M
=]
76.2% v’ N 60% 40% 10 64 4.TM
84.4% - - - - 95K
E 84.8% v’ 100% 0% 1 50 69K
5 85.1% v 60% 40% 1 64 59K
= 85.7% v’ 60% 40% 5 50 75K

Table 2: Performances of our models on MNIST, fashion-MNIST, CIFAR-10, and IMDB datasets.
Note that when the shared proportion reaches 100%, it reduces to the model proposed in ( ,

).

In our experiments, we are able to achieve better accuracy with either less or comparable number of
parameters. In the case of MNIST, we are able to do so with less than one-tenth of the parameters
compared to ( , ).

Overall, from these tables, we can study the effect of key hyperparameters such as private-vs-shared
proportion, number of anchors and reconstruction length. we see how entirely sharing the hidden
space is not optimal, which leads us to ask the follow up question: how much of the space should be
shared? In the next section, we decribe our analysis on this very inquiry. 5.1.

5 ANALYSIS

In this section, we present two crucial analyses on the private-shared structure. First, we examine
how shared proportion affects our model outcomes. Then, we visualize both the private and shared
hidden space learned by our model to highlight distinct features of the two.
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MNIST CIFAR-10

iRNN ( , ) 97% N/A
uRNN ( , ) 95.1% N/A
RNN with Aux. Loss ( , ) 98.4% 72.2%
RNN with private-shared space 98.9 % 76.2%

Table 3: Comparing test accuracy on sequential MNIST and sequential CIFAR10.

" Accuracy —— Main Loss Acc. LMain LAux. S.% #Param.
076 = Aux.loss .,
>
g \ / \ " 708 1.523 - 0% 3.1M
5 \ g 738 1422 0960 10%  3.3M
8 /. — 740  1.063 0818  30% 4M

/ \\\: 761 0865 0758 50%  54M
0.7 746 098 0695 70%  7.3M
I 731 1013 0.621 100%  1IM

0 Shared Proportion in % 100

<)
S
o

Figure 2: Accuracy (left axis) and Loss (right Table 4: Experiments on shared proportions (S.%)

axis) vs Shared Proportion. We visualize the re- performed on CIFAR. Accuracy is reported in per-

sults from Table 4 centage. L Main and L Aux. are the main loss and
auxiliary loss respectively.

5.1 EFFECT OF SHARED PROPORTION

To observe exactly what effect different sharing proportions have on classification tasks, we run our
model on CIFAR-10 with varying share percentages from 0% to 100% as listed in Table 4. The
results are given in Figure 2.

With 0% shared, the model is essentially an RNN without unsupervised loss as no part of the hidden
state is sent to the auxiliary RNN. In this setting, our model achieves the lowest accuracy of the
group. As we slowly increase the shared percentage, the accuracy rises. From this, we confirm that
the addition of auxiliary loss is indeed helpful in modeling long-term dependencies.

Remarkably, there is a pronounced peak at the 50% mark — where half of the state is shared by the
auxiliary RNN and half is reserved for the classification task — after which, model performance, in
terms of both cross entropy loss and classification accuracy begins to worsen. One may suspect that
this is caused by overfitting since the number of parameters steadily increases. However, in this set of
experiments, the capacity of the main RNN is fixed as the dimension of the hidden state remains the
same. As we include more of the hidden state for unsupervised task, the auxiliary RNN increases
in capacity, thus causing the overall parameter number to increase. Furthermore, the auxiliary test
loss lowers progressively, suggesting that there is no overfitting in the auxiliary RNN either. In this
case, the change in performance should attributed to the difference in shared proportion. This finding
agrees with what we posited earlier: that the learned knowledge from the unsupervised task is not
all helpful towards the supervised task, and that this information may actually hurt performance by
overwriting knowledge that are important to the main task. What is somewhat surprising is that at
100% shared, the model’s classification result is barely comparable to the 10% version. We did not
expect such big drop in classification rate (~3%) at the maximum shared level. However, this further
corroborates the importance of disentangling the hidden space through a private-shared framework.

5.2 SHARED AND PRIVATE SPACES

To better understand how the use of our framework influences representation learning, we analyze the
hidden vectors of the main RNN. For this analysis, we retrain our MNIST model with 50% shared
proportion and a hidden space size of only 16. In other words, the first 8 dimensions are shared,
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(a) Hidden state response to an ”’8” (b) Hidden state response to a ’3”  (c) Hidden state response to a ’9”
at beginning of training after 5 epochs after 25 epochs

Figure 3: Hidden state evolution during training at different epochs.

and the last 8 are private. We hypothesize that the small representation-space would force the RNN
to learn important features; it would also allow us to see how knowledge from the two tasks might
contend with each other if there existed any competition.

To visualize the hidden space, we collect the RNN’s hidden state vectors {h; € R4x 1| 1<¢< 784}
after it receives an MNIST image (784 pixels) as input. We concatenate them horizontally to obtain
H = [hy]|hs]|...||h7ss) € R84 Then, we look at how the n'”* dimension of the hidden state
changes across time by picking out the n‘" row of H. We reshape each row into a 28 x 28 image to
better compare the state elements.

Figure 3 shows 3 instances of visualization of the hidden state vector across time, which are generated
using the same network and different input image at different stages of training. Respectively from
left to right, the images are generated when training begins, progresses, and converges. Each small
square in the image corresponds to a single dimension of the hidden state from ¢ = 1 to ¢t = 784.
In this setting, the left 2 columns of each subplot contain the 8 shared dimensions and the right 2
columns corresponds to the 8 private dimensions.

Noticeably, as training progresses the hidden state changes how it responds to input. Moreover, there
are dimensions in the shared region of the hidden state that originally display a response similar
to those in the private region, only to be replaced later. For example, in the beginning of training,
there are several similar responses in multiple dimensions of the state vector. In both the designated
shared and private region, some dimensions seem to have a high correlation with the input image
thus resulting in a readable number. As the model refines itself, the aforementioned response begins
to fade from the shared representation; however, it still exists in the private representation. In the
end, we see the a complete absence of such response in the shared representation, replaced by more
abstract features.

One possible explanation would be that this type of response is more important to the supervised task
than to the unsupervised one. By generating a large non-zero value when the input is non-zero, a
dimension of the hidden state allows the RNN to propagate this information along to later times steps.
This could be very helpful for digit classification, as we might need to know what is written in the
beginning to decide which digit it is. However, it is not required for the auxiliary task which concerns
with only local pixels and has less need to propagate a strong signal when a particular input is given.

6 CONCLUSION

In this paper, we have presented a semi-supervised RNN architecture with explicitly designed
private and shared hidden representations. This architecture allows information transfer between
the supervised and unsupervised tasks in a hitherto unexplored way. Compared with other similar
semi-supervised RNN techniques, our experiments on widely used and competitive benchmark data
sets suggest that our formulation indeed yields performance gains. We conjecture that these gains
come from the desirable properties of both gradient and information flow in architectures with shared
and private representations. As a side-product, our proposed architecture trains and evaluates faster
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than the related alternatives that we have explored since the architecture introduces an inductive bias
that the modules for auxiliary tasks should have fewer parameters.
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