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ABSTRACT

The recent rise in popularity of few-shot learning algorithms has enabled mod-
els to quickly adapt to new tasks based on only a few training samples. Previous
few-shot learning works have mainly focused on classification and reinforcement
learning. In this paper, we propose a few-shot meta learning system that focuses
exclusively on regression tasks. Our model is based on the idea that the degree of
freedom of the unknown function can be significantly reduced if it is represented
as a linear combination of a set of appropriate basis functions. This enables a few
labelled samples to approximate the function. We design a Feature Extractor net-
work to encode basis functions for a task distribution, and a Weights Generator to
generate the weight vector for a novel task. We show that our model outperforms
the current state of the art meta-learning methods in various regression tasks.

1 INTRODUCTION

Regression deals with the problem of learning a model relating a set of inputs to a set of outputs. The
learned model can be thought as function y = F (x) that will give a prediction y ∈ Rdy given input
x ∈ Rdx where dy and dx are dimensions of the output and input respectively. Typically, a regression
model is trained on a large number of data points to be able to provide accurate predictions of new
inputs. Recently, there have been a surge in popularity on few-shot learning methods (Vinyals et al.,
2016; Koch et al., 2015; Gidaris & Komodakis, 2018). Few-shot learning methods require only a
few examples from each task to be able to quickly adapt and perform well on a new task. The few-
shot learning model in essence is learning to learn i.e. the model learns to quickly adapt itself to
new tasks rather than just learning to give the correct prediction for a particular input sample.

In this work, we propose a few shot learning model that targets few-shot regression tasks. We
evaluate our model on the sinusoidal regression tasks and compare our model’s performance to
several meta-learning algorithms. We further introduce two more regression tasks, namely the 1D
heat equation task modeled by partial differential equations and the 2D Gaussian distribution task.

2 RELATED WORK

Regression problems has long been a topic of study in the machine learning and signal processing
community (Myers & Myers, 1990; Specht, 1991). Though similar to classification, regression
estimates one or multiple scalar values and is usually thought of as a single task problem. A single
model is trained to only perform regression on a only one task. Our model instead reformulates the
regression problem as a few-shot learning problem, allowing for our model to be able to perform
regressions of tasks sampled from the same task distribution.

The problem of meta-learning has similarly long been a topic of interest in the general machine
learning community (Thrun & Pratt, 1998; Schmidhuber, 1987; Naik & Mammone, 1992). Meta
learning has been applied to few-shot learning problem, which is concerned with models that can
learn from prior experiences to adapt to new tasks. Lake et al. (2011) first proposed the one-shot
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Figure 1: An overview of our model. Note that during meta-training, we use the true task labels
of the regression task as input to the Weights Generator to train both the Weights Generator and
Feature Extractor, whereas the generated task labels from the Task Label Generator are only used
during meta-testing.

classification problem in 2011 and introduced the Omniglot data set as a few-shot classification
data set similar to how the MNIST data set (LeCun, 1998) is for traditional classification. Since
then, there has been a surge of few-shot learning methods (Vinyals et al., 2016; Finn et al., 2017;
Gidaris & Komodakis, 2018; Rusu et al., 2018), but most of them focus on few shot classification
and reinforcement learning domains.

3 FEW-SHOT REGRESSION VIA LEARNED BASIS FUNCTIONS

We first discuss our idea. We aim at developing a model that can rapidly adapt to regress a novel
function based on only a few samples from this function. Specifically, we would like to model the
unknown function y = F (x) given only Dtrain = {(xk,yk)|k = 1...K}. With small K, e.g.
K = 10, this is an intractable task, as F (x) can take any form. We follow the common setup: we
assume that each function we would like to regress is a task Ti drawn from an unknown distribution
p(T ).

To simplify discussion, we assume scalar input and scalar output. Our idea is to learn sparse or
compressible representation of the unknown function F (x), so that a few samples {(xk, yk)|k =
1...K} can provide adequate information to estimate F (x). Specifically, we model the unknown
function F (x) as a linear combination of a set of basis functions {φi(x)}:

F (x) =
∑
i

wiφi(x) (1)

Many basis functions have been developed to expand F (x). For example, the Maclaurin series
expansion (Taylor series expansion at x = 0) uses {φi(x)} = {1, x, x2, x3, ...}:

F (x) = w0 + w1x+ w2x
2 + ... (2)

IfF (x) is a polynomial, (2) can be a compressible representation, i.e. only a few non-zero/significant
wi. However, if F (x) is a sinusoid, it would require many terms to represent F (x) adequately, e.g.:

sin(x) ≈ w1x+ w3x
3 + w5x

5 + w7x
7 + ...+ wMx

M (3)

In (3), M is large and M � K. Given only K samples {(xk, yk)|k = 1...K}, it is not adequate
to determine {wi} and model the unknown function. On the other hand, if we use the Fourier basis
instead, i.e., {φi(x)} = {1, sin(x), sin(2x), ..., cos(x), cos(2x), ...}, clearly, we can obtain a sparse
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representation: we can represent a sinusoid with only a few terms. Under Fourier basis, there are
only a few non-zero linear weights wi, and K samples are sufficient to estimate wi and estimate
the function. Essentially, with an appropriate {φi(x)}, the degree of freedom of F (x) can be
significantly reduced when it is modeled using (1), so that K samples can well estimate F (x).

Our approach is to use the set of training tasks drawn from p(T ) to learn {φi(x)} that result in
sparse/compressible representation for any task drawn from p(T ). The set of {φi(x)} is encoded
in the Feature Extractor that takes in x and outputs Φ(x) = [φ1(x), φ2(x), ..., φM (x)]T . In our
framework, Φ(x) is the same for any task drawn from p(T ), as it encodes the set of {φi(x)} that
can sparsely represent any task from p(T ). We further learn a Weights Generator to map the K
training samples of a novel task to a constant vector w = [w1, w2, ..., wM ]T . The unknown function
is modeled as wT Φ(x).

3.1 MODEL ARCHITECTURE

We hereby introduce our few-shot regression model in detail. Given a regression task T with
Dtrain = {(xk,yk)|k = 1...K}, the model is tasked to predict the entire regression function across
a value range.

The training samples, x ∈ Rdx first passed though the Feature Extractor which is represented as a
function, F (x|θF ) with trainable parameters θF . The Feature Extractor outputs a high dimensional
feature representation, f ∈ Rdf , where df is the dimension of the feature representation, for each
training point of the task T . Note that df is the number of basis functions encoded in the Feature
Extractor.

The feature representation xf , together with the labels y ∈ Rdy and task labels t ∈ Rdt generated
from the Task Label Generator are then passed through the Weights Generator. The Weights
Generator, represented as a function G(f ,y, t|θG), with trainable parameters θG, outputs a weights
vector, wk for each training sample of a regression task. The final weights vector, w′ for task T
is then obtained by taking a mean of the k weight vectors. The Weights Generator itself consists
a series self-attention blocks with scaled dot product attention introduced by Vaswani et al. (2017).
Each of the self-attention modules allows the weights generator to ”look” at the embedding of the
Weights Generator’s input to let generator ”choose” the parts of the embedding which is most useful
in generating the optimal weights for each of the training sample.

The model is then able to make predictions on set of points Dpred = {xn|n = 1...N} for task T ,
by taking a dot product between task-specific weights vector, w and feature representation of the
prediction set.

y′ = wTF (x ∈ Dpred|θF ) (4)

Note that for all of our regression experiments, y has a dimension of 1. However, our model is
able to predict regression tasks with higher dimensional y by outputting dy weight vectors from the
Weights Generator, the predictions can be obtained by doing a dot product at each dimension of y
between the individual weight vectors and f . An overview of our model can be found in Figure 1.

3.2 THE TASK LABEL GENERATOR

Outside of the label information y at the sample level, few-shot regression tasks, unlike other few-
shot learning tasks also possess additional label information at the task level. These task level labels
are parameters that describe a regression function that we can leverage to improve the performance
of a few-shot regression model. For example, a sinusoidal function has parameters labels such as
the amplitude, phase and frequency. We dub these task-level labels as task labels, t and we use it as
an additional input to the Weights Generator.

Though we assume that the model to have access to task labels during the training phase, it is unre-
alistic to assume that such information will be available or reliable as well during testing. Therefore,
we introduce the Task Label Generator as an additional component to our model. We represent it as
a function T (xf , y|θT ) with trainable parameters θT . It takes in feature representation xf and labels
y of the regression task T and attempts to output the correct task labels, tg for T . Similar to the
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Table 1: Comparing Mean-Squared Error between MAML and Our Model on different regression
tasks. Lower is better.

Regression Data Meta-SGD (Li et al., 2017) Ours with Task Label Generator
Sinusoid 0.53± 0.09 0.465± 0.022

Regression Data BMAML (Yoon et al., 2018) Ours with pre-trained Task Label G.
Sinusoid w/ noise ∼ 1.35 1.31± 0.05

Regression Data MAML (Finn et al., 2017) Ours w/o Task Labels Ours with Task Label G.
1D Heat Equation 0.0257 0.00242± 0.00008 0.00131± 0.00006

2D Gaussian 0.0220 0.00413± 0.00209 0.00449± 0.00328

Table 2: Experiment on the effects of adding task labels.

Regression Data Using True Task Labels No Task Labels w/ Task Label Generator
Sinusoid 0.0187± 0.00039 0.743± 0.032 0.465± 0.022

Weights Generator, we also employ the use of self-attention blocks within the Task Label Generator
to enable the Task Label Generator to ”look” at parts of the input that are most useful to generating
the correct task labels.

4 RESULTS AND EVALUATION

We evaluate our model on three few-shot regression tasks. The first task is the sinusoidal regression
task which has been used in many recent few-shot learning papers (Finn et al., 2017; Rusu et al.,
2018; Li et al., 2017). We also introduce two more regression tasks, namely the 1D heat equation
task (Cannon, 1984) and the higher dimensional 2D Gaussian distribution task. For the sinusoidal
task we compare our model to Meta-SGD proposed by Li et al. (2017). We also compare our results
on sinusoidal task to that of Yoon et al. (2018) where they add a noise component and only train
with limited number of tasks for added complexity. We follow their set up of training of model with
only 1000 tasks but we used a pre-trained Task Label Generator instead. For 1D Heat Equation and
2D Gaussian, we compare our models performance against MAML (Finn et al. (2017) and include
results of our model with and without using the Task Label Generator.

We calculate mean squared error across 1000 test tasks for all regression tasks and present our results
in Table 1. Our model manages to outperform both Meta-SGD and BMAML on both variants of the
sinusoidal task. Our model also manage to achieve a superior performance on 1D Heat Equation and
2D Gaussian. Our results show that even without the use of task labels, our model setup is already
able to perform well in the two regression tasks.

4.1 ABLATION STUDY

Furthermore, we conduct a ablation study to study the effects of adding the Task Label Generator.
We compare three variants of our model an evaluate them on the advanced sinusoidal task .For the
first variant when we use the true task labels in both training and testing. In the second variant, we
do not use task labels at all. Finally we compare the two variants to the base model. We show the
results of this study in Table 2.

5 CONCLUSION

We propose a few-shot meta learning system that focuses exclusively on regression tasks. Our
model is based on the idea of linear representation of basis functions. We design a Feature extractor
network to encode the basis functions for the entire task distribution. We design a Weight generator
network to generate the weights from the K training samples of a novel task drawn from the same
task distribution. We show that our model has competitive performance in in various few short
regression tasks.
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A TECHNICAL DETAILS

A.1 THE FEATURE EXTRACTOR

We represent the feature extractor as a a 2 layer 40-dimensional fully connected network which
transforms each 1-dimensional input sample into a 40-dimensional feature, Each hidden layer in the
feature extractor also followed by a ReLU non-linearity activation function (Nair & Hinton, 2010).

A.2 THE WEIGHTS GENERATOR

The Weights Generator takes in a 41 + tn dimensional input where tn is the dimension of the t ask
label of each task. The input is passed through a fully connected layer of dimension 64 to produce the
embedding for each of the task’s training samples. The extracted embedding is then passed through
a series of 3 attention blocks. Each block is comprised of a dot-product self-attention operation
followed by two fully connected layers of dimensions 128 and 64 respectively and finally a layer
normalization operation (Ba et al., 2016) at the end. The first fully connected layer after the self-
attention module in each block is also followed by a ReLU non-linearity activation function (Nair &
Hinton, 2010). Each block also has a residual connection (He et al., 2016) from the embedding to the
output of the second fully connected layer. The attention function we used is the scaled dot-product
attention introduced by Vaswani et al. (2017):

Att(Q,K, V ) = softmax(
QKT

√
dk

)V, (5)

where Q, K and V represent the Query, Key and Value of the Attention module respectively. dk
represents the dimension of K and is used as a scaling factor. In our case as we using self-attention,
Q, K and V are all represented by the task embedding. The output of the attention blocks are then
passed though another fully connected layer of dimension 40 to ensure the same dimensionality as
the sample features. The final weight vector, w is obtained by taking the mean of the output.

A.3 TASK LABEL GENERATOR

The Task Label Generator takes in a 41 dimensional input has a similar architecture to the Weights
Generator. It consists of a 64 dimensional fully connected layer followed by 3 attention blocks
similar to that in the Weights Generator. The Task Label Generator outputs a tn dimensional task
label for each training sample and the final task label, t is obtained by taking the mean of all the
individual task labels. The generated task label is then passed through a sigmoid activation layer.

A.4 TRAINING PROCEDURE

We train our model in two stages. In the first stage, only the Feature Extractor and Weights Generator
are updated. In this stage we use the true task labels from the regression tasks as input to the Weights
Generator. The loss function used is mean squared error between the labels of the validation set
labels and the prediction.

L(θF , θG) =

J∑
k=j

(yvalj − y′j)2 (6)

Where j is number of samples in the validation set. As the Feature Extractor is tasked to only map
a low dimensional samples x to high dimensional features f , through training the Feature Extractor
eventually learns to map samples to features that are most suited for the task domain. The Feature
Extractor can therefore be thought as implicitly modeling and capturing the task distribution p(T ).

For any given regression task, the set of features f is fixed. The reason that the model is able to
predict different y′ value from the same f is purely due to the weights vector w. As the Weights
Generator has access to both sample label and task label information, it is trained to output weights
vectors that capture a specific task instance Ti within the task distribution p(T ).
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In the second stage, we train the entire model including the Task Label Generator. In this stage
the predicted task labels from the Task Label Generator are used as input to the Weights Generator
instead of the true task labels. We also use a identical mean-squared loss function for the this stage
of training but instead updating all three sets of parameters θF , θG and θT .

B DATASET AND TRAINING DETAILS

Here we provide details on all of our regression tasks and some additional training details of our
model. For all the regression tasks we normalize the task labels to a [0, 1] range using it for train-
ing. We also provide visual results of our model’s performance on all three regression tasks in the
following section

B.1 SINUSOIDAL REGRESSION

For the sinusoidal regression task, we follow the experimental set up in Yoon et al. (2018). The
target function is defined as y(x) = Asin(ωx + b) + ε, where amplitude A, phase b, frequency
ω and noise ε are the parameters of the function. We sample the each parameters uniformly from
range A ∈ [0.1, 5.0], b ∈ [0, 2π] and ω ∈ [0.5, 2.0]. For noise ε, we sample it from distribution
N ∼ (0, 0.01A2). We use the amplitude, phase and frequency values to form a 3-dimensional task
labels for the sinusoidal task

B.2 1D HEAT EQUATION

For the heat equation task, we define it as such: Consider a 1-dimensional rod of length L with both
of its ends connected to heat sinks, i.e. the temperature of the ends will always be fixed at 0K unless
a heat source is applied at the end. a constant point heat source is then applied to a random point s
on the rod such the the heat point source will always have a temperature of 1.0K. We would like the
model the temperature u(x, t) at each point of the rod a certain time t after applying the heat source
until the temperature achieves equilibrium throughout the rod. The temperature at each point x after
time t is given by the heat equation:

∂u

∂t
= k

∂2u

∂x2

In our experiments, we set L to be 5 and randomly sample 10 points of position range [0, 5] on the
heat equation curve for a 10-shot regression task. We use both the x and t to form a 2 dimensional
task label for the heat equation task.

B.3 2D GAUSSIAN

For the 2D Gaussian tasks, the model is trained to predict the probability distribution function of
a two-dimensional Gaussian distribution. We train our model from Gaussian distribution task with
mean ranging from (−2,−2) to (2, 2) and standard deviation of range [0.1, 2]. We fix the standard
deviation to be of the same value in both directions. The model is once again trained on 10 randomly
sampled input points for a 10-shot regression task.We plot the predictions of points in the range of
[µ− 3 ,µ+ 3] where µ is mean of the Gaussian task.. Similar to the heat equation tasks, we use the
mean and standard deviation values to form a 3 dimensional task label.

B.4 ADDITIONAL TRAINING DETAILS

For all of our experiments except the one comparing against BMAML, we train both our model on
regression tasks of batch size 32 for 50000 steps for both training stages. For experiment comparing
against BMAML for the sinusoidal task, we train our model on tasks of batch size 10 for 10000
steps using a pre-trained Task Label Generator trained on 50000 training steps. We also limit the
data set in this experiment to just 1000 regression tasks for fair comparison. We use the Adam
Optimizer (Kingma & Ba, 2014) as the optimization method to preform stochastic gradient decent
on our model. We implement all our models using the Tensorflow (Abadi et al., 2016) library and
train them on a Nvidia GTX 1080 Ti GPU.
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C ADDITIONAL ABLATION STUDY

In this section, we further illustrate our justification made for our model by conducting an additional
ablation study. We intend to show that that learned features f indeed correspond to a set of basis
functions {φi(x)} that correspond to the function F (x). If that is indeed the case, each of the
learned basis function φi(x) should correspond to certain characteristics of the regression function,
and removing one basis function from the final prediction should give noticeable difference in the
models final prediction. Thus, we conduct an ablation study where we remove one of the dimensions
in f and visualize the change in the final prediction.

We conduct this study on sinusoidal regression task show the results in Figure 2. The results shows
that removing certain dimensions from the feature vector does give significantly different results and
does correspond to certain characteristics of the regression function. Namely for the first case, the
removed feature correspond the accurate magnitude and position of the regression curve whereas
for the second case, the removed feature correspond to the ”shape” of the regression curve at range
[-2.0 ,2.4].

dim 9 from f is removed dim 35 from f is removed

Figure 2: Results of the ablation study where we remove one dimension in f from the final prediction
and compare the change to that of the original prediction with all of the dimensions in f . The
prediction made with reduced dimension is represented by the blue dashed line.

D VISUAL RESULTS

In this section we show some example visual results of our model’s results on the three regression
tasks. In Figure 3, we show some examples of our models results on the sinusoidal task. In Figure
4, we show examples of our model results on the 1D heat equation task and compare it against the
results from MAML (Finn et al., 2017). Finally in Figure 5, we show examples our model results
on the 2D Gaussian task.

9



Published as a conference paper at ICLR 2019

Figure 3: Our model’s results on sinusoidal tasks
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MAML (Finn et al., 2017) Our Model

Figure 4: Our models performance on the 1D Heat Equation Task. We also provide a comparison
the performace of MAML on the left.
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Ground Truth Prediction

Figure 5: Our Model’s results on 2D Gaussian Tasks.
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