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ABSTRACT

In one-class-learning tasks, only the normal case can be modeled with data,
whereas the variation of all possible anomalies is too large to be described suf-
ficiently by samples. Thus, due to the lack of representative data, the wide-spread
discriminative approaches cannot cover such learning tasks, and rather generative
models, which attempt to learn the input density of the normal cases, are used.
However, generative models suffer from a large input dimensionality (as in im-
ages) and are typically inefficient learners. We propose to learn the data distribu-
tion more efficiently with a multi-hypotheses autoencoder. Moreover, the model
is criticized by a discriminator, which prevents artificial data modes not supported
by data, and which enforces diversity across hypotheses. This consistency-based
anomaly detection (ConAD) framework allows the reliable identification of out-
of-distribution samples. For anomaly detection on CIFAR-10, it yields up to 3.9%
points improvement over previously reported results. On a real anomaly detection
task, the approach reduces the error of the baseline models from 6.8% to 1.5%.

1 INTRODUCTION

Anomaly detection classifies a sample as normal or abnormal. In many applications, however, it
must be treated as a one-class-learning problem, since the abnormal class cannot be defined suffi-
ciently by samples. Samples of the abnormal class can be extremely rare, or they do not cover the
full space of possible anomalies. For instance, in an autonomous driving system, we may have a
test case with a bear or a kangaroo on the road. For defect detection in manufacturing, new, un-
known production anomalies due to critical changes in the production environment can appear. In
medical data analysis, there can be unknown deviations from the healthy state. In all these cases,
the well-studied discriminative models, where decision boundaries of classifiers are learned from
training samples of all classes, cannot be applied. The decision boundary learning of discriminative
models will be dominated by the normal class, which will negatively influence the classification
performance.

Anomaly detection as one-class learning is typically approached by generative, reconstruction-based
methods (Zong et al., 2018) . They approximate the input distribution of the normal cases by para-
metric models, which allow them to reconstruct input samples from this distribution. At test time,
the data log-likelihood serves as an anomaly-score. In the case of high-dimensional inputs, such as
images, learning a representative distribution model of the normal class is hard and requires many
samples.

Typically, an autoencoder-based approach such as the variational autoencoder (Rezende et al., 2014;
Kingma & Welling, 2013) is used. Autoencoders tend to produce blurry reconstructions, since they
regress the conditional mean, and cannot model multi-modal distributions; see Fig. 1 for an example
on a Metal Anomaly dataset. Due to multiple modes in the actual distribution, the approximation
with the mean predicts high probabilities in areas not supported by samples. The blurry reconstruc-
tions in Fig. 1 should have a low probability and be classified as anomalies, but they have the highest
likelihood under the learned autoencoder.

Multiple-hypotheses networks could give the model more expressive power Rupprecht et al. (2016a),
Chen & Koltun (2017), Ilg et al. (2018), Bhattacharyya et al. (2018). In conjunction with autoen-
coders, the multiple hypotheses can be realized with a multi-headed decoder. Concretely, each
network head may predict a Gaussian density estimate.
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(a) Test images (b) Autonencoder reconstructions (c) ConAD reconstructions

Figure 1: Detection of anomalies on a Metal Anomaly dataset. (a) Test images showing anomalies
(black spots). (b) An Autoencoder-based approach produces blurry reconstructions to express model
uncertainty (c) Our model: Consistency-based anomaly detection (ConAD) gives the network more
expressive power with a multi-headed decoder (also known as multiple-hypotheses networks). The
resulting anomaly scores are hence much clearer in our framework ConAD.

Multiple-hypotheses networks were not yet applied to anomaly detection due to several difficulties
in training these networks to produce a multi-modal distribution consistent with the training distri-
bution. The loosely coupled hypotheses branches are typically learned with a winner-takes-all loss,
where all learning signal is transferred to one single best branch. Hence, bad hypotheses branches
are not penalized and may support non-existing data regions. The artificial data modes, therefore,
cannot be distinguished from normal data. This is an undesired property for anomaly detection
and becomes more severe with an increasing number of hypotheses. Furthermore, the majority of
multiple-hypotheses-branches tend to concentrate on the most dominant data modes. This hypothe-
ses concentration leads to over-fitting in the neighborhood of dominant modes and under-fitting in
underrepresented data regions. This, too, has a negative effect on the estimated anomaly scores.

Alternatively, mixture density networks (MDNs) (Bishop, 1994) provide a strict coupling of hy-
potheses branches. These models learn a conditional Gaussian mixture distribution. Hence, the
hypotheses are coupled via mixing coefficients into a single likelihood function. Anomaly scores
for new points can be estimated using the data likelihood, as formally defined in Appendix A.

Fig. 2 illustrates the different strategies. A single-mode autoencoder (b) fails in case of multi-modal
distributions. MDNs (c) in principle can be used for abnormality detection even for multimodal
distributions. However, global, multi-modal distribution estimation is a hard learning problem that
does not work as perfectly in practice as shown in this illustration. For instance, MDNs tend to
suffer from mode collapse in high-dimensional data spaces, i.e., the relevant data modes needed
to distinguish rare but normal data from anomalies will be missed. Contrary, Local-outlier-factor
operates in images-space directly without training which (1) fails in very high-dimensional spaces
(2) is slow at test time.

In this work, we adopt multiple-hypotheses networks for anomaly detection to provide a more fine-
grained description of the data distribution than a single-headed network. Hypotheses are meant to
form clusters in the data space and can capture model uncertainty not encoded by the latent code.
We reduce the problem of artificial data modes by combining multiple-hypotheses learning with a
discriminator D as a critic. The discriminator ensures the consistency of estimated data modes w.r.t.
the real data distribution.

Moreover, we propose to focus on the local neighborhood and to estimate the fit of a sample to
the distribution model based on the distance to the closest cluster. This avoids issues with global
distribution estimation methods, such as mode collapse. Hypotheses rather act as local, single mode
density estimates and are easier and more sample-efficient to learn than a full multi-modal distribu-
tion. Fig. 3c shows our framework applied to a variational autoencoder.

We evaluate anomaly detection performance of our approach on CIFAR-10 and a real anomaly im-
age dataset, the ”Metal Anomaly dataset” with images showing a structured metal surface, where
anomalies in the form of scratches, dents or texture differences are to be detected. We show that
anomaly detection performance with multiple-hypotheses networks is significantly better compared
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(a) Cond. space (b) Autoencoder (c) MDN (d) LOF (e) Our model

Figure 2: Local and global neighborhood-based anomaly detection: Here, two pixel dimensions (a)
with details that are hard to capture in the conditional space are shown. The red dot is a new point.
Dark blue indicates high likelihood, black indicates the neighborhood considered. The autoencoder
(b) cannot deal with the multi-modal distribution. The mixture density network (c) in principle
can do so, but recognition of the sample as a normal case is very brittle and will fail in case of
mode collapse. In contrast, Local-Outlier-Factor (d) and our model (e) consider only the local
neighborhood for anomaly score estimation and more reliably classify the point. In our model, we
encourage multiple hypotheses to cover different modes. In each hypothesis branch, the probability
mass is distributed only within the cluster and not beyond.

to single-hypotheses networks. On CIFAR-10, our proposed ConAD framework (consistency-based
anomaly detection) improves on previously published results. Furthermore, we show a large perfor-
mance gap between ConAD and Mixture Density networks (MDNs). This indicates that anomaly
score estimation based on the global neighborhood (or data likelihood) is inferior to local neighbor-
hood consideration.

2 ONE-CLASS LEARNING FOR ANOMALY DETECTION

Traditional one-class learning techniques (Schölkopf et al., 2001; Tax & Duin, 2004; Liu et al., 2008;
2012; Breunig et al., 2000) often fail in high-dimensional input domain and require careful features
selection (Zong et al., 2018) . To cope with high-dimensional domains, typically a reconstruction-
based approach is used. This paradigm comprises two steps: (1) during training, learn the normal
data distribution and (2) at test time, use the negative likelihood for contaminated data as their
anomaly score.

Recently, advances in generative modeling such as Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) and Variational Autoencoder (VAE) (Rezende et al., 2014; Kingma & Welling,
2013) are used for anomaly detection (Zong et al., 2018; Schlegl et al., 2017; Deecke et al., 2018).
However, GAN and VAE approaches have limitations in anomaly detection tasks. The GAN tends
to assign less probability mass to real samples while VAE typically regress to the conditional means,
which can be seen from the blurry reconstructions. The mean regression in VAE express the model
uncertainty and falsify the reconstruction-errors for unseen images.

One simple way to address model uncertainty in VAE is giving the decoder additional expressive
power with multi-headed decoders. The idea is to approximate multiple conditional modes (dense
data regions) by using multiple headed networks. This idea leads to training of multiple networks in
Multi-Choice-learning (Dey et al., 2015; Lee et al., 2017; 2016), the estimation of conditional Gaus-
sian Mixture model in Mixture Density Network (MDN) (Bishop, 1994) and multiple-hypotheses
predictions (MHP) (Ilg et al., 2018; Chen & Koltun, 2017; Bhattacharyya et al., 2018; Rupprecht
et al., 2016a). In MDN, the mixtures are strictly coupled via mixture coefficients while mixtures in
MHPs act as loosely coupled local density estimators. In MHP, only the best hypothesis branch will
receive a learning signal, that is, if it makes the closest guess to the training sample.

For anomaly detection, our model uses MHP-training with VAE to address the model uncertainty
directly. In MDN, the anomaly score is proportional to weighted distances to all data modes and in
MHP only to closest data mode. To highlight the change in paradigm, we refer to this learning in
MHP as consistency-based learning. Samples have a small effect on the loss as long they are close
to one single data mode. The learning dynamic in MHP is also different and more efficient than
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(a) Single-headed networks (b) Multi-headed networks (c) Multi-headed network with discriminator training

Figure 3: Illustration of multiple-hypotheses networks compared to single-hyptohesis network.. Our
ConAD framework (c), which integrates a discriminator D to avoid support of non-realistic data
modes and foster higher mode coverage with the generated hypotheses.

in MDN: the number of samples with a high loss is lower. In this context, we relax the learning
objective from density-based to consistency-based learning.

In Local Outlier Factor (LOF) (Breunig et al., 2000), the outlier-score only depends on the local
neighborhood. The outlier score proportional to the mean density of neighboring points divided by
the local point density. Hence, samples further away do not influence the outlier-score. Motivated by
this heuristic, our model employs learning of many loosely decoupled local density estimates with
MHP-learning. Our model (1) concentrates only on the closest data mode instead of considering
the data likelihood for outlier detection (2) and enables easier learning due to consistency-based
learning instead of full density estimation. LOF computes the outlierness only on test-time and in
input spaces directly. Contrary, our model first approximate the data manifold and subsequently
performs anomaly detection in the input space under the learned model.

The MHP-technique has been used for uncertain tasks such as future prediction (Rupprecht et al.,
2016b) or optical flow prediction (Ilg et al., 2018). In the simplest form, the multiple networks
heads learn from a winner-takes-all (WTA) loss, whereby only the best branch receives the learning
signal. Previous works employ loss extension such as the use of a smoothing loss (Ilg et al., 2018) or
distribution of learning signal to non-optimal branches (Rupprecht et al., 2016b) to generate diverse
and meaningful hypotheses.

Compared to our framework, previous MHP-approaches were not developed for distribution learn-
ing. There is no explicit mechanism to avoid mode collapse among hypotheses. Furthermore, gen-
erated hypotheses could support non-existing data regions, which can be fatal for anomaly detection
tasks. Contrary, our framework ConAD employs a discriminator D to assess the quality of the gen-
erated hypotheses and to avoid support of non-existent data modes. To reduce hypotheses mode
collapse, our model employs hypotheses discrimination. In the spirit of minibatch discrimination
(Salimans et al., 2016), D additionally receives pair-wise distances across a batch of hypotheses.
Since a batch of real samples is typically diverse, D can detect a homogeneous batch of hypotheses
as fake easily.

3 LEARNING WITH MULTIPLE-HYPOTHESES-PROPOSALS (MHP) NETWORKS
FOR ANOMALY DETECTION

Typically in distribution learning, Autoencoder-approaches regress the means and produce blurry
reconstructions. Therefore, we propose to employ MHP as additional expressive power for the
decoder (Fig 3 (a-b)). First, we discuss two possible shortcomings of multiple-hypotheses learning:
support of artificial data mode and hypotheses mode collapse. Subsequently, we show how to reduce
these effects with discriminator training and hypotheses discrimination (Fig 3 c).
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3.1 SHORTCOMING OF MULTIPLE-HYPOTHESES LEARNING

Support of artificial data mode in one-to-many mapping tasks To understand the shortcom-
ings of learning with multiple-hypotheses-proposals (MHP), first consider a simple one-to-many
mapping task from x to y as given in Fig. 4. Unimodal models (i.e., single-headed networks) fail to
capture to data distribution.

Figure 4: Flipped half-moon data-set: mapping from x to y is not unique, e.g. for x = 0, there are
four different modes. Left to right: with an increasing number of mixture components in a mixture
density network, the data distribution can be modeled increasingly well.

Similar to Mixture Density networks, each hypothesis branch in MHP-networks represents a Gaus-
sian density function with a mean and variance. Typically, MHP-networks learns from the winner-
takes-all (MHP-WTA) loss in Eq. 1:

LWTA(y|x) = Exi [log pθh(y|xi)] s.t. h = arg max
j

Exi
[
log pθj (y|xi)

]
(1)

Whereby θj is the parameter set of hypothesis branch j, θh the best hypothesis concerning data like-
lihood given a sample xi. In other words, only the network head with the best-matching hypothesis
concerning the training samples receives the learning signal. The best hypothesis is the one with the
highest sample likelihood (or minimal distance to sample if the variance is equal for all hypotheses).
Additionally, Rupprecht et al. (2016a) proposed a ε-smoothed loss. With this loss, a small ε-ratio of
the learning signal is distributed among non-optimal hypotheses branches. We refer to this loss as
learning with MHP-loss (Appendix 11).

However, learning with MHP or MHP-WTA may result in support of artificial (non-existing) data
modes. Fig. 5 illustrates this problem, which we refer to as inconsistency concerning the underlying
distribution. In regions where the half-moon abruptly ends, the hypotheses (in MHP and MHP-
WTA) continue and support non-existing data regions. This inconsistency effect is fatal for anomaly
detection. More details can be found in the experiments on the toy dataset in the appendix B.
Intuitively, in learning with the winner-takes-all loss, the non-optimal hypotheses are not penalized.

Figure 5: Flipped half-moon dataset: conditional prediction of y based on x. Red points are sam-
ples from true distribution while blue points represent samples from distributions approximations.
Learning with multiple-hypotheses predictions (MHP) loss or MHP + Winner-takes-all (WTA) loss
lead to support of artificial data regions. Our approach ConAD reduces this effect.

Therefore they can support artificial data regions without being informed via the learning signal. A
more formal discussion can be found in Appendix D.
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The learning signal distribution with ε-parameter attempts to reduce support of artificial regions.
However, finding good ε is crucial and difficult. If ε = 0, the MHP loss corresponds to learning
with MHP-WTA. If ε = H−1

H , whereby H is the number of hypotheses branches, all hypotheses
will regress to the same conditional mean. A more formal discussion can be found in Appendix E.
Additionally, ε is an additional hyper-parameter to be chosen. Choosing proper hyper-parameters in
one-class-learning is difficult since there is no anomaly available at training time.

Distribution learning with Autoencoder as a one-to-many mapping task Training Autoen-
coders with likelihood-metric often results in blurry reconstructions. This blurriness is fatal for
anomaly detection since it falsifies the reconstructions error. This effect can be understood as a re-
gression to the conditional mean. That means, after training convergence, each point on the learned
manifold still represents many different data points in the input space. In other words, the mapping
from latent code to input space is a one-to-many mapping.

Certainly, in the optimal training case, each point on the data manifold should represent one single
input vector. However, this optimality requires either significantly more data to reduce the model
uncertainty or powerful encoder network and latent code or both. Contrary, we propose to let the Au-
toencoder express the model uncertainty with the multiple-hypotheses directly. Hence, the change
to Autoencoder is very simple, and no more data is required than before.

Mode collapse across hypotheses Furthermore, with the MHP and MHP-WTA learning objec-
tive, the hypotheses are encouraged to cover the existing modes. When there are more hypotheses
available than data modes, most of the hypotheses will tend to concentrate on the most dominant
data modes. This mode collapse can be avoided by enforcing diversity across hypotheses, which is
similar to maximizing inter-class variance across clusters defined by the hypotheses.

3.2 CONSISTENCY-BASED ANOMALY DETECTION (CONAD) WITH MHP AND
DISCRIMINATOR D

(a) (b) (c)

Figure 6: (a) shows a modeling task with one extremely dominant data mode (dense region) and
one under-represented mode. (b) shows how multiple-hypotheses predictions are used to cover data
modes. Hypotheses tend to concentrate on dominant mode, which leads to over-fitting in this region.
(c) Increasing diversity across hypotheses (similar to maximizing inter-class variance) leads to better
clusters

We propose multiple-hypotheses Variational Autoencoder (VAE) for learning the normal data dis-
tribution for anomaly detection tasks. Each hypothesis branch can be seen as a cluster in the data
conditional space. Anomalies are detected using the distance to next local clusters, in contrast to
distances to all clusters in Mixture Density networks (MDN) (Bishop, 1994). To avoid coverage of
non-existing data regions by the hypotheses, we propose to use a discriminator as a critic. Further,
we employ hypothesis discrimination to encourage diversity among hypotheses. This constraint is
similar to the improvement of inter-class variance among clusters. The details are explained in the
following.

Learning with multiple-hypotheses predictions (MHP) in Variational Autoencoder In this
work, we consider distribution learning in an Autoencoder as a one-to-many-mapping. We pro-
pose to let the network express the model uncertainty in the conditional input space with multiple
hypotheses predictions (MHP). The hypotheses can be seen as a set of local density estimates (or
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(a) Multi-hypotheses Autoencoder
(b) Discriminator training

Figure 7: ConAD: our multiple-hypotheses autoencoder and with the training discriminator training.

cluster). In contrast to that, Mixture Density Network (MDN) predicts a Gaussian Mixture model in
the conditional space. We refer to this estimate as a global density estimate.

The learning of different hypotheses is performed based on a winner-takes-all-objective as given in
Eq. 2.

LWTA(x) = Ezi∼qφ(zi|x) [log pθh(x|zi)] s.t. h = arg max
j

Ezi∼qφ(zi|x)

[
log pθj (x|zi)

]
(2)

Whereby LWTA is the winner-takes-all energy function, 1 ≤ j ≤ H indicates the different hypothe-
ses networks, zi the respective latent code. To reduce free parameters, hypotheses networks with
params θj share all layers but the last output layer. Intuitive, it means that only the best matching
hypothesis receives all of the learning signals from the negative log-likelihood (NLL) loss during
training.

An efficient variant to realize MHP in neural networks is by using multi-headed-networks. In this
variant, only the last layer is split to provide different hypotheses. All other layers are shared as
shown in Fig. 3c. Our framework is based on the Variational Autoencoder (Kingma & Welling,
2013; Rezende et al., 2014) which provides an effective manifold learning and an efficient inference
stage with a parameterized encoder qφ.

Discriminator D to avoid non-existent mode coverage and mode collapse of hypotheses Hy-
potheses generated by the MHP-networks could support artificial data regions not covered by real
samples due to the WTA loss. To alleviate this, we propose to match the density estimates with
MHP to the real underlying density. The auxiliary task is to learn from a symmetric variant of the
Kullback-Leibler divergence (KLD). In detail, we employ the Jensen-Shannon divergence (JSD)-
metric by using discriminator D as a critic for generated hypotheses. Fig. 3c illustrates a sample
realization with VAE.

More concretely, the D and G are in a mini-max game in Eq. 3.

min
D

max
G

LD(x, z) = min
D

max
G
− log(pD(xreal))︸ ︷︷ ︸

Lreal

+Lfake(x, z) (3)

Lfake(x, z) = log(pD(x̂z∼N (0,1))) + log(pD(x̂z∼N (µz|x,Σz|x))) + log(pD(x̂best guess)) (4)

In this energy formulation, the standard GAN loss is extended to assure the quality of generated
hypotheses. Figure 7 illustrates how samples are fed into the discriminator. Samples labeled as
fake are: randomly-sampled images x̂z∼N (0,1), data reconstruction defined by individual hypothe-
ses x̂z∼N (µz|x,Σz|x), the best combination of hypotheses according to the Winner-takes-all-loss
x̂best guess.

Accordingly, the learning objective for the VAE generator becomes:

min
G

LG = min
G

LWTA +KLD(qφ(z|x)||N (0, 1))− LD (5)
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Name Problem Tasks Resolution Normal data Anomaly
Train Valid Test Test

CIFAR-10 1 vs. 9 10 32x32 4500 500 1000 9000
Metal anomaly 1 vs. 1 1 224x224 5408 1352 1324 346

Table 1: Dataset description. Cifar-10 is transformed into 10 anomaly detection tasks, whereby one
class is used as the normal class, the remaining classes are the anomalies. Further, note that the
train & validation dataset contains only normal data samples. This scenarios resembles the typical
situations where anomalies are extremely rare and not available at training time.

To address the mode collapse problem of hypotheses, we propose to employ hypotheses discrimi-
nation (based on minibatch discrimination (Salimans et al., 2016)). In each batch, the discriminator
receives the pair-wise features distance across generated hypotheses. Since batches of real images
have large pair-wise distances, the generator has to generate diverse outputs to avoid being detected
too easily.

In summary, our framework ConAD proposes multiple-hypotheses learning with a VAE, supported
by a discriminator D to avoid support of non-existing data modes and foster mode coverage. The
local likelihood estimates given by the closest hypothesis are used for anomaly detection.

4 EXPERIMENTS

4.1 EXPERIMENTS DESCRIPTIONS

In this section, we focus on the evaluation of our approach compared to recent deep learning and
non-deep learning techniques for one-class learning tasks. In these tasks, anomalies are extremely
rare and hence not available at training time. The main effort comes from the collection of a large
dataset to receive anomalies, not from the labeling activity.

The details of the proposed framework; consistency-based anomaly detection (ConAD) is explained
in the following. A Variational Autoencoder Kingma & Welling (2013) with Gaussian output distri-
bution is employed as a baseline model. The decoder is then extended to a multiple-head-network
to support multiple-hypotheses. Each hypothesis itself predicts a Gaussian density estimate. The
outputs from the Autoencoders are criticized by a discriminator D. The network architecture follows
principles from Radford et al. (2015b) and Springenberg (2015). Fig. 3 c) shows such a network
conceptually. The framework can be easily extended to recent advances in deep generative mod-
eling. Quantitative evaluation is done on CIFAR-10 and the Metal Anomaly dataset. The typical
10-way classification task in CIFAR-10 is transformed into 10 one vs. nine anomaly detection tasks.
Each class is used as the normal class once; all remaining classes are treated as anomalies. De-
tails can be found in Tab. 1. During model training, only data from the normal data class is used,
data from anomalous classes are abandoned. At test time, anomaly detection performance is mea-
sured in Area-Under-Curve of Receiver Operating Curve (AUROC) based on normalized negative
log likelihood scores given by the training objective.

In Tab. 2, we evaluated on CIFAR-10 variants of our multiple-hypotheses approaches including the
following energy formulations: MDN (Bishop, 1994), MHP-WTA (Ilg et al., 2018), MHP (Rup-
precht et al., 2016a), ConAD, and MDN+ConAD. We compare our methods against vanilla VAE
(Kingma & Welling, 2013; Rezende et al., 2014) , VAEGAN (Larsen et al., 2015; Dosovitskiy
& Brox, 2016), AnoGAN (Schlegl et al., 2017), AdGAN Deecke et al., 2018, OC-Deep-SVDD
(Ruff et al., 2018). Traditional approaches considered are: Isolation Forest (Liu et al., 2008; 2012),
OCSVM (Schölkopf et al., 2001). The performance of traditional methods suffers due to the curse
of dimensionality (Zong et al., 2018).

Furthermore, on the high-dimensional Metal anomaly dataset, we focus only on the evaluation of
deep learning techniques. The GAN-techniques proposed by previous work AdGAN & AnoGAN
heavily suffer from instability due to pure GAN-training on a small dataset. Hence, their train-
ing leads to random anomaly detection performance. Therefore, we only evaluate MHP-based ap-
proaches against their uni-modal counterparts (VAE, VAEGAN).

8



Under review as a conference paper at ICLR 2019

Traditional models Deep Learning models
KDE-PCA OC-SVM-PCA IF GMM AnoGAN ADGAN OC-D-SVDD

.590 .610 .558 .585 .612 .620 .632
Multiple hypothesis models

Hypotheses branches MHP MHP+WTA MDN MDN+ConAD ConAD
1 .610 (= VAE) .609 (= VAE-GAN)
2 .619 .622 .609 .616 .643
4 .619 .622 .610 .621 .639
8 .618 .619 .610 .623 .671
16 .617 .620 .609 .614 .659

Table 2: Anomaly detection on CIFAR-10, performance measured in AUROC. Each class is consid-
ered as the normal class once with all other classes being considered as anomalies, resulting in 10
one-vs-nine classification tasks. Performance is averaged for all ten tasks and over three runs each.
See appendix for detailed performance. Our approach significantly outperforms previous traditional
and deep learning methods.

Multiple hypothesis models
Hypotheses branches MHP MHP+WTA MDN MDN+ConAD ConAD

1 .942 (= VAE) .936 (= VAE-GAN)
2 .980 .980 .900 .942 .985
4 .970 .980 .910 .913 .977
8 .950 .946 .916 .943 .965

Table 3: Anomaly detection performance on Metal Anomaly dataset. To reduce noisy residuals due
to the high-dimensional input domain, only 10% of maximally abnormal pixels with the highest
residuals are summed to form the total anomaly score. AUROC is computed on an unseen test set, a
combination of normal and anomaly data. For more detailed results, refer to attachment H. Anomaly
detection performance of plain MHP rapidly breaks down with increasing number of hypotheses.

4.2 CIFAR-10

Tab. 2 shows an extensive evaluation of different traditional and deep learning techniques. Results
are adapted from Deecke et al. (2018) in which the training and testing scenarios were similar. Refer
to Appendix. G for more results. Traditional, non-deep-learning methods only succeed to capture
classes with a dominant homogeneous background such as ships, planes, frogs (backgrounds are
water, sky, green nature respectively). This issue occurs due to preceding feature projection with
PCA, which focuses on dominant axes with large variance. Deecke et al. (2018) reported that even
discriminative features from a pretrained AlexNet have no positive effect on anomaly detection
performance.

In contrast to that, deep learning methods are performing significantly better, even without careful
parameter tuning. When the MHP-technique is applied to this task, a performance comparable to
previously reported deep learning, but non-MHP results is achieved. Note that having the multiple
output distributions is not sufficient to meet high performance: MDNs are performing worse than
the local density estimation provided by the MHP-technique. Nevertheless, the best performance is
achieved in our ConAD- framework, by utilizing the flexibility of multiple hypotheses more effec-
tively, leading to significantly higher detection performance of up to 5.1% absolute improvement.

4.3 METAL ANOMALY DATASET

Tab.3 shows an evaluation of MHP-methods against density-learning methods such as VAE (Kingma
& Welling, 2013), MDN (Bishop, 1994), VAEGAN (Dosovitskiy & Brox, 2016; Larsen et al., 2015).
Note that the VAE-GAN model corresponds to our ConAD with a single hypothesis. The VAE
corresponds to a single hypothesis variant of MHP, MHP-WTA, and MDN.

9



Under review as a conference paper at ICLR 2019

The significant improvement of up to 4.2% AUROC-score comes from our relaxation of density
estimation into local density estimation in the spirit of LOF (Breunig et al., 2000), i.e., each dense
data region (mode) receives at least one hypothesis to cover the local density. In a high-dimensional
domain such as images, anomaly detection with MDN is worse than with our approach MHP ap-
proaches. Consider images with an extremely rare value in one pixel-dimension. The Mixture
Density models evaluate likelihood based on all data modes found for this pixel. In contrast to
that, MHP-models only considers which data mode is the closest and computes the local likelihood
as the anomaly score. The local neighborhood suppresses the over-estimation of anomaly degree
compared to a global likelihood.

Using the MHP-technique, better performance is already achieved with two hypotheses. However,
without the discriminator D, an increasing number of hypotheses rapidly leads to performance break-
down, due to the inconsistency property of generated hypotheses as discussed earlier. Intuitively, ad-
ditional non-optimal hypotheses are not strongly penalized during training, if they support artificial
data regions which are not consistent w.r.t. the real underlying data distribution.

With our framework ConAD, anomaly detection performance remains competitive or better even
with an increasing number of hypotheses available. The discriminator D makes the framework
adaptable to the new dataset and less sensitive to the number of hypotheses to be used.

When more hypotheses are used (8), the anomaly detection performance rapidly breaks down. We
suggest that the noise is then learned too easily. Consider the extreme case when there are 255
hypotheses available. The Winner-Takes-all-loss will encourage each hypothesis branch to predict a
constant image with one value from [0,255]. The discriminator D as a regularizer will try to prevent
this effect. That might be a reason why our ConAD has less severe performance breakdown. Our
model ConAD is less sensitive to the choice of the hyper-parameter for the number of hypotheses. It
also enables better exploitation of the additional expressive power provided by the MHP-technique
for new anomaly detection tasks.

5 CONCLUSION

In this work, we propose to employ multiple-hypotheses networks for learning data distributions
for anomaly detection tasks. Hypotheses are meant to form clusters in the data space and can easily
capture model uncertainty not encoded by the latent code. multiple-hypotheses networks can provide
a more fine-grained description of the data distribution and therefore enable also a more fine-grained
anomaly detection. Furthermore, to reduce support of artificial data modes by hypotheses learning,
we propose using a discriminator D as a critic. The combination of multiple-hypotheses learning
with D aims to retain the consistency of estimated data modes w.r.t. the real data distribution.
Further, D encourage diversity across hypotheses with hypotheses discrimination. Our framework
allows the model to identify out-of-distribution samples reliably.

For the anomaly detection task on CIFAR-10, our proposed model results in up to 3.9% points im-
provement over previously reported results. On a real anomaly detection task, the approach reduces
the error of the baseline models from 6.8% to 1.5%.
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A MIXTURE DENSITY NETWORK

The Mixture Density networks predict a data conditional Gaussian mixture model (GMM)in the data
space. Conditioning means that each latent vector, i.e., a point on the learned manifold is projected
back to a GMM in the data space.

A GMM learns from the following energy function:

LGMM (x) = − log
∑
h

αhN (x;µh, σh) (6)

Whereby x is the input data, µh and σh parametrize the h− th Gaussian distribution in the mixture.
αh are the mixing coefficients across the individual mixtures.

Contrary, a Mixture Density network hat multiple output heads (multiple-hypotheses). The frame-
work extends the GMM-learning by the data conditioning as follows:

LMDN (x) = Ezi∼qφ(zi|x) [LGMM (x|zi)] (7)

whereby qφ is a inference network shared by all individual mixtures. z is the latent code. The
hypotheses are coupled into forming a likelihood function by the mixing coefficients αi.

B MULTIMODAL LEARNING ON THE FLIPPED MOON TOY DATASET

Figure 8: Flipped half-moon dataset: conditional prediction of y based on x. Red points are sam-
ples from true distribution while blue points represent samples from distributions approximations.
Learning with multiple-hypotheses predictions (MHP) loss or MHP + Winner-takes-all (WTA) loss
lead to support of artificial data regions. Mixture density networks and our approach ConAD reduces
this effect.

Fig. 4 shows the flipped half-moon dataset to demonstrate MHP-learning in contrast to unimodal
output distribution learning. In this section, Fig 8 shows a qualitative evaluation of different MHP-
techniques. This task is a one-to-many mapping from x to y with a discontinuity at the point x = 0
and x = 0.5.

When the local density function abruptly ends, MHP-techniques support artificial data regions since
they are not penalized for artificial modes by the objective function as discussed before. We refer
to this property as an inconsistency concerning the true underlying distribution. In contrast to that,
Mixture Density Networks (MDN) and our ConADs approaches reduce the inconsistencies to the
minimum.

C ONE-TO-MANY MAPPING TASKS REQUIRE MULTI-MODALITY

Consider a simple toy problem with an observable x and hidden y which is to be predicted and
expressed by the conditional distribution ptrue(y|x) such as in Fig. 4. Since the data conditional
is multi-modal for some x, an uni-modal output distribution cannot fully capture the underlying
distribution. Instead, the bias-free solution for the Mean-Squared-Error-minimizer is the empirical
mean yxi of ptrain(y|xi) on the training set. However, this learned conditional density does not
comply with the underlying distribution: sampled data points fall into the low-likelihood regions
under ptrue(y|x). With increasing number of output hypotheses, the data modes could be gradually
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captured. For this task, the energy to be minimized is given by the Negative-log-likelihood of the
Mixture Density Network (MDN) App. A under a Gaussian Mixture with hypotheses h in Eq. 9 :

EMDN (Θ) = − logL(Θ|X;Y ) = − log pGMM (Y |X,Θ) = −
∑
i

∑
h

logαhpθh(yi|xi) (8)

with

pθh(yi|xi, θh) =
1√

2πσh
exp− (yi − µh)2

2σ2
h

(9)

D LEMMA 4.1

Given a sufficient number of hypotheses H’, an optimal solution Θ∗ for EWTA(Θ∗) is not unique
(permutation is excluded). There exists a Θ

′
withEWTA(Θ∗) = EWTA(Θ

′
) which is not consistent

w.r.t. the underlying output distribution ptrain(yi|xi).

Proof. : Suppose c is the maximal modes count of the dataset sampled from the real underlying
conditional output distribution p(yi|xi). Since |{(xi, yi)}| <∞→ c <∞.

Suppose H = c, then a trivial optimal solution for EWTA(ΘH) is found by centering each hy-
pothesis µik at a different empirical data point k yik ∼ (yi, xi) and σik 7→ 0. In this case

lim
σik 7→0;∀i,k

EWTA(Θ̂H) = 0.

Suppose H ′ > c, then a solution Θ̂H′ can be formulated s.t.: E(Θ̂H) = E(Θ̂H′).

Let Θ̂H′ = Θ̂H ∪ Θ̂H+1...H′ = Θ̂H ∪ {θh+1 . . . θh′} for some random Θ̂H+1...H′ . Due to
randomness and without loss of generality, one can assume that ∀(xi, yi),∀θi ∈ ΘH+1...H′ , θi is
not the optimal hypothesis for any training point (xi, yi) ∈ Dtrain.

In this case due to the winner-takes-all energy formulation we have:

EWTA(θ̂H′) = −
∑
i

max
1≤h≤H′

log pθh(yi|xi) = −
∑
i

max
1≤h≤H

log pθh(yi|xi) = EWTA(θ̂H) (10)

So Θ̂H and Θ̂H′ with H ′ > H are both solutions to the loss formulation and share the same energy
level. The extended hypotheses can support arbitrary artificial data regions without being penalized.

E LEMMA 4.2

EMHP (Θ) = −
∑
i

∑
h

log (pθh(yi|xi)) ∗

{
1− ε, pθh(yi|xi) ≥ pθk(yi|xi),∀k
ε

H−1 , else
(11)

Whereby xi,yi is corresponding input-output pairs from the training dataset, 1 ≤ h ≤ H is a
hypothesis branch, which is generated by a parametrized neural network with the parameter set
θh. Furthermore, ε is a hyperparameter used to distribute the learning signal to the non-optimal
hypotheses. Θ is the collection of all θh.
Lemma E.1. Similar to Lemma D, minimizing EMHP in Eq. 11 might also lead to an inconsistent
approximation of the real underlying output distribution.

Proof. First, note that 0 ≤ ε ≤ H−1
H , since ε < 0 would push away non-locally optimal hypotheses

from the empirical solution, ε > H−1
H would penalize the best hypothesis more than others. Both

are undesired properties of MHP-learning. First consider the case where ε 7→ H−1
H :

lim
ε7→H−1

H

EMHP (Θ) =
∑
i

∑
h

log (pθh(yi|xi)) ∗
1

H
(12)
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=
1

H

∑
h

(∑
i

log (pθh(yi|xi))

)

=
1

H

∑
h

Eθh

∀θh and training data points (xi, yik) the optimal least-squares solution is the mean, therefore we
have:

θ∗h(yi|xi) = Eyik∼p(y|xi)[yi]

=
1

l

l∑
i=1

yi; yik ∼ p(yi|xi)

In this case, all hypotheses are optimized independently and converge to the same solution simi-
lar to a single-hypothesis approach. The resulting distribution is inconsistent w.r.t the real output
distribution (see Fig. 4 for an example).

Now consider ε 7→ 1:

lim
ε7→1

EMHP (Θ) = −
∑
i

∑
h

log (pθh(yi|xi)) ∗
{

1; if θh is best hypothesis
0; else

= −
∑
i

max
1≤h≤H′

log pθh(yi|xi)

= EWTA(Θ)

In this caseEMHP shares the same inconsistency property withEWTA. Consequently, choosing ε ∈
[0, H−1

H ] only smoothes the penalty on suboptimal hypotheses. The risk remains that distributions
induced by non-optimal hypotheses are beyond the real modes of the underlying distribution.

F EXPERIMENTS DETAILS

Network architecture The networks are following DCGAN (Radford et al., 2015a) but only
scaled down to support low-resolution of CIFAR-10. Concretely, the decoder (generator) only uses
deconvolutional layers. Throughout the network, leaky-relu units are employed. The framework is
implemented in Lasagne (Dieleman et al., 2015) /Theano (Bergstra et al., 2010; Bastien et al., 2012).

Hypotheses branches are represented as decoder networks heads. Each hypothesis predicts one
Gaussian distribution with diagonal co-variance Σ and mean . The winner-takes-all loss operates
on pixel-level,i.e., for each predicted pixel, there is a single winner across hypotheses. The best-
combined-reconstructions is the combination of winning hypotheses on pixel-level.

Training We feed the fake images to the discriminator D, consisting of 4 batches:

• real n real images

• fake: n random hypotheses from image reconstructions hypotheses branches

• fake: n best-combined (based on winner hypotheses) reconstructions

• fake: n random sampled images from latent prior N (0, 1)

The batch-size n was set to 64 each on CIFAR-10, 32 on Metal Anomaly. The training was per-
formed with Adam (Kingma & Ba, 2014) with a learning rate of 0.001. Per discriminator training,
the generator is trained at most five epochs to balance both players.
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CIFAR-10 0 1 2 3 4 5 6 7 8 9 Mean
KDE-PCA .705 .493 .734 .522 .691 .439 .771 .458 .595 .490 .590
KDE-Alexnet .559 .487 .582 .531 .651 .551 .613 .593 .600 .529 .570
OC-SVM-PCA .666 .473 .675 .530 .827 .438 .787 .532 .720 .453 .610
OC-SVM-Alexnet .594 .540 .588 .575 .753 .558 .692 .547 .630 .530 .601
IF .630 .379 .630 .408 .764 .514 .666 .480 .651 .459 .558
GMM .709 .443 .697 .445 .761 .505 .766 .496 .646 .384 .585
AnoGAN .610 .565 .648 .528 .670 .592 .625 .576 .723 .582 .612
ADGAN .632 .529 .580 .606 .607 .659 .611 .630 .744 .644 .62
VAE .771 .467 .684 .538 .71 .542 .642 .512 .765 .467 .610
VAEGAN .762 .469 .697 .520 .756 .536 .588 .554 .754 .460 .609
OC-D-SVDD .617 .659 .508 .591 .609 .657 .677 .673 .759 .731 .632
MDN-2 .761 .469 .687 .538 .704 .538 .632 .523 .768 .467 .609
MDN-4 .769 .468 .686 .535 .693 .544 .635 .541 .76 .469 .610
MDN-8 .762 .469 .686 .533 .704 .547 .633 .53 .763 .473 .61
MDN-16 .762 .479 .682 .528 .701 .54 .635 .529 .764 .469 .609
MHP-WTA-2 .773 .516 .68 .552 .695 .543 .643 .555 .76 .512 .622
MHP-WTA-4 .778 .539 .651 .567 .66 .542 .635 .563 .752 .541 .622
MHP-WTA-8 .761 .56 .627 .588 .626 .553 .614 .578 .743 .548 .619
MHP-WTA-16 .757 .567 .609 .598 .627 .56 .61 .568 .738 .573 .62
MHP-2 .755 .499 .676 .546 .693 .543 .636 .577 .764 .508 .619
MHP-4 .752 .51 .66 .568 .677 .551 .644 .56 .764 .51 .619
MHP-8 .757 .54 .652 .576 .648 .554 .625 .547 .759 .53 .618
MHP-16 .758 .539 .641 .585 .646 .552 .623 .545 .759 .532 .617
MDN+ConAD-2 .746 .489 .686 .521 .711 .525 .668 .577 .765 .481 .616
MDN+ConAD-4 .762 .504 .69 .524 .716 .532 .659 .583 .753 .489 .621
MDN+ConAD-8 .774 .483 .693 .531 .722 .537 .679 .54 .76 .519 .623
MDN+ConAD-16 .736 .469 .694 .522 .753 .541 .657 .568 .753 .454 .614
ConAD - 2 (ours) .773 .600 .666 .562 .694 .561 .706 .630 .748 .499 .643
ConAD - 4 (ours) .776 .525 .663 .570 .687 .541 .801 .548 .741 .539 .639
ConAD - 8 (ours) .774 .652 .648 .601 .670 .579 .725 .662 .748 .660 .671
ConAD - 16 (ours) .772 .631 .631 .615 .633 .588 .691 .640 .755 .637 .659

Table 4: CIFAR-10 anomaly detection: AUROC-performance of different approaches. The column
indicates which class was used as in-class data for distribution learning. Note that random perfor-
mance is at 50% and higher scores are better. Top-2-methods are marked. Our ConAD approach
outperforms traditional methods and vanilla MHP-approaches significantly and can benefit from an
increasing number of hypotheses. Furthermore, Mixture Density Networks perform similarly to
uni-modal output distributions of VAEs.
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G CIFAR-RESULTS

H METAL ANOMALY DATASET

Figure 9: Metal Anomaly dataset. Image reconstructions: reconstructions from uni-modal models
are blurry at convergence. Using our ConAD-approach (last two rows), the maximally consistent
reconstruction is closer to the original image, capturing many more details needed to differentiate
between normal data noise and real anomalies, such as black spots or scratches. The likelihood
maximizer in the hypotheses space is much closer to the original and also more realistic. The
residuals are significantly clearer for our ConAD-method.

17



Under review as a conference paper at ICLR 2019

Model NLL-All-pixels 10% abnormal pixels 1%-abnormal pixels
VAE .795 .942 .977
VAEGAN (1-hyp) .782 .936 .978
MDN-2 .746 .900 .970
MDN-4 .765 .910 .960
MDN-8 .743 .916 .975
MDN+ConAD-2 (ours) .810 .942 .966
MDN+ConAD-4 (ours) .781 .913 .951
MDN+ConAD-8 (ours) .810 .943 .978
MHP-2 .876 .980 .993
MHP-4 .834 .970 .990
MHP-8 .793 .950 .984
MHP-WTA-2 .851 .980 .990
MHP-WTA-4 .878 .980 .990
MHP-WTA-8 .800 .946 .981
ConAD-2 (ours) .867 .985 .992
ConAD-4 (ours) .812 .977 .990
ConAD-8 (ours) .817 .965 .987

Table 5: Anomaly detection performance on the Metal Anomaly dataset, measured in AUROC,
showing how different multiple hypothesis approaches perform with increasing number of hypothe-
ses. Vanilla single-hypothesis approaches such as VAE and VAE+GAN under-perform on this task.
Even with more sophisticated multi-modal output distribution capacity (MDN), the discriminability
is not improved. The integration of MDN into the GAN-framework only slightly improves the re-
sults. On the other hand, all other MHP-approaches perform similarly well with > 99% AUROC (at
1% of most abnormal pixels considered), which indicates that the task has become easily solvable
for these methods.
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