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Abstract

Mixture-of-Experts (MoE) architectures face
challenges such as high memory consump-
tion and redundancy in experts. Pruning MoE
can reduce network weights while maintaining
model performance. Motivated by the recent
observation of emergent large magnitude fea-
tures in Large Language Models (LLM) and
MOoE routing policy, we propose MoE-Pruner,
a method that prunes weights with the smallest
magnitudes multiplied by the corresponding in-
put activations and router weights. Our pruning
method is one-shot, requiring no retraining or
weight updates. Furthermore, our pruned MoE
models can benefit from a pretrained teacher
model through expert-wise knowledge distilla-
tion, improving performance post-pruning. We
evaluate our method on various MoE models,
such as Mixtral and DeepSeek, across multiple
zero-shot evaluation benchmarks. Experimen-
tal results demonstrate that our pruning method
significantly outperforms state-of-the-art LLM
pruning methods. The pruned model with 50%
sparsity maintains 99% of the performance of
the original model after the expert-wise knowl-
edge distillation.

1 Introduction

Mixture-of-Experts (MoE) architectures (Jacobs
et al., 1991; Shazeer et al., 2017) have been pro-
posed to reduce the computing cost while enabling
efficient scaling of network capacity. It has been
successfully employed to scale both vision (Ruiz
et al., 2021; Shen et al., 2023) and language (Lep-
ikhin et al., 2021; Fedus et al., 2022) models. In
addition, these models provide other advantages,
including sparsity that can mitigate catastrophic
forgetting in continual learning and an inductive
bias that can enhance performance in multitask
learning (Collier et al., 2020; Komatsuzaki et al.,
2023). Overall, MoE has proven to be a promising
strategy for scaling deep learning models across
various domains.

However, several crucial limitations persist in
MoE for expanding its capacity. First of all, the
static parameters, particularly those required for
constructing the MoE architecture, introduce sub-
stantial memory overheads and constraints for de-
ployment. For example, Mixtral-8x7B (Jiang et al.,
2024) expert layers account for 96% of model pa-
rameters (45B out of 47B), which demands con-
siderable memory and storage during inference.
Moreover, MoE has a poor utilization of its experts.
The conventional learning-based routing policy for
MoE suffers from representation collapse issues
since it encourages token embeddings to be clus-
tered around expert centroids (Chi et al., 2022) and
results in redundant experts (Mittal et al., 2022;
Chen et al., 2022).

One possible solution to address those draw-
backs and fully unleash the power of MoE is con-
solidating information from insignificant experts,
aiming to establish a more compact MoE without
hurting performance. Another solution is prun-
ing experts that yield the lowest token reconstruc-
tion loss. Nevertheless, naively combining existing
model merging mechanisms or expert pruning leads
to performance degradation in the MoE architec-
tures. We raise the following pivotal question for
MOoE LLM pruning: How can we formulate and
devise comprehensive pruning metrics tailored for
MOoE Large Language Models without degrading
model performance?

In this paper, we systematically explore MoE
LLM pruning and target a high-quality compressed
MoE model in downstream fine-tuning scenarios.
Specifically, we first analyze the open-source MoE
model’s expert activation frequency and observe
that different MoE expert initialization methods
result in different expert activation frequencies and
expert similarities. We leverage existing LLM prun-
ing methods such as SparseGPT (Frantar and Al-
istarh, 2023) and Wanda (Sun et al., 2024), and
design a novel pruning metric that incorporates



MOoE router weights information to identify and re-
move unimportant weights in expert layers. Since
the pruning process is one-shot and only requires a
small set of calibration data, the MoE model suffers
from performance degradation. To recover MoE
model performance, we further propose an expert-
wise knowledge distillation method that utilizes the
pretrained model as a teacher model, facilitating
the recovery of the pruned model’s performance.

Our main contributions can be summarized as
follows:

* We propose MoE-Pruner which is efficient
and effective for pruning MoE models with
minimal performance degradation.

* We design an innovative expert-wise knowl-
edge distillation method that leverages the
pretrained MoE model as a teacher model to
recover pruned MoE student model perfor-
mance.

* Experimental results on various MoE mod-
els, such as Mixtral and DeepSeek, across
nine zero-shot evaluation benchmarks demon-
strate the effectiveness of our MoE-Pruner al-
gorithm. MoE-Pruner achieves minimal per-
formance drop even at 50% sparsity using
only a small set of calibration data, outper-
forming existing pruning methods. Further-
more, the pruned model maintains 99% of the
performance of the original model after the
expert-wise knowledge distillation.

2 Preliminaries

Mixture-of-Experts (MoE). Scaling model size
increases learning capacity and enhances general-
ization (Kaplan et al., 2020; Brown et al., 2020;
Hoffmann et al., 2022). MoE (Jacobs et al., 1991;
Shazeer et al., 2017; Lepikhin et al., 2021; Fedus
etal., 2022) is an efficient approach that enables sig-
nificantly more compute-efficient pretraining and
inference. It replaces the feed-forward network
(FEN) layers in Transformers (Vaswani et al., 2017)
with expert layers, where different experts are acti-
vated for different input tokens instead of utilizing
the full network parameters. Sparse MoE archi-
tecture can dramatically scale the model with the
same compute budget as a dense model.

MOoE Expert Initialization. MoE expert initial-
ization uses different strategies, which can be clas-
sified into two categories: sparse upcycling (Ko-
matsuzaki et al., 2023) and training from scratch.

The sparse upcycling method starts from a dense
model checkpoint and copies all parameters, ex-
cept the MoE router, which does not exist in the
original dense model. In particular, each expert
in the new MoE layer is an identical copy of the
original MLP layer that is replaced. Some open-
source MoE models such as Mixtral (Jiang et al.,
2024), Qwenl.5-MoE-A2.7B (Team, 2024), and
MiniCPM-MoE (Hu et al., 2024) all employ the up-
cycling approach to reduce the total training costs.
While some MoE models like DeepSeek-V2 (Liu
et al., 2024a), OLMoE (Muennighoff et al., 2024),
and Yuan2.0-M32 (Wu et al., 2024) use the training
from scratch approach to help expert diversifica-
tion.

Large Language Model Pruning. Magnitude
pruning (Han et al., 2016) is a standard approach
to induce sparsity in neural networks. It removes
individual weights with magnitudes below a cer-
tain threshold. However, magnitude pruning fails
dramatically on LLMs even with relatively low
levels of sparsity (Frantar and Alistarh, 2023).
SparseGPT (Frantar and Alistarh, 2023) proposes a
one-shot, post-training pruning method that prunes
LLM weights and uses Hessian matrix and calibra-
tion data to update the remaining weights without
any retraining. Wanda (Sun et al., 2024) is a simple
method that prunes LLM weights with the smallest
magnitudes multiplied by the corresponding input
activations without any additional weight update.

Pruning for MoE Models. Most of the works
for MoE pruning focus on structured expert prun-
ing (Yang et al., 2024b; Lee et al., 2024). Chen
et al. (2022) and Koishekenov et al. (2023) prune
experts based on their utilization to save memory.
However, this usually leads to degraded perfor-
mance. Lu et al. (2024) enumerates expert combi-
nations based on the required expert number and
uses calibration data to find a set of remaining ex-
perts that has the minimum reconstruction loss, but
this method cannot scale to MoE LLMs with 32
or more experts. Chowdhury et al. (2024) prunes
experts based on the change in the router’s norm
and proves that the generalization accuracy can be
preserved. However, expert pruning sometimes
removes experts with certain knowledge and re-
sults in the loss of model performance. Therefore,
Li et al. (2024), Zhang et al. (2024b), Liu et al.
(2024b) all leverage expert merging techniques to
compress the expert layer while also preserving
expert knowledge.



3 Methodology

3.1 The Mixture-of-Experts Architecture

Mixture-of-Experts (MoE) architecture. MoE
architecture replaces the feed-forward networks
(FFN) in Transformers with mixture-of-expert lay-
ers. A router or a gating network is trained to select
a subset of experts for each input token based on
its routing policy. Given n experts in a layer, the
output of the expert layer is given by:

y =Y Gate(z)y, - By(x), (1
k=1

where the Gate(x)y, is the router weights from the
gating network assigned to the k-th expert, and
Ei(x) is the output of k-th expert. The router
weights can be formulated as softmax over the Top-
K logits:

Gate(x) = Softmax(TopK(z - Wy)), (2)

where W, is the weight of the router or gating
network, and TopK(X); = [ if k is in the top-
K coordinates of logits [ and TopK(X ), = —oo
otherwise.

Since current LLMs mostly adopt SwiGLU
(Shazeer, 2020) architecture for the FFN, and MoE
LLM such as Mixtral-8x7B (Jiang et al., 2024) uses
a top-2 to select experts, we can derive the output
of an expert layer as:

y = Z Softmax(Top2(z-Wy)) - SwiGLU(x).

k=1
3)
Some recent MoE LLMs, such as DeepSeek-
MoE (Dai et al., 2024), adopt shared experts that
are always activated, aiming at capturing and con-
solidating common knowledge across varying con-
texts.

MoE Expert Activation Frequency. We use a
subset of the C4 (Raffel et al., 2020) dataset and
collect the activation frequency of MoE experts.
Motivated by the load balancing loss (Shazeer et al.,
2017; Lepikhin et al., 2021; Fedus et al., 2022), we
propose to use the coefficient of variation of expert
activation frequency in each layer to represent the
load balancing score, where a lower score repre-
sents more balanced loads. Given n experts and [
layers and a batch B with 7" tokens, the load bal-

ancing score for one layer is:

o AT - n)?
§=—= 9

ﬁ . a “
H = n;flﬁ

where fj, is the number of tokens dispatched to k-th
expert:

fr = Z 1{argmax p(z) = k}. )

z€eB

We can derive the load balancing score by calculat-
ing the mean of scores across all  MoE layers, such
that we can use this score to compare with various
MoE models with different numbers of experts.
Figure 1 shows the load balancing scores
of Mixtral-8x7B (Jiang et al., 2024), Qwen-
1.5-A2.7B (Team, 2024), DeepSeek-V2 and
DeepSeeek-V2-Lite (Liu et al., 2024a), MiniCPM-
MOoE-8x2B (Hu et al., 2024), and OLMoE (Muen-
nighoff et al., 2024). We find that different MoE
expert initialization methods result in different ex-
pert activation frequencies and expert similarities,
which will impact the MoE pruning strategies. For
instance, the MoE model initialized with upcycling
can take advantage of the dense model and reduce
training costs. The final MoE model exhibits higher
expert similarity and more balanced expert activa-
tion frequency. MoE model trained from scratch
might yield better performance as it avoids the lim-
itations of starting with a group of identical experts,
which can hinder diversification (Wei et al., 2024).

3.2 Pruning Metric

Problem Formulation. Post-training pruning for
LLMs can be decomposed into layer-wise subprob-
lems (Lu et al., 2022; Frantar and Alistarh, 2023).
Given a sparsity ratio and a linear layer with weight
W, the pruning algorithm tries to find a sparsity
mask M that minimizes reconstruction loss:

argmin| WX — (M © W)X]|. (6)
M

Optimal Brain Damage (OBD) (LeCun et al.,
1989) first sets up a pioneering framework for neu-
ral network pruning. It uses second-order informa-
tion without off-diagonal elements in the Hessian
matrix for faster approximation. Optimal Brain Sur-
geon (OBS) (Hassibi et al., 1993) develops upon
OBD partly by taking into account the off-diagonal
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Figure 1: Load balancing score of MoE models. We
collect the expert activation frequency of MoE models
and calculate the load balancing score (lower is better).
The circle area represents the model size. MoE models
trained from scratch are marked with red, while MoE
models that use upcycling are marked with blue. MoE
models trained from scratch usually have more experts
and imbalanced loads. MoE models initialized with
sparse upcycling tend to have more balanced loads and
less number of experts. The only exception is Qwen-
1.5-A2.7B, which is initialized with upcycling. But
according to the report (Yang et al., 2024a), its expert
parameters are shuffled along the intermediate dimen-
sion to guarantee that each fine-grained expert exhibits
unique characteristics and therefore exhibits more like
trained from scratch MoE models.

elements. SparseGPT (Frantar and Alistarh, 2023)
revisits the OBS, computes the inverse Hessian
only once, and reuses to update weight in the re-
maining rows that are also in the mask to miti-
gate reconstruction loss. The pruning metric S;; in
SparseGPT is:

Sij = [|[W|* /diag(H™)];;, (7)

where H is the Hessian matrix, ¢ and j stands for
output feature and input feature dimension, respec-
tively.

Wanda (Sun et al., 2024) further simplifies the
pruning metric to the following form without the
need to compute the inverse of the Hessian matrix:

Sij = [[W]?/diag((X"X)™1)];;
~[[WP/(diag(XTX) )] ®)

(W35 - 1X5]12)?,

where X is the corresponding input activations, ¢
and j stands for output feature and input feature
dimension, respectively.

When it comes to pruning MoE, the expert layers
constitute the majority of model parameters. For

example, the Mixtral-8x7B has a total of 47B pa-
rameters where 1.3B belongs to attention modules
and 45B is used for expert layers (2 out of 8 ex-
perts are activated, 12.5B active parameters during
inference). Only a subset of experts are activated
for different input tokens, so there is a large space
of expert redundancy.

Motivation. Consider a simple Mixture-of-
Experts model with two experts and each with only
one weight: y = Gate(x); - E1(x) + Gate(x)s -
Es(x) = Gatey - wy - © + Gateg - wy - x, where
lwi| < |we|. If we want to remove one weight
without incurring significant change on the output,
traditional magnitude pruning (Han et al., 2016)
will remove weight |w; |. However, in MoE archi-
tecture, the router weights Gatey, is an important
part as it assigns different values to different ex-
perts. Especially when we consider a top-k set-
ting that only a subset of experts are activated, the
router weights Gate; could be a large value close
to 1, while router weights Gates could be O if it
is not activated. As a results, |Gate; - wy - x| >
|Gatey - wa - |, and therefore we should remove
weight wy instead to minimize change on the out-
put.

This motivating example shows that for MoE
architecture, we need to consider the importance
of router weights. Previous pruning methods for
LLMs do not consider the router weights which
only exist in MoE architecture and may result in
lower performance after pruning MoE. We pro-
pose a pruning metric designed explicitly for MoE
LLMs to handle such a limitation while maintain-
ing the simplicity of Wanda’s pruning metric.

Router Tells It All. Motivated by the pruning
metric in Wanda and the MoE routing policy, our
approach, MoE-Pruner, prunes weights using the
local relative importance (Zhang et al., 2024a) of
weight, which compares against the 2-norm of its
corresponding column and row, multiplied by the
scaled input activations and router weights, on each
output neuron:

o |Wi
-
VI Wil

Wi
VI Wyl

S; +

©)
where Gatey, is the router weights for the k-th
expert, a is a scale to control the strength of ac-
tivations and router weights, and 7 and j stands
for output feature and input feature dimension. In
experiments, we find that a = 0.1 or 0.5 works
generally well, but has slight difference for MoE

)-(I1X;-Gatey||2)®,



models with different initialization method. We use
a = 0.5 for sparse upcycled models and a = 0.1
for models trained from scratch for better perfor-
mance.

Table 1: Comparison of different pruning methods in-
cluding magnitude pruning, SparseGPT, Wanda, and
MokE-Pruner.

Weight  Calib . . .
Method Update -ration Pruning metric S;; Complexity
Magnitude X X [W| o(1)
SparseGPT v v [[W[?/diag(H™));; O(diiagen)
Wanda x v Wi | - 115l O(dfidden)
Wi W
MoE-Pruner | X v (H‘Wq]\‘\z + HW..JHQ) (X - Gatel|2)*  O(dfigqen)

Table 1 summarizes pruning methods, includ-
ing magnitude pruning, SparseGPT, Wanda, and
MoE-Pruner and their pruning metric and complex-
ity. Algorithm 1 presents the unstructured sparsity
version of our MoE-Pruner algorithm, which is ef-
ficient and does not require a sophisticated weight
update procedure.

Algorithm 1 The MoE-Pruner algorithm. We prune each
expert layer weight matrix W to p% sparsity.

1: Inmitialize: A MoE model M with [ MoE layers, where
each MoE layer has n experts. Let X € R?*%ol and
Gate € R®*™ denote the calibration samples and router
weights respectively.

2: for layert =1,...,l do

3: X', Gate + forward(layer,, X)
4: for expertk =1,...,ndo

5: M «+ 1dmw><dml

6 Sie (it wer) (1%, - Gatell2)”
7: idx <+ sort(S;;,dim = 1)

8: 1dx < idx. g p%

9: M <« scatter(0,idz. 4 +p%)
10: W —MOW

11: end for

12: X, Gate <+ forward(layer}, X)
13: end for

14: Return: A pruned MoE model M’.

Structured N:M Sparsity. Structured N:M spar-
sity can leverage NVIDIA’s sparse tensor cores
to accelerate matrix multiplication. While MoE-
Pruner so far has been developed for unstructured
sparsity, it can be easily extended to structured
N:M sparsity (Mishra et al., 2021), where we com-
pare weights using the same metric among every M
consecutive weights, and remove N weights with
lowest scores.

3.3 Expert-Wise Knowledge Distillation

Expert-Wise Knowledge Distillation. MoE mod-
els can preserve most of their capacity after pruning

Expert 1 1
Teacher 1
LayerNorm |—>| Attention |>@—>| LayerNorm —>| Gate H D

J

Expertn

-
Pruned Expert 1

Student 1

LayerNorm |—>| Attention |->@—| LayerNorm || Gate : D—---

Pruned Expert n

Figure 2: Expert-wise knowledge distillation for the
pruned MoE model using the pretrained MoE model as
the teacher to recover the performance of the pruned
model.

but still suffer from performance degradation. To
recover MoE LLM performance, we fine-tune the
model by leveraging the unpruned pretrained model
as a teacher model in an expert-wise knowledge
distillation (KD) manner. The pretrained model
is a natural teacher model for the pruned model
since they share exactly the same number of layers,
experts, and dimensions (Kurtic et al., 2023). The
loss function for expert-wise knowledge distillation
is formulated as follows:

[:KD = EC’E + A X Eezpert
=Lep+Ax Y > MSE(E],, E,),
j=1k=1

where Lo is the cross entropy loss, MSE is the
mean squared error calculated as MSE(X,Y) =
% Ef\; 1(x; — y;)? for N-dimensional vectors X
and Y. X is a weighting coefficient and initialized
based on the strength of cross entropy loss and
expert-wise knowledge distillation loss: ffpfm.
We sum up all the differences between teacher ex-
perts and student experts. Figure 2 illustrates the
expert-wise knowledge distillation for pruned mod-
els. The corresponding expert in the pretrained
teacher model will be used to distill the expert in
the pruned student model.

4 Experiments

Models, Datasets, and Evaluation. We conduct
pruning experiments across various MoE models
with different initialization methods to validate the
effectiveness of MoE-Pruner, including Mixtral-
8x7B (Jiang et al., 2024), MiniCPM-8x2B (Hu
et al., 2024), DeepSeek-V2-Lite (Liu et al., 2024a),
and Qwenl.5-MoE-A2.7B (Team, 2024). We use
samples from the pretraining dataset C4 (Raffel
etal., 2020) as calibration data for one-shot pruning



Table 2: WikiText Perplexity] against other one-shot
pruning methods, including SparseGPT, Wanda, NAEE,
and MoE-Pruner, with 50% unstructured sparsity or 2:4
structured sparsity.

Table 3: Comparison with NAEE about memory reduc-
tion and wall-clock time inference speedup on A100.

Model‘ Method Sparsity Average Memory Speedup

‘ Pretrained - 69.16 87.49 1.00x
‘ 50% Unstructured 2:4 Structured ‘ NAEE =4 61.70 45.49 1.01x
Method Mixtral Mixtral Mixtral Mixtral
Mixtral Mixtral Mixtral 8x7B | MoE-Pruner  2:4 (CUTLASS)  64.58 5074  Lldx
8x7B -8x7B 8x27B -8x22B 8x7B -8x7B
-oX Instruct ON _Instruct “oX _Instruct \ MoE-Distilled  2:4 (CUTLASS) 67.07 50.74 1.14x
Pretrained ‘ 3.84 4.14 2.83 2.89 3.84 4.14 ‘ MoE-Pruner 2:4 (cuSPARSELt)  64.58 50.74 1.31x
SparseGPT ‘ 4.99 5.20 4.19 427 7.09 7.19 ‘ MoE-Distilled 2:4 (cuSPARSELt)  67.07 50.74 1.31x
Wanda ‘ 4.97 5.16 3.97 4.06 6.98 6.92
NAEE (1=4) | 649 642
MoE-Pruner 468 494 364 372 560 569 4.1 One-Shot Pruning

since pretraining datasets are often more compre-
hensive and not dominated by knowledge specific
to any particular domain. We use the exact same
128 sequences of calibration data for all one-shot
pruning experiments to control this variable factor.
We evaluate the perplexity on the WikiText (Merity
et al., 2017) validation set. Our expert-wise knowl-
edge distillation method uses a subset of the C4
as the training set. We measure the performance
of pruned models on zero-shot tasks and language
modeling. For zero-shot evaluation, we use nine
popular tasks from EleutherAl LM Harness (Gao
et al., 2023). The nine evaluated zero-shot tasks
are: ARC-easy, ARC-challenge (Clark et al., 2018),
Boolq (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021),
OpenBookQA (OBQA) (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), RTE (Wang et al., 2018),
and WinoGrande (Sakaguchi et al., 2021).

Baselines and Experiments Setup. We com-
pare MoE-Pruner with prior pruning approaches,
including SparseGPT (Frantar and Alistarh, 2023),
Wanda (Sun et al., 2024) and NAEE (Lu et al.,
2024). Similarly, our pruning algorithm is im-
plemented in a layer-wise reconstruction man-
ner. All pruning experiments are conducted on a
server with 8 NVIDIA H100-80GB GPU. The fine-
tuning experiments use the pruned model as a start-
ing point and perform full-parameter fine-tuning
to preserve the sparsity mask. We implement
the expert-wise knowledge distillation method in
Llama-Factory (Zheng et al., 2024) and conduct
experiments on 2 servers, each with § NVIDIA
H100-80GB GPUs. We fine-tune the pruned stu-
dent model for three epochs, using a learning rate
of 2e-5 with the cosine learning rate scheduler.

Table 2 shows the one-shot pruning model perplex-
ity on WikiText with both 50% unstructured and
2:4 structured sparsity. Across all tested models
and sparsity, MoE-Pruner outperforms SparseGPT,
Wanda and NAEE. For the Mixtral-8x7B models,
MoE-Pruner reduces perplexity by up to 0.31 com-
pared to SparseGPT and Wanda. This gap expands
when the MoE model scales to the Mixtral-8x22B
model, as MoE-Pruner improves perplexity by as
much as 0.55 over SparseGPT and up to 0.34 over
Wanda. When applying the 2:4 structured sparsity,
MoE-Pruner’s advantage is even more pronounced,
achieving improvements of 1.49, 1.38, and 0.89
in perplexity over SparseGPT, Wanda, and NAEE,
respectively.

Table 3 presents the memory reduction and in-
ference speedup of MoE-Pruner compared with
NAEE. MoE-Pruner at the structured 2:4 sparsity
pattern outperforms NAEE in terms of average per-
formance and shows a 1.31x inference speedup,
while incurring only a small memory overhead for
storing sparse tensor indices.

Table 4 shows the average zero-shot perfor-
mance on nine zero-shot tasks for MoE models
with 50% unstructured sparsity. Similarly, Table 5
demonstrates the average zero-shot performance
for MoE models at the structured 2:4 sparsity or
50% expert pruning. MoE-Pruner outperforms all
the state-of-the-art pruning approaches, Sparse GPT,
Wanda, and NAEE, by a large margin. Please note
that here are the one-shot pruning results and no
fine-tuning takes place at this stage.

4.2 Expert-Wise Knowledge Distillation
Performance

The gap between the pruned MoE model and the
pretrained MoE model can be largely mitigated
via expert-wise knowledge distillation. We only
need 1000 training samples from C4, and training
can be done in 1 hour. Table 6 shows the average



Table 4: Average zero-shot performance on 9 evaluation tasks of pruned models using SparseGPT, Wanda, and
MoE-Pruner, with 50% unstructured sparsity.

Model ‘ Method ARC-c ARC-e Boolq HellaSwag MMLU OBQA PIQA RTE WinoGrande Average
| Pretrained 5691 8447 8529 6478 6703 350 8243 704 76.16 69.16
Ng:;rl;l | SparseGPT 5043  80.68 84.62  60.20 6179 328 81.12 68.59 76.16 66.27
| Wanda 5102 80.89 8508 6045 6273 326 8090 64.64 74.82 65.90
| MoE-Pruner 5333 8186 8602  62.29 6476 336 8161 66.06 75.53 67.23
| Pretrained 4275 7622 7728 56.49 5263 290 7748 7581 66.61 61.58
MlgggM SparseGPT 3925 7344 7636  53.19 4835 280 7622 64.62 64.96 58.26
| Wanda 4044 7273 7471 5170 4578 258 7606 71.84 61.48 57.84
| MoE-Pruner  40.87 7492 7474 5459 4889 280 7661 7256 64.56 59.53
| Pretrained  46.67 7828 79.88  58.65 5494 342 8003 61.37 71.35 62.81
ng’i?fek\ SparseGPT 4036 7370 7327 5037 39.85 290  76.66 58.12 67.25 56.51
| Wanda 4164 7344 7183 5136 39.83 290  77.53 63.90 66.93 57.27
| MoE-Pruner 44.62 7630 7856 5592 4972 312 78.62 60.29 70.32 60.62
| Pretained  41.81 7332 79.88  57.98 6129 300  80.09 69.31 68.98 62.58
Qwenl.5
MoE | SparseGPT 3481 6890 7624  49.86 5155 252 77.09 55.96 67.32 56.33
-A2.7B | Wanda 3302 6730 7511 4826 5035 268 7535 62.09 65.82 56.01
| MoE-Pruner  39.68 7260 7844  54.88 57.63 304 7873 7292 66.93 61.36

Table 5: Average zero-shot performance on 9 evaluation tasks of pruned models using SparseGPT, Wanda, NAEE,
and MoE-Pruner, at the structured 2:4 sparsity or 50% expert pruning.

Model ‘ Method ARC-c ARC-e Boolq HellaSwag MMLU OBQA PIQA RTE WinoGrande Average
‘ Pretrained 56.91 84.47  85.29 64.78 67.03 350 8243 704 76.16 69.16
Mixtral ‘ SparseGPT (2:4) 4172 7496  76.85 53.26 52.86 28.6 7835 66.43 72.38 54.73
-8x7B ‘ Wanda (2:4) 4155 7412 76.61 53.19 52.26 27.8  77.04 63.90 70.48 59.95
‘ NAEE (r=4) 4838 7799 80.52 57.81 47.68 28.6  78.67 62.45 73.16 61.70
‘ MoE-Pruner (2:4) 47.87 79.00 79.54 58.86 62.17 31.8 7949 68.23 74.27 64.58
‘ Pretrained 4275 7622 77.28 56.49 52.63 29.0 7748 7581 66.61 61.58
MiniCPM ‘ SparseGPT (2:4) 3336 69.07 70.80 47.96 37.96 214 7399 57.76 60.06 52.48
-8x2B ‘ Wanda (2:4) 33.11 63.34  66.30 42.31 27.23 19.6  69.59 59.57 55.41 48.50
‘ NAEE (r=4) 3328 5787 67.25 42.04 23.39 180 6834 56.68 56.83 47.08
‘ MoE-Pruner (2:4) 37.71 71.04 72.54 51.66 42.42 242 75.08 70.40 60.62 56.19
‘ Pretrained 46.67 7828  79.88 58.65 54.94 342  80.03 61.37 71.35 62.81
DeepSeek ‘ SparseGPT (2:4) 33.19 66.67  66.15 44.16 26.65 246 7432 51.26 62.75 49.97
-V2-Lite ‘ Wanda (2:4) 31.31 63.97 6544 41.85 30.53 232 72,69 48.01 61.72 48.75
‘ NAEE (r=32) 2287 4133  62.26 36.20 29.89 206 6279 53.07 54.14 42.57
‘ MoE-Pruner (2:4) 40.02 7189  76.61 50.94 43.85 272 7622 55.96 67.64 56.70
‘ Pretrained 41.81 7332 79.88 57.98 61.29 30.0  80.09 69.31 68.98 62.58
Qwenl.5 \ SparseGPT (2:4)  33.62  67.05 7101 43.87 4229 260 7410 6245 65.51 53.98
_Z\gfﬁg ‘ Wanda (2:4) 3029 62.12  64.59 40.68 37.63 234 7214 5740 64.48 50.30
‘ NAEE (r=30) 3225 5934 67.28 46.74 38.08 212 7350 64.26 60.46 51.46
‘ MoE-Pruner (2:4) 3993 7121 71.53 52.73 56.31 294  78.18 70.04 67.80 59.68




Table 6: Average zero-shot performance after pruning and expert-wise knowledge distillation.

Model ‘ Method ARC-¢c ARC-e Boolg HellaSwag MMLU OBQA PIQA RTE WinoGrande Average
‘ Pretrained 56.91 84.47  85.29 64.78 67.03 350 8243 704 76.16 69.16
Mixtral
-8x7B ‘ MoE-Pruned 5333  81.86 86.02 62.29 64.76 33.6 81.61 66.06 75.53 67.23
‘ MoE-Distilled 5435 81.19 85.26 68.77 65.59 36.0 8248 68.23 75.72 68.40

zero-shot accuracy of the pruned and fine-tuned
Mixtral-8x7B MoE models with 50% unstructured
sparsity. The fine-tuned model could achieve a
68.40 average performance on nine zero-shot tasks.
The performance is very close to the pretrained
Mixtral-8x7B MoE model, which demonstrates a
69.16 average performance.

4.3 Ablation Studies

Perplexity vs. Number of Calibration Samples
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(a) Perplexity with different number of calibration samples at
50% sparsity.

Perplexity vs. Pruning Ratio
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(b) Perplexity over different pruning ratios with 128 calibration
samples.

Figure 3: Ablation studies on calibration samples and
pruning ratios.

Ablation on Different Number of Calibration
Samples. We use different number of calibration
samples ranging from 2 to 256. Results are sum-
marized in Figure 3a. We see a clear difference in
trend as the number of calibration samples changes.

MoE-Pruner is much more robust than SparseGPT
when there are few calibration samples and per-
forms the same trend but better perplexity over
Wanda. Notably, even with just two calibration
samples, pruned networks obtained by MoE-Pruner
have a perplexity of just 4.95. This may be because
input norm statistics could be much easier to es-
timate than the full inverse Hessian of the local
layer-wise reconstruction problem.

Ablation on Different Sparsity Ratio. We also
change the pruning ratio using the same 128 calibra-
tion samples. Figure 3b shows that at lower prun-
ing ratios, such as 10% to 40%, all pruning meth-
ods achieve good perplexity. When the pruning
ratio increases, the Wanda pruned model perplex-
ity changes dramatically and fails at 70%. MoE-
Pruner shows better and more stable pruning re-
sults than SparseGPT and Wanda, especially at
higher pruning ratios. This demonstrates that router
weights preserve important information when se-
lecting experts and provide a clear hint for pruning
unimportant weights.

5 Conclusion

We propose an efficient and effective pruning
method for MoE models, MoE-Pruner. We prune
weights with the smallest magnitudes multiplied
by the corresponding input activations and router
weights. Our pruning method is one-shot and fast,
without the need for any retraining or weight update
procedures. Pruning MoE LLM with high sparsity
will incur performance degradation, so we also pro-
pose an expert-wise knowledge distillation method
that leverages the unpruned pretrained MoE model
as a teacher to guide the pruned student model to re-
cover performance. Extensive experimental results
across various MoE models validate the effective-
ness of our algorithm and MoE-Pruner outperforms
all one-shot pruning methods. The fine-tuned MoE
models could maintain 99% of the performance of
the original model after the expert-wise knowledge
distillation, using only a small set of training data
and low GPU hours.



Limitations

Our method can reduce memory usage and improve
inference speed for more efficient deployment of
MoE LLMs. Despite its advancements, there are
still some limitations. We conduct experiments
across various MoE models, but not those largest
MOoE models which has over 300B total parame-
ters, as it is impossible to load these large MoE
models on one machine without the help of quanti-
zation. We use float16 datatype in our experiments
to guarantee numerical precision. We will carry out
experiments on these large MoE LLMs in the future
using more computation resources and exploring
quantized MoE models to give a more comprehen-
sive analysis of the scalability and generalizability
of our method.
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Appendix
A Choice of Scale a for MoE

Table 7: WikiText Perplexity] of 2:4 structured pruned
MoE models with different initialization method, includ-
ing Mixtral-8x7B (sparse upcycled), MiniCPM-8x2B
(sparse upcycled), and DeepSeek-V2-Lite (train from
scratch). a is the scale to control the strength of activa-
tions and router weights in our pruning metric.

Model a=05]a=01
Mixtral-8x7B 5.60 5.72
MiniCPM-8x2B 8.78 8.92
DeepSeek-V2-Lite  10.04 9.76
B Open-Source MoE Models
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Table 8: Open-Source MoE Models List (Released after Jan. 2024).

Name Pafacli::fers Par:(:;?ters # Experts lii)(ﬁgl;g Illclttle?llll(ffld MMLU"
OLMoE 1B 7B 64 top-8 train from scratch 54.1
MiniCPM-MoE-8x2B 4B 13.6B 8 top-2 upcycling 58.9
Qwenl.5-MoE-A2.7B 2.7B 14.3B 4(shared)+60  4+top-4 upcycling 62.5
Deepseek-V2-Lite 2.4B 16B 2(shared)+64  2+top-6  train from scratch 58.3
Yuan2.0-M32 3.7B 40B 32 top-2  train from scratch 72.2
GRIN-MoE 6.6B 41.9B 16 top-2 upcycling 79.4
Mixtral-8x7B 12.5B 47B 8 top-2 upcycling 70.4
Jamba 12B 52B 16 top-2 unknown 67.4
Qwen2-57B-A14B 14B 57.4B 8(shared)+64  8+top-8 upcycling 76.5
DBRX 36B 132B 16 top-4 unknown 73.7
Mixtral-8x22B 39B 141B 8 top-2 upcycling 77.8
Skywork-MoE 22B 146B 16 top-2 upcycling 77.4
Deepseek-V2 21B 236B 2(shared)+160 2+top-6  train from scratch 78.5
grok-1 80B 314B 8 top-2 unknown 73.0
Hunyuan-A52B 52B 389B 1(shared)+16 1+topl unknown 88.4
Snowflake Arctic 17B 480B 128 top-2 unknown 67.3

*Note: This table presents a subset of open-source MoE models and is not exhaustive. The list is sorted by total parameters.
MMLU scores are extracted from original papers or reports and may not reflect model real performance.
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