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Abstract

Mixture-of-Experts (MoE) architectures face001
challenges such as high memory consump-002
tion and redundancy in experts. Pruning MoE003
can reduce network weights while maintaining004
model performance. Motivated by the recent005
observation of emergent large magnitude fea-006
tures in Large Language Models (LLM) and007
MoE routing policy, we propose MoE-Pruner,008
a method that prunes weights with the smallest009
magnitudes multiplied by the corresponding in-010
put activations and router weights. Our pruning011
method is one-shot, requiring no retraining or012
weight updates. Furthermore, our pruned MoE013
models can benefit from a pretrained teacher014
model through expert-wise knowledge distilla-015
tion, improving performance post-pruning. We016
evaluate our method on various MoE models,017
such as Mixtral and DeepSeek, across multiple018
zero-shot evaluation benchmarks. Experimen-019
tal results demonstrate that our pruning method020
significantly outperforms state-of-the-art LLM021
pruning methods. The pruned model with 50%022
sparsity maintains 99% of the performance of023
the original model after the expert-wise knowl-024
edge distillation.025

1 Introduction026

Mixture-of-Experts (MoE) architectures (Jacobs027

et al., 1991; Shazeer et al., 2017) have been pro-028

posed to reduce the computing cost while enabling029

efficient scaling of network capacity. It has been030

successfully employed to scale both vision (Ruiz031

et al., 2021; Shen et al., 2023) and language (Lep-032

ikhin et al., 2021; Fedus et al., 2022) models. In033

addition, these models provide other advantages,034

including sparsity that can mitigate catastrophic035

forgetting in continual learning and an inductive036

bias that can enhance performance in multitask037

learning (Collier et al., 2020; Komatsuzaki et al.,038

2023). Overall, MoE has proven to be a promising039

strategy for scaling deep learning models across040

various domains.041

However, several crucial limitations persist in 042

MoE for expanding its capacity. First of all, the 043

static parameters, particularly those required for 044

constructing the MoE architecture, introduce sub- 045

stantial memory overheads and constraints for de- 046

ployment. For example, Mixtral-8x7B (Jiang et al., 047

2024) expert layers account for 96% of model pa- 048

rameters (45B out of 47B), which demands con- 049

siderable memory and storage during inference. 050

Moreover, MoE has a poor utilization of its experts. 051

The conventional learning-based routing policy for 052

MoE suffers from representation collapse issues 053

since it encourages token embeddings to be clus- 054

tered around expert centroids (Chi et al., 2022) and 055

results in redundant experts (Mittal et al., 2022; 056

Chen et al., 2022). 057

One possible solution to address those draw- 058

backs and fully unleash the power of MoE is con- 059

solidating information from insignificant experts, 060

aiming to establish a more compact MoE without 061

hurting performance. Another solution is prun- 062

ing experts that yield the lowest token reconstruc- 063

tion loss. Nevertheless, naively combining existing 064

model merging mechanisms or expert pruning leads 065

to performance degradation in the MoE architec- 066

tures. We raise the following pivotal question for 067

MoE LLM pruning: How can we formulate and 068

devise comprehensive pruning metrics tailored for 069

MoE Large Language Models without degrading 070

model performance? 071

In this paper, we systematically explore MoE 072

LLM pruning and target a high-quality compressed 073

MoE model in downstream fine-tuning scenarios. 074

Specifically, we first analyze the open-source MoE 075

model’s expert activation frequency and observe 076

that different MoE expert initialization methods 077

result in different expert activation frequencies and 078

expert similarities. We leverage existing LLM prun- 079

ing methods such as SparseGPT (Frantar and Al- 080

istarh, 2023) and Wanda (Sun et al., 2024), and 081

design a novel pruning metric that incorporates 082
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MoE router weights information to identify and re-083

move unimportant weights in expert layers. Since084

the pruning process is one-shot and only requires a085

small set of calibration data, the MoE model suffers086

from performance degradation. To recover MoE087

model performance, we further propose an expert-088

wise knowledge distillation method that utilizes the089

pretrained model as a teacher model, facilitating090

the recovery of the pruned model’s performance.091

Our main contributions can be summarized as092

follows:093

• We propose MoE-Pruner which is efficient094

and effective for pruning MoE models with095

minimal performance degradation.096

• We design an innovative expert-wise knowl-097

edge distillation method that leverages the098

pretrained MoE model as a teacher model to099

recover pruned MoE student model perfor-100

mance.101

• Experimental results on various MoE mod-102

els, such as Mixtral and DeepSeek, across103

nine zero-shot evaluation benchmarks demon-104

strate the effectiveness of our MoE-Pruner al-105

gorithm. MoE-Pruner achieves minimal per-106

formance drop even at 50% sparsity using107

only a small set of calibration data, outper-108

forming existing pruning methods. Further-109

more, the pruned model maintains 99% of the110

performance of the original model after the111

expert-wise knowledge distillation.112

2 Preliminaries113

Mixture-of-Experts (MoE). Scaling model size114

increases learning capacity and enhances general-115

ization (Kaplan et al., 2020; Brown et al., 2020;116

Hoffmann et al., 2022). MoE (Jacobs et al., 1991;117

Shazeer et al., 2017; Lepikhin et al., 2021; Fedus118

et al., 2022) is an efficient approach that enables sig-119

nificantly more compute-efficient pretraining and120

inference. It replaces the feed-forward network121

(FFN) layers in Transformers (Vaswani et al., 2017)122

with expert layers, where different experts are acti-123

vated for different input tokens instead of utilizing124

the full network parameters. Sparse MoE archi-125

tecture can dramatically scale the model with the126

same compute budget as a dense model.127

MoE Expert Initialization. MoE expert initial-128

ization uses different strategies, which can be clas-129

sified into two categories: sparse upcycling (Ko-130

matsuzaki et al., 2023) and training from scratch.131

The sparse upcycling method starts from a dense 132

model checkpoint and copies all parameters, ex- 133

cept the MoE router, which does not exist in the 134

original dense model. In particular, each expert 135

in the new MoE layer is an identical copy of the 136

original MLP layer that is replaced. Some open- 137

source MoE models such as Mixtral (Jiang et al., 138

2024), Qwen1.5-MoE-A2.7B (Team, 2024), and 139

MiniCPM-MoE (Hu et al., 2024) all employ the up- 140

cycling approach to reduce the total training costs. 141

While some MoE models like DeepSeek-V2 (Liu 142

et al., 2024a), OLMoE (Muennighoff et al., 2024), 143

and Yuan2.0-M32 (Wu et al., 2024) use the training 144

from scratch approach to help expert diversifica- 145

tion. 146

Large Language Model Pruning. Magnitude 147

pruning (Han et al., 2016) is a standard approach 148

to induce sparsity in neural networks. It removes 149

individual weights with magnitudes below a cer- 150

tain threshold. However, magnitude pruning fails 151

dramatically on LLMs even with relatively low 152

levels of sparsity (Frantar and Alistarh, 2023). 153

SparseGPT (Frantar and Alistarh, 2023) proposes a 154

one-shot, post-training pruning method that prunes 155

LLM weights and uses Hessian matrix and calibra- 156

tion data to update the remaining weights without 157

any retraining. Wanda (Sun et al., 2024) is a simple 158

method that prunes LLM weights with the smallest 159

magnitudes multiplied by the corresponding input 160

activations without any additional weight update. 161

Pruning for MoE Models. Most of the works 162

for MoE pruning focus on structured expert prun- 163

ing (Yang et al., 2024b; Lee et al., 2024). Chen 164

et al. (2022) and Koishekenov et al. (2023) prune 165

experts based on their utilization to save memory. 166

However, this usually leads to degraded perfor- 167

mance. Lu et al. (2024) enumerates expert combi- 168

nations based on the required expert number and 169

uses calibration data to find a set of remaining ex- 170

perts that has the minimum reconstruction loss, but 171

this method cannot scale to MoE LLMs with 32 172

or more experts. Chowdhury et al. (2024) prunes 173

experts based on the change in the router’s norm 174

and proves that the generalization accuracy can be 175

preserved. However, expert pruning sometimes 176

removes experts with certain knowledge and re- 177

sults in the loss of model performance. Therefore, 178

Li et al. (2024), Zhang et al. (2024b), Liu et al. 179

(2024b) all leverage expert merging techniques to 180

compress the expert layer while also preserving 181

expert knowledge. 182
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3 Methodology183

3.1 The Mixture-of-Experts Architecture184

Mixture-of-Experts (MoE) architecture. MoE185

architecture replaces the feed-forward networks186

(FFN) in Transformers with mixture-of-expert lay-187

ers. A router or a gating network is trained to select188

a subset of experts for each input token based on189

its routing policy. Given n experts in a layer, the190

output of the expert layer is given by:191

y =
n∑

k=1

Gate(x)k · Ek(x), (1)192

where the Gate(x)k is the router weights from the193

gating network assigned to the k-th expert, and194

Ek(x) is the output of k-th expert. The router195

weights can be formulated as softmax over the Top-196

K logits:197

Gate(x) = Softmax(TopK(x ·Wg)), (2)198

where Wg is the weight of the router or gating199

network, and TopK(X)k = lk if k is in the top-200

K coordinates of logits l and TopK(X)k = −∞201

otherwise.202

Since current LLMs mostly adopt SwiGLU203

(Shazeer, 2020) architecture for the FFN, and MoE204

LLM such as Mixtral-8x7B (Jiang et al., 2024) uses205

a top-2 to select experts, we can derive the output206

of an expert layer as:207

y =

n∑
k=1

Softmax(Top2(x ·Wg))k ·SwiGLUk(x).

(3)208

Some recent MoE LLMs, such as DeepSeek-209

MoE (Dai et al., 2024), adopt shared experts that210

are always activated, aiming at capturing and con-211

solidating common knowledge across varying con-212

texts.213

MoE Expert Activation Frequency. We use a214

subset of the C4 (Raffel et al., 2020) dataset and215

collect the activation frequency of MoE experts.216

Motivated by the load balancing loss (Shazeer et al.,217

2017; Lepikhin et al., 2021; Fedus et al., 2022), we218

propose to use the coefficient of variation of expert219

activation frequency in each layer to represent the220

load balancing score, where a lower score repre-221

sents more balanced loads. Given n experts and l222

layers and a batch B with T tokens, the load bal-223

ancing score for one layer is: 224

s =
σ

µ
=

√
1
n

∑n
k=1(fk − µ)2

µ
,

µ =
1

n

n∑
i=1

fk,

(4) 225

where fk is the number of tokens dispatched to k-th 226

expert: 227

fk =
∑
x∈B

1{argmax p(x) = k}. (5) 228

We can derive the load balancing score by calculat- 229

ing the mean of scores across all l MoE layers, such 230

that we can use this score to compare with various 231

MoE models with different numbers of experts. 232

Figure 1 shows the load balancing scores 233

of Mixtral-8x7B (Jiang et al., 2024), Qwen- 234

1.5-A2.7B (Team, 2024), DeepSeek-V2 and 235

DeepSeeek-V2-Lite (Liu et al., 2024a), MiniCPM- 236

MoE-8x2B (Hu et al., 2024), and OLMoE (Muen- 237

nighoff et al., 2024). We find that different MoE 238

expert initialization methods result in different ex- 239

pert activation frequencies and expert similarities, 240

which will impact the MoE pruning strategies. For 241

instance, the MoE model initialized with upcycling 242

can take advantage of the dense model and reduce 243

training costs. The final MoE model exhibits higher 244

expert similarity and more balanced expert activa- 245

tion frequency. MoE model trained from scratch 246

might yield better performance as it avoids the lim- 247

itations of starting with a group of identical experts, 248

which can hinder diversification (Wei et al., 2024). 249

3.2 Pruning Metric 250

Problem Formulation. Post-training pruning for 251

LLMs can be decomposed into layer-wise subprob- 252

lems (Lu et al., 2022; Frantar and Alistarh, 2023). 253

Given a sparsity ratio and a linear layer with weight 254

W, the pruning algorithm tries to find a sparsity 255

mask M that minimizes reconstruction loss: 256

argmin
M

∥WX− (M⊙W)X∥. (6) 257

Optimal Brain Damage (OBD) (LeCun et al., 258

1989) first sets up a pioneering framework for neu- 259

ral network pruning. It uses second-order informa- 260

tion without off-diagonal elements in the Hessian 261

matrix for faster approximation. Optimal Brain Sur- 262

geon (OBS) (Hassibi et al., 1993) develops upon 263

OBD partly by taking into account the off-diagonal 264
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Figure 1: Load balancing score of MoE models. We
collect the expert activation frequency of MoE models
and calculate the load balancing score (lower is better).
The circle area represents the model size. MoE models
trained from scratch are marked with red, while MoE
models that use upcycling are marked with blue. MoE
models trained from scratch usually have more experts
and imbalanced loads. MoE models initialized with
sparse upcycling tend to have more balanced loads and
less number of experts. The only exception is Qwen-
1.5-A2.7B, which is initialized with upcycling. But
according to the report (Yang et al., 2024a), its expert
parameters are shuffled along the intermediate dimen-
sion to guarantee that each fine-grained expert exhibits
unique characteristics and therefore exhibits more like
trained from scratch MoE models.

elements. SparseGPT (Frantar and Alistarh, 2023)265

revisits the OBS, computes the inverse Hessian266

only once, and reuses to update weight in the re-267

maining rows that are also in the mask to miti-268

gate reconstruction loss. The pruning metric Sij in269

SparseGPT is:270

Sij = [|W|2/diag(H−1)]ij , (7)271

where H is the Hessian matrix, i and j stands for272

output feature and input feature dimension, respec-273

tively.274

Wanda (Sun et al., 2024) further simplifies the275

pruning metric to the following form without the276

need to compute the inverse of the Hessian matrix:277

Sij = [|W|2/diag((XTX)−1)]ij

≈ [|W|2/(diag(XTX)−1)]ij

= (|Wij | · ∥Xj∥2)2,
(8)278

where X is the corresponding input activations, i279

and j stands for output feature and input feature280

dimension, respectively.281

When it comes to pruning MoE, the expert layers282

constitute the majority of model parameters. For283

example, the Mixtral-8x7B has a total of 47B pa- 284

rameters where 1.3B belongs to attention modules 285

and 45B is used for expert layers (2 out of 8 ex- 286

perts are activated, 12.5B active parameters during 287

inference). Only a subset of experts are activated 288

for different input tokens, so there is a large space 289

of expert redundancy. 290

Motivation. Consider a simple Mixture-of- 291

Experts model with two experts and each with only 292

one weight: y = Gate(x)1 · E1(x) + Gate(x)2 · 293

E2(x) = Gate1 · w1 · x + Gate2 · w2 · x, where 294

|w1| ≤ |w2|. If we want to remove one weight 295

without incurring significant change on the output, 296

traditional magnitude pruning (Han et al., 2016) 297

will remove weight |w1|. However, in MoE archi- 298

tecture, the router weights Gatek is an important 299

part as it assigns different values to different ex- 300

perts. Especially when we consider a top-k set- 301

ting that only a subset of experts are activated, the 302

router weights Gate1 could be a large value close 303

to 1, while router weights Gate2 could be 0 if it 304

is not activated. As a results, |Gate1 · w1 · x| ≫ 305

|Gate2 · w2 · x|, and therefore we should remove 306

weight w2 instead to minimize change on the out- 307

put. 308

This motivating example shows that for MoE 309

architecture, we need to consider the importance 310

of router weights. Previous pruning methods for 311

LLMs do not consider the router weights which 312

only exist in MoE architecture and may result in 313

lower performance after pruning MoE. We pro- 314

pose a pruning metric designed explicitly for MoE 315

LLMs to handle such a limitation while maintain- 316

ing the simplicity of Wanda’s pruning metric. 317

Router Tells It All. Motivated by the pruning 318

metric in Wanda and the MoE routing policy, our 319

approach, MoE-Pruner, prunes weights using the 320

local relative importance (Zhang et al., 2024a) of 321

weight, which compares against the ℓ2-norm of its 322

corresponding column and row, multiplied by the 323

scaled input activations and router weights, on each 324

output neuron: 325

Sij = (
|Wij |√∑
i |Wij |2

+
|Wij |√∑
j |Wij |2

)·(∥Xj ·Gatek∥2)a,

(9) 326

where Gatek is the router weights for the k-th 327

expert, a is a scale to control the strength of ac- 328

tivations and router weights, and i and j stands 329

for output feature and input feature dimension. In 330

experiments, we find that a = 0.1 or 0.5 works 331

generally well, but has slight difference for MoE 332
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models with different initialization method. We use333

a = 0.5 for sparse upcycled models and a = 0.1334

for models trained from scratch for better perfor-335

mance.336

Table 1: Comparison of different pruning methods in-
cluding magnitude pruning, SparseGPT, Wanda, and
MoE-Pruner.

Method Weight
Update

Calib
-ration Pruning metric Sij Complexity

Magnitude ✗ ✗ |W| O(1)

SparseGPT ✔ ✔ [|W|2/diag(H−1)]ij O(d3hidden)

Wanda ✗ ✔ |Wij | · ∥Xj∥ O(d2hidden)

MoE-Pruner ✗ ✔
(

|Wij |
∥W∗j∥2 +

|Wij |
∥Wi∗∥2

)
· (∥Xj ·Gate∥2)a O(d2hidden)

Table 1 summarizes pruning methods, includ-337

ing magnitude pruning, SparseGPT, Wanda, and338

MoE-Pruner and their pruning metric and complex-339

ity. Algorithm 1 presents the unstructured sparsity340

version of our MoE-Pruner algorithm, which is ef-341

ficient and does not require a sophisticated weight342

update procedure.343

Algorithm 1 The MoE-Pruner algorithm. We prune each
expert layer weight matrix W to p% sparsity.

1: Initialize: A MoE modelM with l MoE layers, where
each MoE layer has n experts. Let X ∈ Rb×dcol and
Gate ∈ Rb×n denote the calibration samples and router
weights respectively.

2: for layer t = 1, . . . , l do
3: X′,Gate← forward(layert,X)

4: for expert k = 1, . . . , n do
5: M← 1drow×dcol

6: Sij ← (
|Wij |

∥W∗j∥2
+

|Wij |
∥Wi∗∥2

) · (∥Xj ·Gate∥2)a

7: idx← sort(Sij , dim = 1)

8: idx← idx:,dcol∗p%
9: M← scatter(0, idx:,dcol∗p%)

10: W′ ←M⊙W

11: end for
12: X,Gate← forward(layer′t,X)

13: end for
14: Return: A pruned MoE modelM′.

Structured N:M Sparsity. Structured N:M spar-344

sity can leverage NVIDIA’s sparse tensor cores345

to accelerate matrix multiplication. While MoE-346

Pruner so far has been developed for unstructured347

sparsity, it can be easily extended to structured348

N:M sparsity (Mishra et al., 2021), where we com-349

pare weights using the same metric among every M350

consecutive weights, and remove N weights with351

lowest scores.352

3.3 Expert-Wise Knowledge Distillation353

Expert-Wise Knowledge Distillation. MoE mod-354

els can preserve most of their capacity after pruning355

Figure 2: Expert-wise knowledge distillation for the
pruned MoE model using the pretrained MoE model as
the teacher to recover the performance of the pruned
model.

but still suffer from performance degradation. To 356

recover MoE LLM performance, we fine-tune the 357

model by leveraging the unpruned pretrained model 358

as a teacher model in an expert-wise knowledge 359

distillation (KD) manner. The pretrained model 360

is a natural teacher model for the pruned model 361

since they share exactly the same number of layers, 362

experts, and dimensions (Kurtic et al., 2023). The 363

loss function for expert-wise knowledge distillation 364

is formulated as follows: 365

LKD = LCE + λ× Lexpert

= LCE + λ×
l∑

j=1

n∑
k=1

MSE(Ej
kt, E

j
ks),

(10) 366

where LCE is the cross entropy loss, MSE is the 367

mean squared error calculated as MSE(X,Y ) = 368
1
N

∑N
i=1(xi − yi)

2 for N -dimensional vectors X 369

and Y . λ is a weighting coefficient and initialized 370

based on the strength of cross entropy loss and 371

expert-wise knowledge distillation loss: LCE
Lexpert

. 372

We sum up all the differences between teacher ex- 373

perts and student experts. Figure 2 illustrates the 374

expert-wise knowledge distillation for pruned mod- 375

els. The corresponding expert in the pretrained 376

teacher model will be used to distill the expert in 377

the pruned student model. 378

4 Experiments 379

Models, Datasets, and Evaluation. We conduct 380

pruning experiments across various MoE models 381

with different initialization methods to validate the 382

effectiveness of MoE-Pruner, including Mixtral- 383

8x7B (Jiang et al., 2024), MiniCPM-8x2B (Hu 384

et al., 2024), DeepSeek-V2-Lite (Liu et al., 2024a), 385

and Qwen1.5-MoE-A2.7B (Team, 2024). We use 386

samples from the pretraining dataset C4 (Raffel 387

et al., 2020) as calibration data for one-shot pruning 388
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Table 2: WikiText Perplexity↓ against other one-shot
pruning methods, including SparseGPT, Wanda, NAEE,
and MoE-Pruner, with 50% unstructured sparsity or 2:4
structured sparsity.

Method
50% Unstructured 2:4 Structured

Mixtral
-8x7B

Mixtral
-8x7B

-Instruct

Mixtral
-8x22B

Mixtral
-8x22B
-Instruct

Mixtral
-8x7B

Mixtral
-8x7B

-Instruct

Pretrained 3.84 4.14 2.83 2.89 3.84 4.14

SparseGPT 4.99 5.20 4.19 4.27 7.09 7.19

Wanda 4.97 5.16 3.97 4.06 6.98 6.92

NAEE (r=4) - - - - 6.49 6.42

MoE-Pruner 4.68 4.94 3.64 3.72 5.60 5.69

since pretraining datasets are often more compre-389

hensive and not dominated by knowledge specific390

to any particular domain. We use the exact same391

128 sequences of calibration data for all one-shot392

pruning experiments to control this variable factor.393

We evaluate the perplexity on the WikiText (Merity394

et al., 2017) validation set. Our expert-wise knowl-395

edge distillation method uses a subset of the C4396

as the training set. We measure the performance397

of pruned models on zero-shot tasks and language398

modeling. For zero-shot evaluation, we use nine399

popular tasks from EleutherAI LM Harness (Gao400

et al., 2023). The nine evaluated zero-shot tasks401

are: ARC-easy, ARC-challenge (Clark et al., 2018),402

Boolq (Clark et al., 2019), HellaSwag (Zellers403

et al., 2019), MMLU (Hendrycks et al., 2021),404

OpenBookQA (OBQA) (Mihaylov et al., 2018),405

PIQA (Bisk et al., 2020), RTE (Wang et al., 2018),406

and WinoGrande (Sakaguchi et al., 2021).407

Baselines and Experiments Setup. We com-408

pare MoE-Pruner with prior pruning approaches,409

including SparseGPT (Frantar and Alistarh, 2023),410

Wanda (Sun et al., 2024) and NAEE (Lu et al.,411

2024). Similarly, our pruning algorithm is im-412

plemented in a layer-wise reconstruction man-413

ner. All pruning experiments are conducted on a414

server with 8 NVIDIA H100-80GB GPU. The fine-415

tuning experiments use the pruned model as a start-416

ing point and perform full-parameter fine-tuning417

to preserve the sparsity mask. We implement418

the expert-wise knowledge distillation method in419

Llama-Factory (Zheng et al., 2024) and conduct420

experiments on 2 servers, each with 8 NVIDIA421

H100-80GB GPUs. We fine-tune the pruned stu-422

dent model for three epochs, using a learning rate423

of 2e-5 with the cosine learning rate scheduler.424

Table 3: Comparison with NAEE about memory reduc-
tion and wall-clock time inference speedup on A100.

Model Method Sparsity Average Memory Speedup

Mixtral
-8x7B

Pretrained - 69.16 87.49 1.00×

NAEE r=4 61.70 45.49 1.01×

MoE-Pruner 2:4 (CUTLASS) 64.58 50.74 1.14×

MoE-Distilled 2:4 (CUTLASS) 67.07 50.74 1.14×

MoE-Pruner 2:4 (cuSPARSELt) 64.58 50.74 1.31×

MoE-Distilled 2:4 (cuSPARSELt) 67.07 50.74 1.31×

4.1 One-Shot Pruning 425

Table 2 shows the one-shot pruning model perplex- 426

ity on WikiText with both 50% unstructured and 427

2:4 structured sparsity. Across all tested models 428

and sparsity, MoE-Pruner outperforms SparseGPT, 429

Wanda and NAEE. For the Mixtral-8x7B models, 430

MoE-Pruner reduces perplexity by up to 0.31 com- 431

pared to SparseGPT and Wanda. This gap expands 432

when the MoE model scales to the Mixtral-8x22B 433

model, as MoE-Pruner improves perplexity by as 434

much as 0.55 over SparseGPT and up to 0.34 over 435

Wanda. When applying the 2:4 structured sparsity, 436

MoE-Pruner’s advantage is even more pronounced, 437

achieving improvements of 1.49, 1.38, and 0.89 438

in perplexity over SparseGPT, Wanda, and NAEE, 439

respectively. 440

Table 3 presents the memory reduction and in- 441

ference speedup of MoE-Pruner compared with 442

NAEE. MoE-Pruner at the structured 2:4 sparsity 443

pattern outperforms NAEE in terms of average per- 444

formance and shows a 1.31× inference speedup, 445

while incurring only a small memory overhead for 446

storing sparse tensor indices. 447

Table 4 shows the average zero-shot perfor- 448

mance on nine zero-shot tasks for MoE models 449

with 50% unstructured sparsity. Similarly, Table 5 450

demonstrates the average zero-shot performance 451

for MoE models at the structured 2:4 sparsity or 452

50% expert pruning. MoE-Pruner outperforms all 453

the state-of-the-art pruning approaches, SparseGPT, 454

Wanda, and NAEE, by a large margin. Please note 455

that here are the one-shot pruning results and no 456

fine-tuning takes place at this stage. 457

4.2 Expert-Wise Knowledge Distillation 458

Performance 459

The gap between the pruned MoE model and the 460

pretrained MoE model can be largely mitigated 461

via expert-wise knowledge distillation. We only 462

need 1000 training samples from C4, and training 463

can be done in 1 hour. Table 6 shows the average 464

6



Table 4: Average zero-shot performance on 9 evaluation tasks of pruned models using SparseGPT, Wanda, and
MoE-Pruner, with 50% unstructured sparsity.

Model Method ARC-c ARC-e Boolq HellaSwag MMLU OBQA PIQA RTE WinoGrande Average

Mixtral
-8x7B

Pretrained 56.91 84.47 85.29 64.78 67.03 35.0 82.43 70.4 76.16 69.16

SparseGPT 50.43 80.68 84.62 60.20 61.79 32.8 81.12 68.59 76.16 66.27

Wanda 51.02 80.89 85.08 60.45 62.73 32.6 80.90 64.64 74.82 65.90

MoE-Pruner 53.33 81.86 86.02 62.29 64.76 33.6 81.61 66.06 75.53 67.23

MiniCPM
-8x2B

Pretrained 42.75 76.22 77.28 56.49 52.63 29.0 77.48 75.81 66.61 61.58

SparseGPT 39.25 73.44 76.36 53.19 48.35 28.0 76.22 64.62 64.96 58.26

Wanda 40.44 72.73 74.71 51.70 45.78 25.8 76.06 71.84 61.48 57.84

MoE-Pruner 40.87 74.92 74.74 54.59 48.89 28.0 76.61 72.56 64.56 59.53

DeepSeek
-V2-Lite

Pretrained 46.67 78.28 79.88 58.65 54.94 34.2 80.03 61.37 71.35 62.81

SparseGPT 40.36 73.70 73.27 50.37 39.85 29.0 76.66 58.12 67.25 56.51

Wanda 41.64 73.44 71.83 51.36 39.83 29.0 77.53 63.90 66.93 57.27

MoE-Pruner 44.62 76.30 78.56 55.92 49.72 31.2 78.62 60.29 70.32 60.62

Qwen1.5
-MoE

-A2.7B

Pretrained 41.81 73.32 79.88 57.98 61.29 30.0 80.09 69.31 68.98 62.58

SparseGPT 34.81 68.90 76.24 49.86 51.55 25.2 77.09 55.96 67.32 56.33

Wanda 33.02 67.30 75.11 48.26 50.35 26.8 75.35 62.09 65.82 56.01

MoE-Pruner 39.68 72.60 78.44 54.88 57.63 30.4 78.73 72.92 66.93 61.36

Table 5: Average zero-shot performance on 9 evaluation tasks of pruned models using SparseGPT, Wanda, NAEE,
and MoE-Pruner, at the structured 2:4 sparsity or 50% expert pruning.

Model Method ARC-c ARC-e Boolq HellaSwag MMLU OBQA PIQA RTE WinoGrande Average

Mixtral
-8x7B

Pretrained 56.91 84.47 85.29 64.78 67.03 35.0 82.43 70.4 76.16 69.16

SparseGPT (2:4) 41.72 74.96 76.85 53.26 52.86 28.6 78.35 66.43 72.38 54.73

Wanda (2:4) 41.55 74.12 76.61 53.19 52.26 27.8 77.04 63.90 70.48 59.95

NAEE (r=4) 48.38 77.99 80.52 57.81 47.68 28.6 78.67 62.45 73.16 61.70

MoE-Pruner (2:4) 47.87 79.00 79.54 58.86 62.17 31.8 79.49 68.23 74.27 64.58

MiniCPM
-8x2B

Pretrained 42.75 76.22 77.28 56.49 52.63 29.0 77.48 75.81 66.61 61.58

SparseGPT (2:4) 33.36 69.07 70.80 47.96 37.96 21.4 73.99 57.76 60.06 52.48

Wanda (2:4) 33.11 63.34 66.30 42.31 27.23 19.6 69.59 59.57 55.41 48.50

NAEE (r=4) 33.28 57.87 67.25 42.04 23.39 18.0 68.34 56.68 56.83 47.08

MoE-Pruner (2:4) 37.71 71.04 72.54 51.66 42.42 24.2 75.08 70.40 60.62 56.19

DeepSeek
-V2-Lite

Pretrained 46.67 78.28 79.88 58.65 54.94 34.2 80.03 61.37 71.35 62.81

SparseGPT (2:4) 33.19 66.67 66.15 44.16 26.65 24.6 74.32 51.26 62.75 49.97

Wanda (2:4) 31.31 63.97 65.44 41.85 30.53 23.2 72.69 48.01 61.72 48.75

NAEE (r=32) 22.87 41.33 62.26 36.20 29.89 20.6 62.79 53.07 54.14 42.57

MoE-Pruner (2:4) 40.02 71.89 76.61 50.94 43.85 27.2 76.22 55.96 67.64 56.70

Qwen1.5
-MoE

-A2.7B

Pretrained 41.81 73.32 79.88 57.98 61.29 30.0 80.09 69.31 68.98 62.58

SparseGPT (2:4) 33.62 67.05 71.01 43.87 42.29 26.0 74.10 62.45 65.51 53.98

Wanda (2:4) 30.29 62.12 64.59 40.68 37.63 23.4 72.14 57.40 64.48 50.30

NAEE (r=30) 32.25 59.34 67.28 46.74 38.08 21.2 73.50 64.26 60.46 51.46

MoE-Pruner (2:4) 39.93 71.21 71.53 52.73 56.31 29.4 78.18 70.04 67.80 59.68
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Table 6: Average zero-shot performance after pruning and expert-wise knowledge distillation.

Model Method ARC-c ARC-e Boolq HellaSwag MMLU OBQA PIQA RTE WinoGrande Average

Mixtral
-8x7B

Pretrained 56.91 84.47 85.29 64.78 67.03 35.0 82.43 70.4 76.16 69.16

MoE-Pruned 53.33 81.86 86.02 62.29 64.76 33.6 81.61 66.06 75.53 67.23

MoE-Distilled 54.35 81.19 85.26 68.77 65.59 36.0 82.48 68.23 75.72 68.40

zero-shot accuracy of the pruned and fine-tuned465

Mixtral-8x7B MoE models with 50% unstructured466

sparsity. The fine-tuned model could achieve a467

68.40 average performance on nine zero-shot tasks.468

The performance is very close to the pretrained469

Mixtral-8x7B MoE model, which demonstrates a470

69.16 average performance.471

4.3 Ablation Studies472
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(a) Perplexity with different number of calibration samples at
50% sparsity.
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(b) Perplexity over different pruning ratios with 128 calibration
samples.

Figure 3: Ablation studies on calibration samples and
pruning ratios.

Ablation on Different Number of Calibration473

Samples. We use different number of calibration474

samples ranging from 2 to 256. Results are sum-475

marized in Figure 3a. We see a clear difference in476

trend as the number of calibration samples changes.477

MoE-Pruner is much more robust than SparseGPT 478

when there are few calibration samples and per- 479

forms the same trend but better perplexity over 480

Wanda. Notably, even with just two calibration 481

samples, pruned networks obtained by MoE-Pruner 482

have a perplexity of just 4.95. This may be because 483

input norm statistics could be much easier to es- 484

timate than the full inverse Hessian of the local 485

layer-wise reconstruction problem. 486

Ablation on Different Sparsity Ratio. We also 487

change the pruning ratio using the same 128 calibra- 488

tion samples. Figure 3b shows that at lower prun- 489

ing ratios, such as 10% to 40%, all pruning meth- 490

ods achieve good perplexity. When the pruning 491

ratio increases, the Wanda pruned model perplex- 492

ity changes dramatically and fails at 70%. MoE- 493

Pruner shows better and more stable pruning re- 494

sults than SparseGPT and Wanda, especially at 495

higher pruning ratios. This demonstrates that router 496

weights preserve important information when se- 497

lecting experts and provide a clear hint for pruning 498

unimportant weights. 499

5 Conclusion 500

We propose an efficient and effective pruning 501

method for MoE models, MoE-Pruner. We prune 502

weights with the smallest magnitudes multiplied 503

by the corresponding input activations and router 504

weights. Our pruning method is one-shot and fast, 505

without the need for any retraining or weight update 506

procedures. Pruning MoE LLM with high sparsity 507

will incur performance degradation, so we also pro- 508

pose an expert-wise knowledge distillation method 509

that leverages the unpruned pretrained MoE model 510

as a teacher to guide the pruned student model to re- 511

cover performance. Extensive experimental results 512

across various MoE models validate the effective- 513

ness of our algorithm and MoE-Pruner outperforms 514

all one-shot pruning methods. The fine-tuned MoE 515

models could maintain 99% of the performance of 516

the original model after the expert-wise knowledge 517

distillation, using only a small set of training data 518

and low GPU hours. 519
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Limitations520

Our method can reduce memory usage and improve521

inference speed for more efficient deployment of522

MoE LLMs. Despite its advancements, there are523

still some limitations. We conduct experiments524

across various MoE models, but not those largest525

MoE models which has over 300B total parame-526

ters, as it is impossible to load these large MoE527

models on one machine without the help of quanti-528

zation. We use float16 datatype in our experiments529

to guarantee numerical precision. We will carry out530

experiments on these large MoE LLMs in the future531

using more computation resources and exploring532

quantized MoE models to give a more comprehen-533

sive analysis of the scalability and generalizability534

of our method.535
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Table 8: Open-Source MoE Models List (Released after Jan. 2024).

Name Active
Parameters

Total
Parameters # Experts Routing

Policy
Initialized

Method MMLU∗

OLMoE 1B 7B 64 top-8 train from scratch 54.1

MiniCPM-MoE-8x2B 4B 13.6B 8 top-2 upcycling 58.9

Qwen1.5-MoE-A2.7B 2.7B 14.3B 4(shared)+60 4+top-4 upcycling 62.5

Deepseek-V2-Lite 2.4B 16B 2(shared)+64 2+top-6 train from scratch 58.3

Yuan2.0-M32 3.7B 40B 32 top-2 train from scratch 72.2

GRIN-MoE 6.6B 41.9B 16 top-2 upcycling 79.4

Mixtral-8x7B 12.5B 47B 8 top-2 upcycling 70.4

Jamba 12B 52B 16 top-2 unknown 67.4

Qwen2-57B-A14B 14B 57.4B 8(shared)+64 8+top-8 upcycling 76.5

DBRX 36B 132B 16 top-4 unknown 73.7

Mixtral-8x22B 39B 141B 8 top-2 upcycling 77.8

Skywork-MoE 22B 146B 16 top-2 upcycling 77.4

Deepseek-V2 21B 236B 2(shared)+160 2+top-6 train from scratch 78.5

grok-1 80B 314B 8 top-2 unknown 73.0

Hunyuan-A52B 52B 389B 1(shared)+16 1+top1 unknown 88.4

Snowflake Arctic 17B 480B 128 top-2 unknown 67.3
∗Note: This table presents a subset of open-source MoE models and is not exhaustive. The list is sorted by total parameters.
MMLU scores are extracted from original papers or reports and may not reflect model real performance.
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