
Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

BUY 4 REINFORCE SAMPLES,
GET A BASELINE FOR FREE!

Wouter Kool
University of Amsterdam
ORTEC
w.w.m.kool@uva.nl

Herke van Hoof
University of Amsterdam
h.c.vanhoof@uva.nl

Max Welling
University of Amsterdam
CIFAR
m.welling@uva.nl

ABSTRACT

REINFORCE can be used to train models in structured prediction settings to di-
rectly optimize the test-time objective. However, the common case of sampling
one prediction per datapoint (input) is data-inefficient. We show that by drawing
multiple samples (predictions) per datapoint, we can learn with significantly less
data, as we freely obtain a REINFORCE baseline to reduce variance. Addition-
ally we derive a REINFORCE estimator with baseline, based on sampling without
replacement. Combined with a recent technique to sample sequences without re-
placement using Stochastic Beam Search, this improves the training procedure for
a sequence model that predicts the solution to the Travelling Salesman Problem.

1 INTRODUCTION

REINFORCE (Williams, 1992) is a well known policy optimization algorithm that learns directly
from experience. Variants of it have been used to train models for a wide range of structured predic-
tion tasks, such as Neural Machine Translation (Ranzato et al., 2016; Bahdanau et al., 2017), Image
Captioning (Vinyals et al., 2015b) and predicting solutions (tours) for the Travelling Salesman Prob-
lem (TSP) (Bello et al., 2016; Kool et al., 2019a). As opposed to maximum likelihood (supervised)
learning, the appeal of using REINFORCE for structured prediction is that it directly optimizes the
test-time performance.

When using REINFORCE, often for each datapoint (e.g. a sentence, image or TSP instance) only a
single sample/prediction (e.g. a translation, caption or tour) is used to construct a gradient estimate.
From a classic Reinforcement Learning (RL) point of view, this makes sense, as we may not be able
to evaluate multiple sampled actions for a state (datapoint). However, from a data point of view,
this is inefficient if we can actually evaluate multiple samples, such as in a structured prediction
setting. Reinforcement Learning with multiple samples/predictions for a single datapoint has been
used before (e.g. Shen et al. (2016); He et al. (2016)), but we use the samples as counterfactual
information by constructing a (local, for a single datapoint) REINFORCE baseline. A similar idea
was applied for variational inference by Mnih & Rezende (2016).

Many structured prediction tasks can be formulated in terms of sequence modelling, which is the
focus of this paper. In most sequence modelling tasks, the objective is a deterministic function of
the predicted sequence. As a result, duplicate sampled sequences are uninformative and therefore do
not improve the quality of the gradient estimate. To solve this problem, we propose to use sampling
without replacement to construct a better gradient estimate. This is inspired by recent work by Kool
et al. (2019b), who introduce Stochastic Beam Search as a method to sample sequences without
replacement, and use this to construct a (normalized) importance-weighted estimator for (sentence
level) BLEU score. We extend this idea to estimate policy gradients using REINFORCE, and we
show how to use the same set of samples (without replacement) to construct a baseline. This way
we can leverage sampling without replacement to improve training of sequence models.

In our experiment, we consider the TSP and show that using REINFORCE with multiple sam-
ples is beneficial compared to single sample REINFORCE, both computationally and in terms of
data-efficiency. Additionally, for a sample size of 4 − 8 samples per datapoint, sampling without
replacement results in slightly faster learning.

1

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

2 BACKGROUND

2.1 REINFORCE

The REINFORCE estimator (Williams, 1992) allows to estimate gradients of the expectation
Ey∼pθ(y)[f(y)] by the relation:

∇θEy∼pθ(y)[f(y)] = Ey∼pθ [∇θ log pθ(y)f(y)] (1)

If we also have a context, or datapoint, x (such as a source sentence), we may write pθ(y|x) and
f(y, x), but in this paper, we leave dependence on x implicit. Extension of the derived estimators to
a minibatch of datapoints x is straightforward.

Typically, we estimate the expectation using samples y1, ..., yk and we may reduce variance of the
estimator by using a baseline Bi that is independent of the sample yi (but may depend on the other
samples yj , j 6= i):

∇θEy∼pθ(y)[f(y)] ≈
k∑
i=1

∇θ log pθ(yi)(f(yi)−Bi) (2)

In practice, often a single sample y is used (per datapoint x, as we already have a batch of datapoints)
to compute the estimate, e.g. k = 1, but in this paper we consider k > 1.

2.2 THE GUMBEL-TOP-k TRICK AND STOCHASTIC BEAM SEARCH

In this paper, we consider a parametric distribution over discrete structures (sequences). Enumer-
ating all n possible sequences as y1, ..., yn, we indicate with yi the i-th possible outcome, which
has log-probability φi = log pθ(y

i) defined by the model. We can use the Gumbel-Max trick
(Gumbel, 1954; Maddison et al., 2014) to sample y according to this distribution as follows: let
Gi ∼ Gumbel (a standard Gumbel distribution) for i = 1, ..., n i.i.d., and let y = yi

∗
, where

i∗ = argmaxi{φi + Gi}. Then P (y = yi) = pθ(y
i). For a proof we refer to Maddison et al.

(2014). In a slight abuse of notation, we write Gφi = φi + Gi, and we call Gφi the (Gumbel-)
perturbed log-probability of yi.

The Gumbel-Max trick can be extended to the Gumbel-Top-k trick (Kool et al., 2019b) to draw an
ordered sample without replacement, by taking the top k largest perturbed log-probabilities (instead
of just one, the argmax). The result is equivalent to sequential sampling without replacement, where
after an element y is sampled, it is removed from the domain and the remaining probabilities are
renormalized. The Gumbel-Top-k trick is equivalent to Weighted Reservoir Sampling (Efraimidis
& Spirakis, 2006), as was noted by Vieira (2014). The ordered sample is also known as a partial
ranking according to the Plackett-Luce model (Plackett, 1975; Luce, 1959).

For a sequence model with exponentially large domain, naive application of the Gumbel-Top-k
trick is infeasible, but an equivalent result can be obtained using Stochastic Beam Search (Kool
et al., 2019b). This modification of beam search expands the k partial sequences with maximum
(Gumbel) perturbed log-probability, effectively replacing the standard top k operation by sampling
without replacement. The resulting top k completed sequences are a sample without replacement
from the sequence model, by the equivalence to the Gumbel-Top-k trick. For details we refer to
Kool et al. (2019b).

2.3 STATISTICAL ESTIMATION WITHOUT REPLACEMENT

For many applications we need to estimate the expectation of a function f(y), where y is the real-
ization of a variable with a discrete probability distribution pθ(y). When using Monte Carlo (MC)
sampling (with replacement), we write yi to indicate the i-th sample in a set of samples. In contrast,
when sampling without replacement we find it convenient to write yi (with superscript i) to refer to
the i-th possible value in the domain, so (like we did in Section 2.2) we can enumerate the domain
with n possible values as y1, ..., yn. This notation allows us to write out the expectation of f(y):

Ey∼pθ(y)[f(y)] =
n∑
i=1

pθ(y
i)f(yi). (3)

2

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

Using MC sampling with replacement, we estimate equation 3 using k samples y1, ..., yk:

Ey∼pθ(y)[f(y)] ≈
k∑
i=1

f(yi). (4)

When sampling without replacement using the Gumbel-Top-k trick (Section 2.2) we write S as the
set of k largest indices of Gφi (i.e. S = arg top k{Gφi : i ∈ {1, ..., n}}), so the sample (of size
k) without replacement is {yi : i ∈ S}. We can use the sample S with the estimator derived by
Vieira (2017), based on priority sampling (Duffield et al., 2007). This means that, to correct for
the effects of sampling without replacement, we include importance weights pθ(y

i)
qθ,κ(yi)

. Here κ is the
(k + 1)-th largest value of {Gφi : i ∈ {1, ..., n}}, i.e. the (k + 1)-th largest Gumbel perturbed
log-probability, and qθ,a(yi) = P (Gφi > a) = 1 − exp(− exp(φi − a)) is the probability that the
perturbed log-probability of yi exceeds a. Then we can use the following estimator:

Ey∼pθ(y)[f(y)] ≈
∑
i∈S

pθ(y
i)

qθ,κ(yi)
f(yi). (5)

This estimator is unbiased, and we include a copy of the proof by Kool et al. (2019b) (adapted from
the proofs by Duffield et al. (2007) and Vieira (2017)) in Appendix A, as this introduces notation
and is the basis for the proof in Appendix C.

Intuition behind this estimator comes from the related threshold sampling scenario, where in-
stead of fixing the sample size k, we fix the threshold a and define a variably sized sample
S = {i ∈ {1, ..., n} : Gφi > a}. With threshold sampling, each element yi in the domain is
sampled independently with probability P (Gφi > a) = qθ,a(y

i), and pθ(y
i)

qθ,a(yi)
is a standard impor-

tance weight. As it turns out, instead of having a fixed threshold a, we can fix the sample size k and
use κ as empirical threshold (as i ∈ S if Gφi > κ), and still obtain an unbiased estimator (Duffield
et al., 2007; Vieira, 2017).

As was shown by Kool et al. (2019b), in practice it is preferred to normalize the importance weights
to reduce variance. This means that we compute the normalization W (S) =

∑
i∈S

pθ(y
i)

qθ,κ(yi)
and

obtain the following (biased) estimator:

Ey∼pθ(y)[f(y)] ≈
1

W (S)
·
∑
i∈S

pθ(y
i)

qθ,κ(yi)
f(yi) (6)

3 REINFORCE WITH MULTIPLE SAMPLES

Typically REINFORCE is applied with a single sample y per datapoint x (e.g. one translation per
source sentence, or, in our experiment, a single tour per TSP instance). In some cases, it may be
preferred to take multiple samples y per datapoint x as this requires less data. Taking multiple
samples also gives us counterfactual information which can be used to construct a strong (local)
baseline. Additionally, we obtain computational benefits, as for encoder-decoder models we can
obtain multiple samples using only a single pass through the encoder.

3.1 REINFORCE WITH REPLACEMENT

With replacement, we can use the estimator in equation 2, where we can construct a baseline Bi for
the i-th term based on the other samples j 6= i: Bi = 1

k−1
∑
j 6=i f(yj). We obtain the following

REINFORCE estimator based on drawing k samples y1, ..., yk with replacement:

∇θEy∼pθ(y) [f(y)] ≈
1

k

k∑
i=1

∇θ log pθ(yi)

f(yi)− 1

k − 1

∑
j 6=i

f(yj)

 (7)

=
1

k − 1

k∑
i=1

∇θ log pθ(yi)

f(yi)− 1

k

k∑
j=1

f(yj)

 . (8)

3

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

The form in equation 8 is convenient for implementation as it allows to compute a fixed ‘baseline’
B = 1

k

∑k
j=1 f(yj) once and correct for the bias (as B depends on yi) by normalizing using 1

k−1
instead of 1

k . For details and a proof of unbiasedness we refer to Appendix C.

3.2 REINFORCE WITHOUT REPLACEMENT

The basic REINFORCE without replacement estimator follows from combining equation 1 with
equation 5 for an unbiased estimator:

∇θEy∼pθ(y) [f(y)] ≈
∑
i∈S

pθ(y
i)

qθ,κ(yi)
∇θ log pθ(y

i)f(yi) =
∑
i∈S

∇θpθ(y
i)

qθ,κ(yi)
f(yi) (9)

Similar to equation 6, we can compute a lower variance but biased variant by normalizing the im-
portance weights using the normalization W (S) =

∑
i∈S

pθ(y
i)

qθ,κ(yi)
.

When sampling without replacement, the individual samples are dependent, and therefore we cannot
simply define a baseline based on the other samples as we did in Section 3.1. However, similar to the
‘baseline’ 1

k

∑k
j=1 f(yj) in equation 8, we can define an estimate of Ey∼pθ(y) [f(y)] based on the

complete sample S (without replacement), using equation 5: B(S) =
∑
j∈S

pθ(y
j)

qθ,κ(yj)
f(yj). Using

this baseline introduces a bias that we cannot simply correct for by a constant term (as we did in
equation 8), as the importance weights depend on yi. Instead, we weight the individual terms by
1− pθ(yi) + pθ(y

i)
qθ,κ(yi)

:

∇θEy∼pθ(y) [f(y)] ≈
∑
i∈S

∇θpθ(y
i)

qθ,κ(yi)

(
f(yi)

(
1− pθ(yi) +

pθ(y
i)

qθ,κ(yi)

)
−B(S)

)
(10)

This estimator is unbiased and we give the full proof in Appendix C.

For the normalized version, we use the normalization W (S) =
∑
i∈S

pθ(y
i)

qθ,κ(yi)
for the baseline, and

Wi(S) =W (S)− pθ(y
i)

qθ,κ(yi)
+ pθ(y

i) to normalize the outer terms:

∇θEy∼pθ(y) [f(y)] ≈
∑
i∈S

1

Wi(S)
· ∇θpθ(y

i)

qθ,κ(yi)

(
f(yi)− B(S)

W (S)

)
(11)

It seems odd to normalize the terms in the outer sum by 1
Wi(S)

instead of 1
W (S) , but this estimator can

be considered the (normalized) without-replacement equivalent of equation 8 where we normalize
by 1

k−1 instead of 1
k . It can be derived by rewriting equation 10 to a form similar to equation 7 (as

this reveals the actual ‘baseline’), then applying the normalization of the importance-weights for the
outer sum and the baseline, and then rewriting it once again to the form similar to equation 8 to
obtain equation 11. This derivation is given in full in Appendix C.1. The estimator in equation 11 is
convenient to implement as the (normalized) ‘baseline’ B(S)

W (S) only has to be computed once.

4 EXPERIMENT

We consider the task of predicting the solution for instances of the Travelling Salesman Problem
(TSP) (Vinyals et al., 2015a; Bello et al., 2016; Kool et al., 2019a). The problem is to find the order
in which to visit locations (specified by their x, y coordinates) to minimize total travelling distance.
A policy is trained using REINFORCE to minimize the expected length of a tour (sequence of
locations) predicted by the model.

The Attention Model by Kool et al. (2019a) is a sequence model that considers each instance as a
fully connected graph of nodes which are processed by an encoder. The decoder then produces the
tour as a sequence of nodes to visit, one node at a time, where it autoregressively uses as input the
node visited in the previous step.

4

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

(a) k = 4, performance vs. training steps (b) k = 4, performance vs. number of instances

(c) k = 8, performance vs. training steps (d) k = 8, performance vs. number of instances

Figure 1: Performance measured as validation set optimality gap during training. Raw results are
light, smoothed results are darker (2 random seeds per setting). REINFORCE is used with replace-
ment (WR) and without replacement (WOR) using k = 4 (top row) or k = 8 (bottom row) samples
per instance, and a local baseline based on the k samples for each instance. We compare against
REINFORCE using one sample per instance, either with a baseline that is the average of the batch,
or the strong greedy rollout baseline by Kool et al. (2019a) that requires an additional rollout of the
model.

We use the source code by Kool et al. (2019a)1 to reproduce their TSP experiment with 20 nodes
(as larger instances diminish the benefit of sampling without replacement). We implement REIN-
FORCE estimators based on multiple samples, either sampled with replacement (WR) or without
replacement (WOR) using Stochastic Beam Search (Kool et al., 2019b). We compare the following
four estimators:

• Single sample with a batch baseline. Here we compute the standard REINFORCE esti-
mator (equation 2) with a single sample (k = 1). We use a batch of 512 instances (dat-
apoints) and as baseline we take the average of the tour lengths in the batch, hence each
instances uses the same baseline. This is implemented as using the exponential moving
average baseline by (Kool et al., 2019a) with β = 0.

• Single sample with a greedy rollout baseline, and batch size 512. As baseline, we use
a greedy rollout: for each instance x we take the length of the tour that is obtained by
greedily selecting the next location according to an earlier (frozen) version of the model.
This baseline, similar to self-critical training (Rennie et al., 2017), corresponds to the best
result found by Kool et al. (2019a), superior to using an exponential moving average or
learned value function. However, the greedy rollout requires an additional forward pass
through the model.

• Multiple samples with replacement (WR) with a local baseline. Here we compute the
estimator in equation 8 based on k = 4, 8 samples. We use a batch size of 512

k , so the total
number of samples is the same. The baseline is local as it is different for each datapoint,
but it does not require additional model evaluations like the greedy rollout.

1https://github.com/wouterkool/attention-learn-to-route

5

https://github.com/wouterkool/attention-learn-to-route

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

• Multiple samples without replacement (WOR) with a local baseline. Here we use the
(biased) normalized without replacement estimator in equation 11 with k = 4, 8 samples
and batch size 512

k . Samples are drawn without replacement using Stochastic Beam Search
(Kool et al., 2019b). For fair comparison, we do not take a (k+1)-th sample to compute κ,
but sacrifice the k-th sample and compute the summation in equation 11 with the remaining
k − 1 (3 or 7) samples.

Note that a single sample with a local baseline is not possible, which is why we use the batch base-
line. The model architecture and training hyperparameters (except batch size) are as in the paper by
Kool et al. (2019a). We present the results in terms of the validation set (not used for additional tun-
ing) optimality gap during training in Figure 1, using k = 4 (top row) and k = 8 (bottom row). We
found diminishing returns for larger k. The left column presents the results in terms of the number
of gradient update steps (minibatches). We see that sampling without replacement performs on par
(k = 8) or slightly better than using the strong but computationally expensive greedy rollout base-
line or using multiple samples with replacement. The standard batch baseline performs significantly
worse. The estimators based on multiple samples do not lose (much) final performance, while using
significantly less instances. In the right column, where results are presented in terms of the number
of instances, this effectiveness is confirmed, and we observe that sampling without replacement is
preferred to sampling with replacement. The difference is small, but there is also not much room for
improvement as results are close to optimal. The benefit of learning with less data may be small if
data is easily generated (as in our setting), but there is also a significant computational benefit as we
need significantly fewer encoder evaluations.

5 DISCUSSION

In this paper, we have derived REINFORCE estimators based on drawing multiple samples, with and
without replacement, and evaluated the effectiveness of the proposed estimators in a structured pre-
diction setting: the prediction of tours for the TSP. The derived estimators yield results comparable
to recent results using REINFORCE with a strong greedy rollout baseline, at greater data-efficiency
and computational efficiency.

These estimators are especially well suited for structured prediction settings, where the domain is too
large to compute exact gradients, but we are able to take multiple samples for the same datapoint, and
the objective is a deterministic function of the sampled prediction. We hope the proposed estimators
have potential to be used to improve training efficiency in more structured prediction settings, for
example in the context of Neural Machine Translation or Image Captioning, where depending on
the entropy of the model, sampling without replacement may yield a beneficial improvement.

6

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

REFERENCES

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. In International
Conference on Learning Representations, 2017.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of arbitrary
subset sums. Journal of the ACM (JACM), 54(6):32, 2007.

Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reservoir. Information
Processing Letters, 97(5):181–185, 2006.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series
of lectures. Number 33. US Govt. Print. Office, 1954.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual
learning for machine translation. In Advances in Neural Information Processing Systems, pp.
820–828, 2016.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019a.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find
them: The gumbel-top-k trick for sampling sequences without replacement. arXiv preprint
arXiv:1903.06059, 2019b.

R Duncan Luce. Individual choice behavior. 1959.

Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in Neural Information
Processing Systems, pp. 3086–3094, 2014.

Andriy Mnih and Danilo Rezende. Variational inference for monte carlo objectives. In International
Conference on Machine Learning, pp. 2188–2196, 2016.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 24(2):193–202, 1975.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. In International Conference on Learning Representations,
2016.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7008–7024, 2017.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Minimum
risk training for neural machine translation. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 1683–1692,
2016.

Tim Vieira. Gumbel-max trick and weighted reservoir sampling, 2014.
URL https://timvieira.github.io/blog/post/2014/08/01/
gumbel-max-trick-and-weighted-reservoir-sampling/.

Tim Vieira. Estimating means in a finite universe, 2017. URL https://timvieira.github.
io/blog/post/2017/07/03/estimating-means-in-a-finite-universe/.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692–2700, 2015a.

7

https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://timvieira.github.io/blog/post/2017/07/03/estimating-means-in-a-finite-universe/
https://timvieira.github.io/blog/post/2017/07/03/estimating-means-in-a-finite-universe/

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. In Proceedings of the IEEE Conference on Computer vision and Pattern
Recognition, pp. 3156–3164, 2015b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

8

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

A PROOF OF UNBIASEDNESS OF PRIORITY SAMPLING ESTIMATOR

We include here in full the proof by Kool et al. (2019b), as this introduces necessary notation and
helps understanding of the proof in Appendix C.

A.1 PROOF OF UNBIASEDNESS OF PRIORITY SAMPLING ESTIMATOR BY KOOL ET AL.
(2019B)

The following proof is adapted from the proofs by Duffield et al. (2007) and Vieira (2017). For
generality of the proof, we write f(i) = f(yi), pi = pθ(y

i) and qi(κ) = qθ,κ(y
i), and we consider

general keys hi (not necessarily Gumbel perturbations).

We assume we have a probability distribution over a finite domain 1, ..., n with normalized proba-
bilities pi, e.g.

∑n
i=1 pi = 1. For a given function f(i) we want to estimate the expectation

E[f(i)] =
n∑
i=1

pif(i).

Each element i has an associated random key hi and we define qi(a) = P (hi > a). This way, if
we know the threshold a it holds that qi(a) = P (i ∈ S) is the probability that element i is in the
sample S. As was noted by Vieira (2017), the actual distribution of the key does not influence the
unbiasedness of the estimator but does determine the effective sampling scheme. Using the Gumbel
perturbed log-probabilities as keys (e.g. hi = Gφi) is equivalent to the PPSWOR scheme described
by Vieira (2017).

We define shorthand notation h1:n = {h1, ..., hn}, h−i = {h1, ..., hi−1, hi+1, ..., hn} = h1:n\{hi}.
For a given sample size k, let κ be the (k + 1)-th largest element of h1:n, so κ is the empirical
threshold. Let κ′i be the k-th largest element of h−i (the k-th largest of all other elements).

Similar to Duffield et al. (2007) we will show that every element i in our sample contributes an
unbiased estimate of E[f(i)], so that the total estimator is unbiased. Formally, we will prove that

Eh1:n

[
1{i∈S}

qi(κ)

]
= 1 (12)

from which the result follows:

Eh1:n

[∑
i∈S

pi
qi(κ)

f(i)

]

=Eh1:n

[
n∑
i=1

pi
qi(κ)

f(i)1{i∈S}

]

=

n∑
i=1

pif(i) · Eh1:n

[
1{i∈S}

qi(κ)

]

=

n∑
i=1

pif(i) · 1 =

n∑
i=1

pif(i) = E[f(i)]

To prove equation 12, we make use of the observation (slightly rephrased) by Duffield et al. (2007)
that conditioning on h−i, we know κ′i and the event i ∈ S implies that κ = κ′i since i will only be
in the sample if hi > κ′i which means that κ′i is the k + 1-th largest value of h−i ∪ {hi} = h1:n.
The reverse is also true (if κ = κ′i then hi must be larger than κ′i since otherwise the k+1-th largest

9

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

value of h1:n will be smaller than κ′i).

Eh1:n

[
1{i∈S}

qi(κ)

]
=Eh−i

[
Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣hi]]
=Eh−i

[
Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣h−i, i ∈ S]P (i ∈ S|h−i) + Ehi
[
1{i∈S}

qi(κ)

∣∣∣∣h−i, i 6∈ S]P (i 6∈ S|h−i)]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣h−i, i ∈ S]P (i ∈ S|h−i) + 0

]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣h−i, i ∈ S] qi(κ′i)]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣κ = κ′i

]
qi(κ

′
i)

]
=Eh−i

[
Ehi

[
1

qi(κ′i)

]
qi(κ

′
i)

]
=Eh−i

[
1

qi(κ′i)
qi(κ

′
i)

]
= Eh−i [1] = 1

B REINFORCE WITH BASELINE AND REPLACEMENT

We will now prove that the REINFORCE estimator based on multiple samples with the sample
average as baseline (equation 8) is unbiased. Let y1:k = {y1, ..., yk} be the set of independent
samples (with replacement) from pθ(y). First we show that using the batch mean as baseline is
equivalent to using the mean of the other elements in the batch, up to a constant k−1k .

f(yi)−
1

k

k∑
j=1

f(yj)

= f(yi)(1−
1

k
)− 1

k

∑
j 6=i

f(yj)

= f(yi)
k − 1

k
− 1

k − 1
· k − 1

k

∑
j 6=i

f(yj)

=
k − 1

k

f(yi)− 1

k − 1
·
∑
j 6=i

f(yj)

 (13)

Note that k−1k goes to 1 as the batch size k increases and we do not need to include it (and we can
simply compute the biased mean) as it can be absorbed into the learning rate. Since yj is independent

10

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

of yi, unbiasedness follows:

Ey1:k

 1

k − 1

k∑
i=1

∇θ log pθ(yi)

f(yi)− 1

k

k∑
j=1

f(yj)

=Ey1:k

1
k

k∑
i=1

∇θ log pθ(yi)

f(yi)− 1

k − 1

∑
j 6=i

f(yj)

=

1

k

k∑
i=1

Ey1:k [∇θ log pθ(yi)f(yi)]−
1

k − 1

∑
j 6=i

Ey1:k [∇θ log pθ(yi)f(yj)]

=
1

k

k∑
i=1

Eyi [∇θ log pθ(yi)f(yi)]−
1

k − 1

∑
j 6=i

Eyi [∇θ log pθ(yi)] · Eyj [f(yj)]

=
1

k

k∑
i=1

Ey [∇θ log pθ(y)f(y)]−
1

k − 1

∑
j 6=i

0 · Eyj [f(yj)]

=
1

k
· k · Ey [∇θ log pθ(y)f(y)]− 0

=Ey [∇θ log pθ(y)f(y)]

=∇θEy [f(y)]

C REINFORCE WITH BASELINE WITHOUT REPLACEMENT

The proof that the REINFORCE estimator based on multiple samples without replacement with
baseline (equation 10) is unbiased follows from adapting and combining the proofs in Appendix A
and B. Additionally to qi(a) = P (hi > a) we define qij(a) = P (hi > a ∩ hj > a) = P (hi >
a)P (hj > a) = qi(a)qj(a) for i 6= j and qii(a) = P (hi > a) = qi(a). For convenience we define
shorthand for the conditional qj|i(a) =

qij(a)
qi(a)

, so qj|i(a) = qj(a) for j 6= i and qi|i(a) = 1.

Furthermore, we define h−ij = h1:n \ {hi, hj} and define κ′ij (i 6= j) as the (k − 1)-th (not k-th!)
largest element of h−ij , and κ′ii = κ′i, e.g. the k-th largest element of h−i.

We denote with with {i, j ∈ S} = {i ∈ S ∩ j ∈ S} the event that both i and j are in the sample,
also for i = j which simply means {i ∈ S}. First we generalize P (i ∈ S|h−i) = qi(κ

′
i) to the

pairwise conditional inclusion probability P (i, j ∈ S|h−ij).

Lemma 1. P (i, j ∈ S|h−ij) = qij(κ
′
ij)

Proof. For i = j:

P (i, j ∈ S|h−ij) = P (i ∈ S|h−i) = qi(κ
′
i) =

qii(κ
′
ii) = qij(κ

′
ij)

For i 6= j: Assuming w.l.o.g. hi < hj there are the following scenario’s:

• κ′ij < hi < hj . In this case, after adding hi and hj to h−ij , κ′ij will be the (k + 1)-th
largest element so κ = κ′ij and i ∈ S and j ∈ S since hj > hi > κ = κ′ij .

• hi < κ′ij < hj or hi < hj < κ′ij . In both cases, there are at least (k− 1)+1 = k elements
higher than hi so i 6∈ S.

11

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

Therefore it follows that {i, j ∈ S|u−ij} = {hi > κ′ij ∩ hj > κ′ij |u−ij} and additionally this event
implies κ = κ′ij . Now the result follows:

P (i, j ∈ S|u−ij)
=P (hi > κ ∩ hj > κ|u−ij)
=P (hi > κ′ij ∩ hj > κ′ij |u−ij)
=P (hi > κ′ij |u−ij)P (hj > κ′ij |u−ij)
=qi(κ

′
ij)qj(κ

′
ij) = qij(κ

′
ij)

Using this Lemma we can prove the following Lemma:
Lemma 2.

Eh1:n

[
1{i,j∈S}

qij(κ)

]
= 1 (14)

Note that the expectation is w.r.t. the keys h1:n which define the random variables κ and S = {i :
hi > κ}.

Proof.

Eh1:n

[
1{i,j∈S}

qij(κ)

]
=Eh−ij

[
Ehi,hj

[
1{i,j∈S}

qij(κ)

∣∣∣∣u−ij]]
=Eh−ij

[
Ehi,hj

[
1

qij(κ)

∣∣∣∣u−ij , i, j ∈ S]P (i, j ∈ S|u−ij) + 0 · (1− P (i, j ∈ S|u−ij))
]

=Eh−ij
[
Ehi,hj

[
1

qij(κ)

∣∣∣∣κ = κ′ij

]
qij(κ

′
ij)

]
=Eh−ij

[
1

qij(κ′ij)
qij(κ

′
ij)

]
= Eh−ij [1] = 1

Theorem 1. Let B(S) =
∑
j∈S

pθ(y
j)

qj(κ)
f(yj). Then the following is an unbiased estimator:

Eh1:n

[∑
i∈S

∇θpθ(y
i)

qi(κ)

(
f(yi)

(
1− pθ(yi) +

pθ(y
i)

qi(κ)

)
−B(S)

)]
= ∇θEy∼pθ(y) [f(y)] (15)

Proof. First note that, when i ∈ S, we can rewrite:

f(yi)

(
1− pθ(yi) +

pθ(y
i)

qi(κ)

)
−B(S)

= f(yi)

(
1− pθ(yi) +

pθ(y
i)

qi(κ)

)
−
∑
j∈S

pθ(y
j)

qj(κ)
f(yj)

= f(yi)
(
1− pθ(yi)

)
−

∑
j∈S\{i}

pθ(y
j)

qj(κ)
f(yj)

= f(yi)

(
1− pθ(y

i)

qi|i(κ)

)
−

∑
j∈S\{i}

pθ(y
j)

qj|i(κ)
f(yj)

= f(yi)−
∑
j∈S

pθ(y
j)

qj|i(κ)
f(yj) (16)

12

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

Then the proof follows:

Eh1:n

[∑
i∈S

∇θpθ(y
i)

qi(κ)

(
f(yi)

(
1− pθ(yi) +

pθ(y
i)

qi(κ)

)
−B(S)

)]

=Eh1:n

∑
i∈S

∇θpθ(y
i)

qi(κ)

f(yi)−∑
j∈S

pθ(y
j)

qj|i(κ)
f(yj)

=Eh1:n

 n∑
i=1

1{i∈S}
∇θpθ(y

i)

qi(κ)

f(yi)− n∑
j=1

1{j∈S}
pθ(y

j)

qj|i(κ)
f(yj)

=

n∑
i=1

∇θpθ(y
i) · Eh1:n

1{i∈S}
qi(κ)

f(yi)− n∑
j=1

1{j∈S}

qj|i(κ)
pθ(y

j)f(yj)

=

n∑
i=1

∇θpθ(y
i) · Eh1:n

1{i∈S}
qi(κ)

f(yi)−
n∑
j=1

1{i,j∈S}

qij(κ)
pθ(y

j)f(yj)

=

n∑
i=1

∇θpθ(y
i)

f(yi) · Eh1:n

[
1{i∈S}

qi(κ)

]
−

n∑
j=1

pθ(y
j)f(yj) · Eh1:n

[
1{i,j∈S}

qij(κ)

]
=

n∑
i=1

∇θpθ(y
i)

f(yi) · 1− n∑
j=1

pθ(y
j)f(yj) · 1

=

n∑
i=1

∇θpθ(y
i)
(
f(yi)− Ey∼pθ(y)[f(y)]

)
=

n∑
i=1

∇θpθ(y
i)f(yi)−

n∑
i=1

∇θpθ(y
i)Ey∼pθ(y)[f(y)]

=

n∑
i=1

∇θpθ(y
i)f(yi)− Ey∼pθ(y)[f(y)] ·

n∑
i=1

∇θpθ(y
i)

=∇θ

n∑
i=1

pθ(y
i)f(yi)− Ey∼pθ(y)[f(y)] · ∇θ

n∑
i=1

pθ(y
i)

=∇θEy∼pθ(y)[f(y)]− Ey∼pθ(y)[f(y)] · ∇θ1

=∇θEy∼pθ(y)[f(y)]− Ey∼pθ(y)[f(y)] · 0
=∇θEy∼pθ(y) [f(y)]

C.1 NORMALIZED IMPORTANCE WEIGHTS

By rewriting ∇θpθ(y
i)

qi(κ)
= pθ(y

i)
qi(κ)

· ∇θ log pθ we reveal that the estimator equation 15 is actually an
importance weighted REINFORCE estimator. Although unbiased, in practice it is preferred to use
the normalized importance weight estimator. We will therefore normalize both the outer weights as
well as the weights used for computation of the baseline. For this, write W (S) =

∑
i∈S

pθ(y
i)

qi(κ)
and

scale equation 15 by 1
W (S) . Note that although equation 15 is written in terms of B(S), the actual

baseline (for sample i) is
∑
j∈S

pθ(y
j)

qj|i(κ)
f(yj) (see equation 16) which should be normalized by

Wi(S) =
∑
j∈S

pθ(y
j)

qj|i(κ)
=W (S)− pθ(y

i)

qi(κ)
+ pθ(y

i).

13

Published at the ICLR 2019 workshop: Deep RL Meets Structured Prediction

Using equation 16, we can rewrite (similar to equation 13)

f(yi)− 1

Wi(S)

∑
j∈S

pθ(y
j)

qj|i(κ)
f(yj)

=
1

Wi(S)

f(yi)Wi(S)−
∑
j∈S

pθ(y
j)

qj|i(κ)
f(yj)

=

1

Wi(S)

(
f(yi)

(
Wi(S)− pθ(yi) +

pθ(y
i)

qi(κ)

)
−B(S)

)
=

1

Wi(S)

(
f(yi)W (S)−B(S)

)
=
W (S)

Wi(S)

(
f(yi)− B(S)

W (S)

)

Substituting this into equation 15 and normalizing the outer importance weights by W (S) we see
that this term cancels to obtain

Eh1:n

 1

W (S)

∑
i∈S

∇θpθ(y
i)

qi(κ)

f(yi)− 1

Wi(S)

∑
j∈S

pθ(y
j)

qj|i(κ)
f(yj)

=Eh1:n

[
1

W (S)

∑
i∈S

∇θpθ(y
i)

qi(κ)
· W (S)

Wi(S)

(
f(yi)− B(S)

W (S)

)]

=Eh1:n

[∑
i∈S

1

Wi(S)
· ∇θpθ(y

i)

qi(κ)

(
f(yi)− B(S)

W (S)

)]

14

	Introduction
	Background
	REINFORCE
	The Gumbel-Top-k trick and Stochastic Beam Search
	Statistical estimation without replacement

	REINFORCE with multiple samples
	REINFORCE with replacement
	REINFORCE without replacement

	Experiment
	Discussion
	Proof of unbiasedness of priority sampling estimator
	Proof of unbiasedness of priority sampling estimator by kool2019stochastic

	REINFORCE with baseline and replacement
	REINFORCE with baseline without replacement
	Normalized importance weights

