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Error Correcting Algorithms for Sparsely Correlated Regressors
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Abstract
Autonomy and adaptation of machines requires
that they be able to measure their own errors. We
consider the advantages and limitations of such
an approach when a machine has to measure the
error in a regression task. How can a machine
measure the error of regression sub-components
when it does not have the ground truth for the cor-
rect predictions? A compressed sensing approach
applied to the error signal of the regressors can
recover their precision error without any ground
truth. It allows for some regressors to be strongly
correlated as long as not too many are so related.
Its solutions, however, are not unique - a prop-
erty of ground truth inference solutions. Adding
`1–minimization as a condition can recover the
correct solution in settings where error correc-
tion is possible. We briefly discuss the similarity
of the mathematics of ground truth inference for
regressors to that for classifiers.

1. Introduction
An autonomous, adaptive system, such as a self-driving car,
needs to be robust to self-failures and changing environ-
mental conditions. To do so, it must distinguish between
self-errors and environmental changes. This chicken-and-
egg problem is the concern of ground truth inference algo-
rithms - algorithms that measure a statistic of ground truth
given the output of an ensemble of evaluators. They seek to
answer the question - Am I malfunctioning or is the envi-
ronment changing so much that my models are starting to
break down?

Ground truth inference algorithms have had a spotty his-
tory in the machine learning community. The original idea
came from (Dawid et al., 1979) and used the EM algorithm
to solve a maximum-likelihood equation. This enjoyed a
brief renaissance in the 2000s due to advent of services like
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Amazon Turk. Our main critique of all these approaches
is that they are parametric - they assume the existence of a
family of probability distributions for how the estimators
are committing their errors. This has not worked well in
theory or practice (Zheng et al., 2017).

Here we will discuss the advantages and limitations of a
non-parametric approach that uses compressed sensing to
solve the ground truth inference problem for noisy regres-
sors (Corrada-Emmanuel & Schultz, 2008). Ground truth is
defined in this context as the correct values for the predic-
tions of the regressors. The existence of such ground truth
is taken as a postulate of the approach. More formally,
Definition 1 (Ground truth postulate for regressors). All
regressed values in a dataset can be written as,

ŷi,r = yi,true + δi,r, (1)

where yi,true does not depend on the regressor used.

In many practical situations this is a very good approxima-
tion to reality. But it can be violated. For example, the
regressors may have developed their estimates at different
times while a y(t)i,true varied under them.

We can now state the ground truth inference problem for
regressors as,
Definition 2 (Ground truth inference problem for regres-
sors). Given the output of R aligned regressors on a dataset
of size D,

((ŷ1,1, ŷ2,1, . . . , ŷD,1), . . . , (ŷ1,R, ŷ2,R, . . . , ŷD,R)),

estimate the error moments for the regressors,

δr1 δr2 :=
1

D

D∑
i=1

δi,r1 δi,r2 , (2)

and

δr :=
1

D

D∑
i=1

δi,r, (3)

without the true values, {yi,true}.

The separation of moment terms that are usually combined
to define a covariance1 between estimators is deliberate

1To wit, covariance can be expressed as σri,rj = δr1 δr2 −
δr1 δr2 .
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Error correcting algorithms for noisy regressors

and relates to the math for the recovery as the reader will
understand shortly.

As stated, the ground truth inference problem for sparsely
correlated regressors was solved in (Corrada-Emmanuel &
Schultz, 2008) by using a compressed sensing approach
to recover the R(R+ 1)/2 moments, δr1 δr2 , for unbiased
(δr ≈ 0) regressors. Even the case of some of the regressors
being strongly correlated is solvable. Sparsity of non-zero
correlations is all that is required. Here we point out that
the failure to find a unique solution for biased regressors
still makes it possible to detect and correct biased regressors
under the same sort of engineering logic that allows bit flip
error correction in computers.

2. Independent, unbiased regressors
We can understand the advantages and limitations of do-
ing ground truth inference for regressors by simplifying the
problem to that of independent, un-biased regressors. The
inference problem then becomes a straightforward linear
algebra one that can be understood without the complex-
ity required when some unknown number of them may be
correlated.

Consider two regressors giving estimates,

ŷi,r1 = yi,true + δi,r1 (4)
ŷi,r2 = yi,true + δi,r2 . (5)

By the Ground Truth Postulate, these can be subtracted to
obtain,

ŷi,r1 − ŷi,r2 = δi,r1 − δi,r2 (6)

Note that the left-hand side involves observable values that
do not require any knowledge of yi,true. The right hand
side contains the error quantities that we seek to estimate.
Squaring both sides and averaging over all the datapoints in
the dataset we obtain our primary equation,

∆2
r1,r2

:=
1

D

D∑
i=1

(ŷi,r1 − ŷi,r2)2

= ¯δ2r1 − 2 δr1 δr2 + ¯δ2r2 . (7)

Since we are assuming that the regressors are independent
in their errors (δr1 δr2 ≈ 0), we can simplify 7 to,

¯δ2r1 + ¯δ2r2 = ∆2
r1,r2 . (8)

This is obviously unsolvable with a single pair of regressors.
But for three it is. It leads to the following linear algebra
equation, 1 1 0

1 0 1
0 1 1

 δ̄21δ̄22
δ̄23

 =

∆2
1,2

∆2
1,3

∆2
2,3

 (9)

Figure 1. Least squares recovery of the error moments for three
independent regressors.

An application of this simple equation to a synthetic experi-
ment with three noisy regressors is shown in Figure 1. Just
like any least squares approach, and underlying topology for
the relation between the different data points is irrelevant.
Hence, we can treat, for purposes of experimentation, each
pixel value of a photo as a ground truth value to be regressed
by the synthetic noisy regressors - in this case with uniform
error. To highlight the multidimensional nature of equation
6, we randomized each of the color channels but made one
channel more noisy for each of the pictures. This simu-
lates two regressors being mostly correct, but a third one
perhaps malfunctioning. Since even synthetic experiments
with independent regressors will result in spurious non-zero
cross-correlations, we solved the equation via least squares2.

3. Biased, independent regressors
So why are these impressive results not better known and
a standard subject in Statistics 101 courses? There may
be various reasons for this. The first one is that statistics
concerns itself mostly with the imputation of the parameters
of a model for the signal being studied, not the error of the
regressors with themselves. We are not trying to impute
properties of the true signal, but of the error signal between
the regressors. A regressor may put out a signal ŷi,r, but its
error signal δi,r could be completely different. Additionally,
Statistics has historically swayed from moment methods
(such as the approach taken here) to maximum likelihood
methods and back. Moment methods are much more practi-

2The full compressive sensing solution being wholly unneces-
sary in this application where we know the regressors are practi-
cally independent.
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cal now with the advent of big data and cheap computing
power.

The other more important reason is that the above math
fails for the case of biased regressors. We can intuitively
understand that because eq. 6 is invariant to a global bias,
∆, for the regressors. We are not solving for the full average
error of the regressors but their average precision error,ε1...

εr

 =

δ1...
δr

 +

∆
...

∆

 (10)

We can only determine the error of the regressors modulus
some unknown global bias. This, by itself, would not be an
unsurmountable problem since global shifts are easy to fix.
From an engineering perspective, accuracy is cheap while
precision is expensive3. The more problematic issue is that
it would not be able to determine correctly who is biased if
they are biased relative to each other.

Let us demonstrate that by using eq 6 to estimate the aver-
age bias, δr, for the regressors. Averaging over both sides,
we obtain for three independent regressors, the following
equation4, 1 −1 0

1 0 −1
0 1 −1

 δ1δ2
δ3

 =

∆1,2

∆1,3

∆2,3

 (11)

The rank of this matrix is two. This means that the matrix
has a one-dimensional null space. In this particular case,
the subspace is spanned by a constant bias shift as noted
previously. Nonetheless, let us consider the specific case of
three regressors where two of them have an equal constant
bias, δ1δ2

δ3

 =

 0
∆
∆

 . (12)

This would result in the ∆r1,r2 vector,∆1,2

∆1,3

∆2,3

 =

−∆
−∆
0

 . (13)

The general solution to Eq. 10 would then be,δ1δ2
δ3

 =

−∆
0
0

 + c

∆
∆
∆

 . (14)

3Examples are (a) the zeroing screw in a precision weight scale,
(b) the number of samples needed to measure a classifier’s accuracy
when it is of unknown accuracy versus when we know it is either,
say, 1% or 99% accurate. The former situation is more accurate
on average but less precise. The latter one, precise but inaccurate.

4The observable statistic, ∆r1,r2 , is equal to 1/D
∑

(ŷi,r1 −
ŷi,r2).

This seems to be a failure for any ground truth inference
for noisy regressors. Lurking underneath this math is the
core idea of compressed sensing: pick the value of c for
the solutions to eq. 14 that minimizes the `1 norm of the
recovered vector. When such a point of view is taken, non-
unique solutions to ground truth inference problems can be
re-interpreted as error detecting and correcting algorithms.
We explain.

4. Error detection and correction
Suppose, instead, that only one of the three regressors was
biased, δ1δ2

δ3

 =

∆
0
0

 . (15)

This would give the general solution,δ1δ2
δ3

 =

∆
0
0

 + c

∆
∆
∆

 , (16)

with c an arbitrary, constant scalar. If we assume that errors
are sparse, then an `1-minimization approach would lead us
to select the solution,δ1δ2

δ3

 =

∆
0
0

 . (17)

The algorithm would be able to detect and correct the bias
of a single regressor. If we wanted more reassurance that
we were picking the correct solution then we could use 5
regressors. When the last two have constant bias, the general
solution is, 

δ1
δ2
δ3
δ4
δ5

 =


−∆
−∆
−∆

0
0

 + c


∆
∆
∆
∆
∆

 . (18)

With the corresponding `1-minimization solution of,
δ1
δ2
δ3
δ4
δ5

 =


0
0
0
∆
∆

 . (19)

This is the same engineering logic that makes practical the
use of error correcting codes when transmitting a signal over
a noisy channel. Our contribution is to point out that the
same logic also applies to estimation errors by regressors
trying to recover the true signal.
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Figure 2. Recovered square error moments (circles), δr1 δr2 , for
the true error moments (squares) of 10 synthetic regressors on the
pixels of a 1024x1024 image. Recovering algorithm does not know
which vector components correspond to the strong diagonal signal,
the (i,i) error moments.

5. Conclusions
A compressed sensing algorithm for recovering the average
error moments of an ensemble of noisy regressors exists.
Like other ground truth inference algorithms, it leads to
non-unique solutions. However, in many well-engineered
systems, errors are sparse and mostly uncorrelated when the
machine is operating normally. Algorithms such as this one
can then detect the beginning of malfunctioning sensors and
algorithms.

We can concretize the possible applications of this technique
by considering a machine such as a self-driving car. Optical
cameras and range finders are necessary sub-components.
How can the car detect a malfunctioning sensor? There are
many ways this already can be done (no power from the
sensor, etc.). This technique adds another layer of protection
by potentially detecting anomalies earlier. In addition, it
allows the creation of supervision arrangements such as
having one expensive, precise sensor coupled with many
cheap, imprecise ones. As the recovered error moment
matrix in Figure 2 shows, many noisy sensors can be used
to benchmark a more precise one (the (sixth regressor {6,6}
moment in this particular case). As (Corrada-Emmanuel
& Schultz, 2008) demonstrate, it can also be used on the
final output of algorithms. In the case of a self-driving car,
a depth map is needed of the surrounding environment - the
output of algorithms processing the sensor input data. Here
again, one can envision supervisory arrangements where
quick, imprecise estimators can be used to monitor a more
expensive, precise one.

There are advantages and limitations to the approach pro-
posed here. Because there is no maximum likelihood equa-
tion to solve, the method is widely applicable. The price
for this flexibility is that no generalization can be made.
There is no theory or model to explain the observed errors

- they are just estimated robustly for each specific dataset.
Additionally, the math is easily understood. The advantages
or limitations of a proposed application to an autonomous,
adaptive system can be ascertained readily. The theoretical
guarantees of compressed sensing algorithms are a testa-
ment to this (Foucart & Rauhaut, 2013). Finally, the com-
pressed sensing approach to regressors can handle strongly,
but sparsely, correlated estimators.

We finish by pointing out that non-parametric methods also
exist for classification tasks. This is demonstrated for inde-
pendent, binary classifiers (with working code) in (Corrada-
Emmanuel, 2018). The only difference is that the linear
algebra of the regressor problem becomes polynomial al-
gebra. Nonetheless, there we find similar ambiguities due
to non-unique solutions to the ground truth inference prob-
lem of determining average classifier accuracy without the
correct labels. For example, the polynomial for unknown
prevalence (the environmental variable) of one of the labels
is quadratic, leading to two solutions. Correspondingly, the
accuracies of the classifiers (the internal variables) are either
x or 1 − x. So a single classifier could be, say, 90% or
10% accurate. The ambiguity is removed by having enough
classifiers - the preferred solution is where one of them is
going below 50%, not the rest doing so.

References
Corrada-Emmanuel, A. Ground truth inference of binary

classifier accuracies - the independent classifiers
case. https://github.com/andrescorrada/
ground-truth-problems-in-business/
blob/master/classification/
IndependentBinaryClassifiers.pdf, 2018.

Corrada-Emmanuel, A. and Schultz, H. Geometric precision
errors in low-level computer vision tasks. In Proceed-
ings of the 25th International Conference on Machine
Learning (ICML 2008), pp. 168–175, Helsinki, Finland,
2008.

Dawid, P., Skene, A. M., Dawidt, A. P., and Skene, A. M.
Maximum likelihood estimation of observer error-rates
using the em algorithm. Applied Statistics, pp. 20–28,
1979.

Foucart, S. and Rauhaut, H. A Mathematical Introduction
to Compressive Sensing. Birkhäuser, New York, 2013.
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