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ABSTRACT

Deep neural networks have been demonstrated to be vulnerable to adversarial at-
tacks, where small perturbations intentionally added to the original inputs can fool
the classifier. In this paper, we propose a defense method, Featurized Bidirectional
Generative Adversarial Networks (FBGAN), to extract the semantic features of
the input and filter the non-semantic perturbation. FBGAN is pre-trained on the
clean dataset in an unsupervised manner, adversarially learning a bidirectional
mapping between the high-dimensional data space and the low-dimensional se-
mantic space; also mutual information is applied to disentangle the semantically
meaningful features. After the bidirectional mapping, the adversarial data can be
reconstructed to denoised data, which could be fed into any pre-trained classifier.
We empirically show the quality of reconstruction images and the effectiveness of
defense.

1 INTRODUCTION

The existence of adversarial examples causes serious security concern about reliability of deep neu-
ral networks (DNN). DNN may mislabel the perturbed images with high confidence even though
the perturbation is too small to be recognized by human. Moreover, adversarial examples will of-
ten fool several models simultaneously, even if these models have different architectures (Szegedy
et al.| 2014). One possible explanation is that when recognizing images, human usually catch high-
level and semantic features, such as the shape of the digits in MNIST dataset, which are robust under
small perturbation; DNN may easily catch low-level and weak features, such as the gray-scale values
of certain area in the images, which are non-robust when the pixel-wise perturbation accumulates
(Tsipras et al.|[2018).

Most previous adversarial defense methods fall into two classes: adversarial training and gradient
masking. Adversarial training methods (Szegedy et al., 2014} Tramer et al., [2017; Madry et al.,
2017 Sinha et al.l 2017) apply adversarial perturbations on training data online, and feed both the
clean data and the adversarial data to train the classifier, i.e., solve a minimax game iteratively.
However, it is flawed by the high computational cost to generate adversarial examples, especially
for more complex dataset and harder attacks. Gradient masking methods modify the architecture
of the classifier such that the attacker cannot get useful gradient information of the inputs. One
example is the thermometer encoding (Buckman et al.,2018)) which preprocesses the input in a one
hot vector, and such discretization prevent the attacker from backpropagating through the input to
calculate the adversarial purtabation. However, |Athalye et al.| (2018) shows that gradient masking
methods can be circumvented and lead to a false sense of security in defenses against adversarial
attacks.

Both of adversarial training and gradient masking methods defend adversarial attacks by improving
the classifier. We take another approach by denoising the adversarial examples without changing the
classifier (Meng & Chen| 2017} Ilyas et al., 2017} Liao et al.,|2018). Our defense is motivated by
human cognition process. The fact that adversarial examples cannot fool human suggests that human
do classification based on some semantic features that are unchanged after the perturbation. Hence,
it is natural to extract those semantic features and doing the inference solely based on semantic
information. One closely related work is Defense-GAN (Samangouei et al., 2018), which trains
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Figure 1: (a) The semantic features of images should be unchanged before and after the adversarial
perturbation. Via FBGAN, original, adversarial and reconstructed images are encoded to similar
semantic codes. Each column stands for the ten-categorical code that related to the classification
of an image (see [section 3| for details). Here all three images are classified as “7” from categorical
codes. (b) Besides a discriminator D and a generator GG in the vanilla GAN, we add an encoder
E mapping from the data space to the latent space, and the discriminator D takes a tuple (x, z)
as input. There are three types of tuple (z, z): (x, F(x)) for x ~ Py, (G(z),z) for z ~ P, and
(G(E(x)), E(x)) for x ~ Px; the discriminator D treats the first type as real and the other two
as fake. Mutual information between latent codes z and generated G(z) is maximized in order to
disentangle the semantic features.

a GAN (Goodfellow et al., |2014a) to generate the manifold of unperturbed images, then finds the
nearest point on the manifold to the adversarial example as the denoising result. While it is a novel
way to leverage generative model to filter the adversarial perturbation, it takes iterations to search
the nearest point on the manifold, which is time consuming.

In this paper, we propose Featurized Bidirectional GAN (FBGAN), an encoding and generative
model that extracts the semantic features of the input images (either original or perturbed), and
reconstructs the unperturbed images from these features. We take advantage of the generative ca-
pability of Bidirectional GAN (Donahue et al., 2016; |Dumoulin et al., |2016), where an encoder is
learned to map the input to its latent codes directly, instead of doing the manifold search iterations.
Inspired by InfoGAN (Chen et al.||2016), we maximize the mutual information (MI) between all the
latent codes and the generated images. The MI regularization can significantly reduce the dimen-
sion of latent space, as well as disentangle the semantic features of inputs in different components
of the latent codes, e.g., the tilt angle and stroke thickness of digits in MNIST. We call the MI-
enhanced latent codes as semantic codes (Figure I). FBGAN is pre-trained on the clean dataset in
an unsupervised manner. With the feature-extraction and reconstruction procedure, we can denoise
the adversarial examples and fed them into any pre-trained classifier, which shows effective defense
against both white-box and gray-box attacks (see [section 4] for details).

Our contribution

1. FBGAN depicts a bidirectional mapping between a high-dimensional data space and a
low-dimensional semantic latent space. We can extract the semantic features of the images,
which is unchanged after the adversarial perturbation; we can also generate new images
with indicated semantic features, such as the category and tilt angle of the digits.

2. We denoise the adversarial example by extracting semantic features and reconstructing via
FBGAN. This defense method is shown to be effective for any given pre-trained classifier
under both white-box and gray-box attacks.
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2 PRELIMINARIES

2.1 GENERATIVE ADVERSARIAL NETWORKS AND ITS DERIVATIVES

Generative Adversarial Networks GAN (Goodfellow et al.,[2014a)) is a generative model to learn
high-dimensional data distribution via an adversarial process. Instead of modeling the probability
density function, GAN learns a generator G which is a mapping from low-dimensional latent space
Q. to high-dimensional data space {2,. Then a standard distribution (usually Gaussian) z ~ P, in
the latent space can be transferred into the distribution G(z) ~ Pg in the data space. Pg is supposed
to approximate the objective data distribution Py, thus a discriminator D is proposed to distinguish
between samples from Py and Pg. The generator G and discriminator D are represented by DNN
and updated in the following minimax game:

ngn max Voan(D, G) := Exp,[log D(x)] + E,p,[log(1 — D(G(z)))]. (1)

It can be shown that the theoretical optimal discriminator D* satisfies:
Py (x)
Px(ac) + P(;(:E) ’
where P(-) denotes the probability density of distribution P, and Djg is the Jensen-Shannnon di-

vergence between two distribution. Thus the theoretical optimal generator G* will recover the data
distribution, i.e. Pg+ = Pkx.

D*(.’B) = VGAN(-D*, G) = 2DJS (PXHPg) — 210g 2, (2)

Bidirectional GAN BiGAN (Donahue et al., 2016; Dumoulin et al.l 2016) considers the inverse
mapping of the generator to learn the latent codes z as feature representation given data . The
encoder F is introduced as a mapping from data space €2, to latent space €2, and the discrimina-
tor takes a tuple of data point and latent codes (x, z) as inputs, distinguishing between the joint
distribution of (x, F(x)) and (G(z), z). The minimax objective becomes

Iéujrgl m[z)xx Veican(D, G, E) := Exp [log D(x, E(x))] + E,~p,[log(1 — D(G(z),2))]. 3)

The optimal condition for D* is replacing Px and Pg by Py p(x) and Pg(z) 5 in . The optimal
encoder and generator can guarantee G*(E*(x)) = @ for & € Q, and E*(G*(z)) = zforz € .

InfoGAN InfoGAN (Chen et al.|[2016) is an extension of GAN that is able to learn disentangled
semantic representation. For example, one discrete latent code may represent the class of the image
while another continuous code may control tilt angles. InfoGAN decomposes the latent codes into
two parts z = (¢, 2’) where the semantic codes c target the meaningful features, and noise codes 2’
which stand for incompressible noise. Then an information-theoretic regularization is introduced to
maximize MI between semantic codes ¢ and generated G(c, z’):

min max Visogan (D, G) := Exw p, [log D(x)]+Eq p, [log(1 = D(G(2)))] = Al (c; G(c,2')), 4

where the mutual information I(c;x) = H(c) — H(c|x) and H is the entropy.

2.2 ADVERSARIAL ATTACKS

In the image classification task, given a vectorized clean image x € [0, 1]d, a classifier C' will output
a label y = C(x). All adversarial attacks aim to find a small perturbation p to fool the classifier
such that C'(x + p) # y (Szegedy et al.,|2014). It can be formulated as

minflpf, stz+pe 0,1’ Cla+p)#y

Various attacking algorithms have been proposed to fool DNN (Akhtar & Mian| 2018} [Papernot
et al.| |2016)), and here are two most famous attacks.

Fast Gradient Sign Method FGSM (Goodfellow et al.,[2014b) is a single-step attack. Let L(x, y)
be the loss function of the classifier C' given input « and label y. FGSM defines the perturbation p
as

p =c¢-sign(VyL(x,y)),
where ¢ is a small scalar. FGSM simply chooses the sign of change at each pixel to increase the loss
L(x,y) and fool the classifier.
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Projected Gradient Descent PGD (Madry et al.l 2017) is a more powerful multi-step attack with
projected gradient descent:

ngD =, ac]t)JGr]l) =1IIg [a:fGD + a - sign (VmL(wf;GD, y))]

where I1s is the projection onto S = {&’ : ||’ — || < €}

3 FEATURIZED BIDIRECTIONAL GAN

3.1 ROUTE MAP

We use BiGAN framework to adversarially learn the bidirectional feature mapping, and MI reg-
ularization to reduce the dimension of semantic codes and disentangle the semantic features. In
adversarial defense task, first we train FBGAN on clean dataset, which is an unsupervised learning
for semantic encoder E and image generator G. Second, given a pre-trained classifier C' and adver-
sarial data z, we reconstruct x as £ = G(F/(z)) to filter the non-semantic noise, then feed Z to the
classifier and use C'(Z) as the prediction.

3.2 FORMULATION

BiGAN provides a good approach to map high-dimensional image data « to low-dimensional latent
codes z = E(x), yet it has no restriction on the semantic meaning of the latent codes z. To eliminate
the non-semantic noise in adversarial examples, we maximize mutual information between latent
codes z and generated G(z). Unlike InfoGAN where the latent codes is decomposed into semantic
codes and incompressible noise z = (¢, z’) and only I(c; G(c,z’)) is maximized, here we regard
all latent codes as semantic and maximize I(z, G(z)) directly. Although the former method may
improve the diversity of the generation, our method focuses on the main semantic features which is
more robust under adversarial attack.

To maximize the mutual information I(z; G(z)), we use Variational Information Maximization tech-
nique. Suppose the underlying joint distribution is (x,z) ~ P, then

I(z;x) = H(z) — H(z|x) = H(z) + Ep[log P(z|x)] = H(z) + mngp[log Q(z|x)],

where @ is taken over all possible joint distributions of (x,z). Assume that each semantic codes
z contain one categorical code z. and n continuous codes z1,...,z,. Assume that Q(-|x) is a
factored distribution Q(z|x) = Qc(2c|x) [[;—, Q:i(z:|z). For the categorical code, rewrite the
discrete probability Q.(-|x) as a vector ¢.(x), i.e. p.(x), = Qc(z. = k|z), then log Q.(2z.|x) =
—H(z., .(x)) where H is the cross entropy of two vectors regarding z. as a one-hot vector. For
the continuous codes, assume Q;(-|z) is a Gaussian N (¢; (), o2) for fixed variance o. Now, define
MI gap as the following distance

dist(z, (@) := —log Q(z[) = H(ze, pc(2)) + C Y _ |z — pil@)|® (5)
i=1
where ¢ is the concatenation of (¢, ¢1,...,¢n) and C is a constant. Note that the MI gap is a

useful approach to maximize MI between two variables.

In the defense task, we want to pay more attention to the encoding F(x) and reconstruction
G(E(x)) on given data x, and take the pair (G(E(x)), E(x)) into consideration. Therefore, FB-
GAN has the following objective function (as illustrated in [Figure I}

Gr{%l# max Vesean(D, G, E) := Ex [log D(x, E(x))]

+ % [Ez [log(1 — D(G(2),2))] + Ex[log(1 — D(G(E(x)), E(x)))]] + AR, dist(z, (G(2))). (6)
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Auxiliary Discriminator
function |
P(x)

3.3 IMPLEMENTATION
shows the implementation of FBGAN. bl !
E, G and D take the standard BiGAN archi-
tectures (Dumoulin et al., 2016). We replace
all ReLU activation with ELU in E and G for
smoothness, and use weight normalization in- S pecony
stead of batch normalization in order to ensure | P oen
E(x) and G(z) depend only on x and z instead ! b
of the whole minibatch (Kumar et al.,[2017)).
are trained by feature matching methods, while
G and D are trained by the original GAN loss
objectives (Salimans et al., | 2016). The hyper-
parameter A = 1. In relatively complicated
dataset such as SVHN, we add an auto-encoder
term Ex.p, ||G(E(x)) — x||? in the objective
function for only the last 1% training steps to
further improve the reconstruction quality.

FC
2 layers

Conv
5 layers

Figure 2: Implementation The encoder E(x)
is a convolutional network and the generator G(2)
is a deconvolutional network. The discriminator
D(z, z) shares parameters with the auxiliary func-
tion (). z = (2, z1.) stands for the categori-
cal and continuous codes.

4 EXPERIMENTS

We present our results in two parts: (1) Representing capability of semantic codes. We can store the
information of an image by a few number of semantic codes, and the reconstruction from the codes
keep the main features as the original one. (2) Defenses against gray-box and white-box attacks. In
this paper, we call gray-box attacks as having access only to the original classifier architectures and
parameters; white-box attacks are those have access to both of the classifier and FBGAN details.

We focus on three datasets in our experiments: the MNIST hand-written digits dataset (LeCun et al.,
1998)), Fashion MNIST (FMNIST) dataset (Xiao et al., 2017}, and the Street View House Numbers
(SVHN) dataset (Netzer et al., 2011]).

4.1 SEMANTIC REPRESENTATION

FBGAN can present the semantic features of MNIST by one ten-dimensional categorical code and
only four continuous codes, and FMNIST by one ten-dimensional categorical code and eight con-
tinuous codes. Previous related works require much higher latent space dimenssion. For example in
InfoGAN, one ten-dimensional categorical code and three continuous codes and 128 random noises
codes are used.

Categorical code can learn the most significant modes in a data distribution. For example, the
ten-categorical code in MNIST / FMNIST represents ten different digits / fashion products. The

o
[
2
3
¢
s
¢
U
3
7

DL T Le WY —Q
NS SN RWO~-O
A JCCAVAL NEURN-JVUN SN
NN SO W —Q
VY e Wl —~0
QNN L-Q
RN e OWN -~
LN &) s -0
NN RO Le~0
BANNPPrm MY
BAAP OB Y
BPooPpoLre
IR TR PR TR CE TR ER )
LVBVLVLLLD
vierLhLLY
YR TR TE TR T O TR T
v PrOoLYL Y
LV S AT T T VI

(a) (b)

Figure 3: Manipulating semantic codes on MNIST and FMNIST Images generated by one
ten-dimensional categorical code and eight continuous codes. (a) and (c) demonstrate that we can
generate any category of images by changing the categorical codes. (b) and (d) are the effects of
continuous codes: each row shows how the generated image changes when tuning one continuous
codes with all other codes fixed.
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Table 1: Classification accuracy (%) under different attack and defense methods for MNIST and
FMNIST. The perturbation ¢ is in /o, norm. FBGAN here uses one ten-dimensional categorical
code and 8 continuous codes. Gray-box attacks only apply to noise-filtering-type defense, and we
compare FBGAN and Defense-GAN under the same setting. For white-box attack, the adversarial
training with PGD € = 0.3 is one of the state of the art results. Although better than FBGAN,
adversarial training has its limitation: if the attack method is harder than the one used in training
(PGD is harder than FGSM), or the perturbation is larger, then the defense may totally fail. FBGAN
is effective and consistent for any given classifier, regardless of the attack method or perturbation.

Gray-box White-box
No Defense Adv train  Adv train  Adv train
Attlack & goponee | FBOAN "GaN~ | FBGAN gpGeM03  PGDO PGD 03
MNIST
Clean O 99.3 97.6 93.6 97.6 99.2 99.5 98.8
FGSM 0.1 78.2 96.6 95.2 93.4 97.4 97.9 97.6
FGSM 0.3 18.9 87.0 82.0 82.8 94 .4 83.1 96.0
PGD 0.1 10.5 96.3 94.7 91.7 83.0 96.1 97.3
PGD 03 0.6 90.9 93.2 88.6 39 29.2 94.0
FMNIST
Clean O 91.2 82.2 78.0 82.2 91.4 89.9 91.0
FGSM 0.1 24.2 76.3 52.6 62.7 82.6 81.0 75.9
FGSM 0.3 9.1 41.0 38.9 49.2 89.4 42.4 74.4
PGD 0.1 5.9 76.9 62.6 50.5 12.1 71.7 61.8
PGD 0.3 5.7 58.8 62.6 44.2 5.6 7.1 68.1

E
5
7
7
74

Figure 4: Reconstruction of MNIST and FMNIST The first two rows are the original test
set images and their reconstructions; the middle two rows are the gray-box adversaries and their
reconstructions; the last two rows are the white-box adversaries and their reconstructions. All the
adversaries are from PDG with purtabation € = 0.3.

continuous codes can finely tune the more detailed features of a certain mode. shows ten
MNIST digits generated by FBGAN and the effect of tuning different continues codes.

We observe that the reconstruction of MNIST and FMNIST datasets are of high qualities. The en-
coder first encodes a semantic representation, which is then fed into the generator. The reconstructed
image not only maintains the category, but also detailed features as the input.

4.2 ADVERSARIAL DEFENSES

4.2.1 DEFENSES AGAINST GRAY-BOX ATTACKS

In gray-box attacks, the attacker can only access to the classifier, but have no information about
the FBGAN filter. Hence we prepare our adversarial data by using FGSM and PGD methods to
directly attack trained classifiers. The classifier tested on the original MNIST dataset has accuracy
0f 99.26%, and the classifier tested on the original FMNIST dataset has accuracy of 91.16%.
shows our defense effect against different methods with different ¢ values. As shown in
glven adversarial examples generated by PGD method with ¢ = 0.3, we have the reconstructed
images with categories and main features maintained, and there are no more attack noises there.
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No
defense

Clean 0 93.7 83.4
FGSM 0.05 11.4 66.4
FGSM 0.10 10.8 47.7
PGD 0.05 34 71.5
PGD 0.10 29 60.9

Attack e FBGAN

Figure 5: Generation and reconstruction of SVHN (a) and (c) are generated images by changing
the categorical codes and continuous codes respectively, similar to We observe that the
continuous codes shown in (c) control: the blurriness (from clear to blurry), brightness (from bright
to dark), background color (from green to brown) and the feature on the edge. (b) and (d) are the
adversarial defense results. (b) shows the accuracy on clean, adversarial and reconstructed images,
similar to In (d), the first two rows are the clean images and their reconstructions, and the
last two rows are the gray-box adversaries (PGD, ¢ = 0.1) and their reconstructions. The semantic
codes consist 4 ten-categorical codes and 128 continuous codes.

4.2.2 DEFENSES AGAINST WHITE-BOX ATTACKS

In white-box case, the attacker can access not only the classifier but also the FBGAN filter. The orig-
inal data x is fed through the encoder E, the generator G and the classifier C' to output C(G(E(z)))
as the classification. Since F, G and C' are all represented as DNN, the whole structure is a large
DNN and regraded as the objective of white-box attacks.

We implement white-box defense on MNIST and FMNIST with FBGAN having one ten-categorical
code and eight continuous codes. A regularization is added to the encoded semantic codes z = E(z):
for the categorical code which is represented by a 10-dimensional probability vector, we replace
it by the corresponding one-hot vector; for the continuous codes, we clip them between [—1, 1].
Regularizing the categorical codes can map the original input to its conterpart in the generated space,
and clipping the continuous codes is to eliminate the influence of those low probability outliers. The
results are shown in[Figure 4]and [Table 1} where the accuracy is above 82% on MNIST and 44% on
FMNIST with adversarial perturbation € = 0.3.

4.3 COMPARISON WITH BIGAN AND INFOGAN

BiGAN and InfoGAN are generative models aiming to produce new detailed data, while FBGAN is
a defense model aiming to regenerate data with semantic features. The main novelty of FBGAN lies
in combining the bidirectional mapping structure and feature extraction capability for the purpose
of adversarial defense. The most important improvement from BiGAN and InfoGAN to FBGAN is
the significant reduction of the number of semantic codes by applying MI regularization on all the
semantic codes. BIGAN and InfoGAN require larger latent space to ensure the quality and diversity
of the generation, and the semantic features are stored in latent codes in a highly entangled way;
FBGAN requires much smaller latent space to catch the basic semantic features which is robust
under attacks. For example, BIGAN and InfoGAN both employ at least 128 codes to represent
and regenerate data of MNIST, while FBGAN reduces the number to 10 categorical codes and 4
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Figure 6: Performance of vanilla BIGAN (a) illustrates MI gap of the categorical code,
where FBGAN converges fast but BIGAN does not. (b) and (c) are generated images by changing
the categorical code and continuous codes, similar to The semantic features are entangled
in the latent codes of BIGAN.

continuous codes. Hence, generative models, such as BIGAN and InfoGAN, and FBGAN are tools
for tasks in different domains.

Vanilla BiGAN without MI regularization cannot disentangle the semantic features. Theoretically,
if BIGAN achieved its optimal solution, the minimization of JS divergence Djs(Px, g (x)||Pc(z2),2)
would ensure that H (z|G(z)) = 0 and all latent codes are effective. However, experiments show that
BiGAN cannot minimize the conditional cross entropy, and the latent codes cannot disentangle the
semantic features automatically (Figure €). Thus it is necessary to apply explicit MI regularization.

5 DISCUSSION

Nonetheless, the effectiveness of our FBGAN model against adversarial attacks are highly dependent
on the reconstruction accuracy. It is also challenging to get a high reconstruction accuracy without
over-fitting the training data. For example, in SVHN, we apply 4 ten-dimensional categorical codes
and 128 continuous codes; however, its white-box defense accuracy is much worse than that of
MNIST and FMNIST. We consider the various performances with different datasets as the fact that
SVHN dataset has much more modes than the rest two datasets have. Even though the features
within one category are quite different, for example different images of number one, the background
of an image adds a large number of extra features to the object, which makes mode separation much
harder. In contrast, MNIST and FMNIST dataset with all black background could be separated via
fewer categorical codes. In our opinion, if we can find the suitable number of categorical codes, the
performance of our model will be improved.

REFERENCES

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. arXiv preprint arXiv:1801.00553, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. In Submissions to International Conference on Learning
Representations, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pp. 2172-2180, 2016.

Jeff Donahue, Philipp Krihenbiihl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.



Under review as a conference paper at ICLR 2019

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014a.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and Alexandros G Dimakis.
The robust manifold defense: Adversarial training using generative models. arXiv preprint
arXiv:1712.09196, 2017.

Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher. Semi-supervised learning with gans: Mani-
fold invariance with improved inference. In Advances in Neural Information Processing Systems,
pp. 5540-5550, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu. Defense against
adversarial attacks using high-level representation guided denoiser. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1778-1787, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Dongyu Meng and Hao Chen. Magnet: A two-pronged defense against adversarial examples. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 135-147. ACM, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, pp. 5, 2011.

Nicolas Papernot, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Fartash Faghri, Alexander
Matyasko, Karen Hambardzumyan, Yi-Lin Juang, Alexey Kurakin, Ryan Sheatsley, et al. clever-
hans v2.0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pp. 2234-2242, 2016.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against
adversarial attacks using generative models. In International Conference on Learning Represen-
tations, volume 9, 2018.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with
principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, lan Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
There is no free lunch in adversarial robustness (but there are unexpected benefits). arXiv preprint
arXiv:1805.12152, 2018.



Under review as a conference paper at ICLR 2019

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

10



	Introduction
	Preliminaries
	Generative Adversarial Networks and its derivatives
	Adversarial attacks

	Featurized Bidirectional GAN
	Route map
	Formulation
	Implementation

	Experiments
	Semantic representation
	Adversarial defenses
	Defenses against gray-box attacks
	Defenses against white-box attacks

	Comparison with BiGAN and InfoGAN

	Discussion

