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Abstract

Influence diagrams provide a modeling and inference frame-
work for sequential decision problems, representing the proba-
bilistic knowledge by a Bayesian network and the preferences
of an agent by utility functions over the random variables and
decision variables. MDPs and POMDPS, widely used for plan-
ning under uncertainty can also be represented by influence
diagrams. The time and space complexity of computing the
maximum expected utility (MEU) and its maximizing policy
is exponential in the induced width of the underlying graphical
model, which is often prohibitively large due to the growth
of the information set under the sequence of decisions. In
this paper, we develop a weighted mini-bucket approach for
bounding the MEU. These bounds can be used as a stand-
alone approximation that can be improved as a function of a
controlling i-bound parameter. They can also be used as heuris-
tic functions to guide search, especially for planning such as
MDPs and POMDPs. We evaluate the scheme empirically
against state-of-the-art, thus illustrating its potential.

Introduction
An influence diagram (ID) (Howard and Matheson 2005)
is a graphical model for sequential decision-making under
uncertainty that compactly captures the local structure of the
conditional independence of probability functions and the
additivity of utility functions. Its structure is captured by a
directed acyclic graph (DAG) over nodes representing the
variables (decision and chance variables). The standard query
on an ID is finding the maximum expected utility (MEU) and
the corresponding optimal policy for each decision, subject
to the history of observations and decisions.

Computing the MEU is recognized as one of the hardest
tasks over graphical models, and hence recent work aims
at developing anytime bounding schemes that tighten the
bounds if more time and memory is available. Often, the
target is to incorporate such bounds as heuristic functions to
guide search algorithms. In this paper, we focus on comput-
ing the upper bound of MEU for a single agent sequential
decision making problem with no-forgetting assumptions. We
build on the methodology of weighted mini-bucket with cost-
shifting that was used in the past for bounding probabilistic
queries such as the partition function, Maximum A Posteriori
(MAP) and Marginal MAP (MMAP) (Dechter and Rish 2003;

Liu and Ihler 2012; Ihler et al. 2012; Marinescu, Dechter, and
Ihler 2014; Marinescu et al. 2018).

Earlier Work

Upper bounding schemes for IDs are mostly based on either
decomposing the underlying graphical model of an ID or
on relaxing the information constraints that impose a partial
elimination ordering for inference (e.g., by variable elimina-
tion). Both approaches are orthogonal and both can contribute
to tightening the bounds. We elaborate below.

Decomposition-based bounds A preliminary extension of
the mini-bucket scheme (Dechter and Rish 2003) to the MEU
tasks was presented in a workshop paper by (Dechter 2000).
This scheme decomposes the constrained join-tree (Jensen,
Jensen, and Dittmer 1994) to a mini-bucket tree by parti-
tioning a cluster in the join-tree into mini-buckets whose
number of variables is bounded by the i-bound parame-
ter. The mini-bucket scheme outputs bounds conditioned
on partial assignment relative to a variable ordering and is
therefore well poised to yield heuristics for search along the
same ordering. Also recently, dual decomposition schemes,
which are not directional, were extended for mixed graphical
models queries such as Marginal Map (MMAP) by (Ping,
Liu, and Ihler 2015). The scheme was also extended to
the MEU task by (Lee, Ihler, and Dechter 2018) using the
framework of valuation algebra (Shenoy and Shafer 1990;
Mauá, de Campos, and Zaffalon 2012; Moral 2018). The val-
uation algebra for IDs defines operators such as combination
and marginalization over pairs of probability and utility func-
tions called potentials (Jensen, Jensen, and Dittmer 1994).

Information relaxation An alternative approach is to relax
the information constraints in the ID thus allowing flexible
variable orderings for processing (Nilsson and Hohle 2001).
In particular, the information relaxation scheme for IDs can
be viewed as re-ordering the chance variables in the con-
strained variable ordering. (Yuan, Wu, and Hansen 2010)
integrated the re-ordering upper bounds as heuristics to guide
a branch and bound search algorithm for solving IDs.



Contributions
We develop a weighted mini-bucket scheme for generating
upper bounds on the MEU. Given a consistent variable or-
dering, the scheme generates bounds for each variable condi-
tioned on past histories, observations and decisions relative
to a given variable ordering. We show empirically that the
scheme can offer effective bounds faster than current state-
of-the-art schemes. Thus, these bounds have high potential
to be used as heuristics for search, in future work.

Background
Influence Diagrams
An ID is a tuple M :“ xC,D,P,U,Oy consisting of a set
of discrete random variables C “ tCi|i P ICu, a set of
discrete decision variables D “ tDi|i P IDu, a set of con-
ditional probability functions P “ tPi|Pi P IPu , and a set
of real-valued additive utility functions U “ tUi|Ui P IUu.
We use IS “ t0, 1, ¨ ¨ ¨ , |S| ´ 1u to denote the set of indices
of each element in a set S, where |S| is the cardinality of
S. As illustrated in Figure 1, an ID can be associated with a
DAG containing three types of nodes: the chance nodes C
drawn as circles, the decision nodes D drawn as squares, and
the value nodes U drawn as diamonds. There are also three
types of directed edges: edges directed into a chance node
Ci from its parents papCiq Ď C YD representing the con-
ditional probability function PipCi|papCiqq, edges directed
into a value node Ui denoting the utility function UipXiq

from its scope Xi Ď CYD, and informational arcs (dashed
arrows in Figure 1) directed from chance nodes to a decision
node. The set of parent nodes associated with a decision node
Di is called the information set Ii, and denotes chance nodes
that are assumed to be observed immediately before making
decisionDi. The constrained variable ordering O obeys a par-
tial ordering which alternates between information sets and
decision variables tI0 ăD0 ă ¨ ¨ ¨ăI|D|´1 ăD|D|´1 ăI|D|u.
The partial elimination ordering should ensure the regu-
larity of the ID (a decision can only be preceded by at
most one decision), and dictates the available information at
each decision Di so that the non-forgetting agent makes
decisions in a multi-staged manner based on the history
available at each stage i, HpDiq :“ Yik“0tDku Y Y

i
k“0Ii.

Solving an ID is computing the maximum expected util-
ity Er

ř

UiPU
Ui|∆∆∆s and finding a set of optimal policies

∆∆∆ “ t∆i|∆i : RpDiq ÞÑ Di,@Di P Du, where ∆i is
a deterministic decision rule for Di and RpDiq Ď HpDiq

is the subset of history called the requisite information to
Di, namely, the only relevant history for making a decision
(Nielsen and Jensen 1999).

Valuation Algebra
The valuation algebra for IDs is an algebraic framework for
computing the expected utility values, or values for short,
based on the combination and marginalization on potentials
(Jensen, Jensen, and Dittmer 1994; Mauá, de Campos, and
Zaffalon 2012; Lee, Ihler, and Dechter 2018). Let a valu-
ation ΨpXq be a pair of probability and value functions
pP pXq, V pXqq over a set of variables X called its scope.
Occasionally, we will abuse the notation by dropping the

Figure 1: Factored MDP as Influence Diagram

scope from a function, e.g., writing P1pX1q as P1. The com-
bination and marginalization operators are defined as follows.
Definition 1. (combination of two valuations)
Given two valuations Ψ1pX1q :“ pP1pX1q, V1pX1qq and
Ψ2pX2q :“pP1pX2q, V1pX2qq, the combination of the two
valuations over X1 YX2 is defined by

Ψ1pX1q bΨ2pX2q :“ pP1P2, P1V2 ` P2V1q.

Following Definition 1, the identity is p1, 0q and the inverse
of pP pXq, V pXqq is p1{P pXq,´V pXq{P 2pXqq.
Definition 2. (marginalization of a valuation) Given a val-
uation ΨpXq:“pP pXq, V pXqq, marginalizing over Y Ď X
by summation, maximization, or powered-summation with
weights w are defined by

ÿ

Y

ΨpXq :“ p
ÿ

Y

P pXq,
ÿ

Y

V pXqq,

max
Y

ΨpXq :“ pmax
Y

P pXq,max
Y

V pXqq,

w
ÿ

Y

ΨpXq:“p
w
ÿ

Y

P pXq,
w
ÿ

Y

V pXqq.

The powered-sum elimination operator
řw
X is defined by

řw
X fpXq “ r

ř

X |fpXq|
1{wsw, which replaces maximiza-

tion and summation with a weight 0 ď w ď 1 for a variable
X , and it reduces to maximization and summation when
wÑ0 and w“1, respectively.

Finally, we define the comparison operator for the valua-
tion algebra as a partial order as follows.
Definition 3. (comparison of two valuations) Given two val-
uations Ψ1 :“ pP1, V1q and Ψ2 : pP2, V2q on the same
scopes, we define inequality Ψ1 ď Ψ2 iff. P1 ď P2 and
V1 ď V2.

In the following section, we state the decomposition bound
using the valuation algebra notation, which were defined in
(Lee, Ihler, and Dechter 2018).

Decomposition Bounds
An ID can be compactly represented by the valuation al-
gebra as M :“ xX,ΨΨΨ,Oy, where X “ C Y D and
ΨΨΨ “ tpPi, 0q|Pi P PuYtp1, Uiq|Ui P Uu. The MEU can be
written as

ÿ

I0

max
D0

¨ ¨ ¨
ÿ

I|D|´1

max
D|D|´1

ÿ

I|D|

â

αPIΨ

ΨαpXαq, (1)

where Xα denotes the scope of Ψα. The dependence rela-
tion between variables can be captured by a primal graph



Figure 2: Weighted Mini-Bucket Elimination example. We show
a mini-bucket tree decomposition of the ID in Figure 1. The mini-
bucket tree was generated along a constrained elimination ordering
D1, S2, S3, D0, S0, S1 (from top to bottom) of the variables la-
belling the buckets. The mini-buckets are created at bucket S2 by
limiting the maximum cluster size from 4 to 3 (i-bound is 3). The
non-negative weights wS2 and wS12 for the variable S2 associated
with mini-buckets S2 and S12 sum to 1.

Gp “ pV,Eq, where the set of nodes V are the variables, and
an edge e P E connects two nodes if their corresponding
variables appear in the scope of some function. To obtain a
primal graph of an ID, the information arcs and utility nodes
should be removed after moralization.

Mini-bucket Tree Decomposition The mini-bucket
scheme (Dechter and Rish 2003) relaxes an exact tree
decomposition (Dechter 2013) by duplicating variables
whenever the maximum clique size exceeds an i-bound
parameter. By splitting a bucket into mini-buckets, the space
and time complexity is exponential in the i-bound only. The
weighted mini-bucket elimination scheme (Liu and Ihler
2011) tightens the mini-bucket relaxation by using Hölder’s
inequality,

wX
ÿ

X

b
q
α“1ΨαpXαq ď

q
â

α“1

wαX
ÿ

Xα

ΨαpXαq, (2)

where q is the number of mini-buckets generated from the
bucket of variable X , ΨαpXαq is the valuation at the α-
th mini-bucket, wX is the weight of the variable X that is
either 1 for the sum-marginal and 0 for the max-marginal,
wαX is the set of non-negative weights distributed to q mini-
buckets such that wX “

ř

αPIF
wαX . The weighted mini-

buckets reduces back to the naive mini-buckets by assigning
one of the weights to 1.0 (sum-marginal) and all others 0.0
(max-marginal). Figure 2 shows the schematic trace of the
weighted mini-bucket elimination algorithm for the ID in
Figure 1. We can see that the bucket labelled by the variable
S2 decomposed into two mini-buckets by duplicating the
variable S2 to S12 and distributing the non-negative weights
to wS2

and wS12 such that wS2
`wS12 “ 1. The message from

each mini-bucket propagates to the closest bucket labelled

by the variable that appears in the scope of the message after
marginalizing the variable S2 and S12, respectively.

Join-Graph Decomposition A join-tree decomposition of
a primal graph Gp is a tree of cliques generated by trian-
gulating the Gp along a constrained ordering O compati-
ble with the information constraints of the ID. The space
and time complexity of exact inference algorithms for solv-
ing Eq. (1) is exponential in the graph parameter called
treewidth (Dechter 1999). Join-graph decomposition (Ma-
teescu et al. 2010) is an approximation scheme that decom-
poses the cliques in a tree decomposition, yielding clusters
whose scope size is bounded by the i-bound, yielding a loopy
graph of finer grained clusters. A node in a join-graph is as-
sociated with a set of functions and a subset of variables con-
taining their scopes. An edge between two adjacent nodes is
labelled by a separator set that is a subset of variables shared
between the two nodes. A valid join-graph must satisfy the
running intersection property; for each variable X P X, the
set of clusters containing variable X in their scopes induces
a connected subgraph. Such a join-graph can be constructed
by connecting the mini-buckets in a mini-bucket tree by a
chain whose separator is the single variable of the bucket.
For example, the mini-bucket tree in Figure 2 can be turned
into a join graph by connecting the two mini-buckets for the
variable S2 with a separator set tS2u.

The generalized dual decomposition scheme (Ping, Liu,
and Ihler 2015) (GDD) provides upper bounds to the marginal
MAP query by generalizing the Hölder’s inequality in Eq. (2)
to the fully decomposed setting expressed by

w
ÿ

X

bαPIαΨαpXαq ď
â

αPIα

wα
ÿ

Xα

ΨαpXαq, (3)

where Iα is the index set of all nodes in a join graph, ΨαpXαq

is a valuation that combines all valuations in the α-th clus-
ter, w “ twX1

, ¨ ¨ ¨ , wX|X|u is the set of all weights cor-
responds to the set of all variables X, Xα is the set of
duplicated copies of all variables to the α-th cluster, and
wα “ twαX1

, ¨ ¨ ¨ , wαX|X|u is the set of weights to the Xα

such that wXi “
ř

αPIα w
α
Xi

for all Xi P X.

Reparameterized Decomposition Bounds The upper
bounds provided by the various decomposition schemes can
be tightened by introducing auxiliary optimization parame-
ters to the decomposition bounds, resulting in reparameteriz-
ing of the original functions.

Most recently, (Lee, Ihler, and Dechter 2018) presented a
GDD reparameterized bounds for MEU task by extending the
fully decomposed bounds over a join-graph decomposition
of IDs. The auxiliary optimization parameters are the cost
shifting valuations δpCi,Cjq and δpCj ,Ciq between two nodes Ci
and Cj defined over the separator variables SpCi,Cjq such that
both cancels to the identity δpCi,Cjq b δpCj ,Ciq “ p1, 0q, and
the weight parameters wC that are distributed to each cluster
C. From Eq. (3), we can rewrite the reparameterized bound
for IDs as,

w
ÿ

X

â

αPIα
ΨαpXαqď

â

αPIα

wα
ÿ

Xα

rΨαpXαqbp
â

pα,CjqPS
δpα,Cjqqs, (4)



where each valuation Ψα at the α-th cluster is reparameter-
ized by the costs from all adjacent edges in the join graph.
The local optimum that tightens the MEU can be obtained
by minimizing the value component of the right-hand side
of Eq. (4) relative to the optimization variables wα for all
α P Iα, and δpCi,Cjq and δpCj ,Ciq for all pCi, Cjq P S, sub-
ject to the constraints wX “

ř

α w
α
X for all X P X, and

δpCi,Cjq b δpCj ,Ciq “ p1, 0q for all pCi, Cjq P S.

Weighted Mini-Bucket Bounds for IDs
The value component of the decomposition bounds for IDs
as an Eq. (4) does not have a convex form because the global
expected utility value combines the probability and value
components from all the decomposed clusters. This non-
convexity degrades the quality of the upper bounds computed
by algorithms that optimize the bounds. For example, the
JGDID scheme (Lee, Ihler, and Dechter 2018) often shows
degradation of the quality of the upper bounds even with a
higher i-bound; the number of optimization parameters is
exponential in the i-bound, so the dimension of the parameter
space rapidly increases.

An alternative approach we explore here is to interleave
the variable elimination and decomposition/optimization of
the clusters on-the-fly while performing a variable elimina-
tion scheme. In this way, the intermediate reparameterization
step optimizes a partial decomposition scheme applied to a
single cluster of the join-tree only, resulting in a lower di-
mensional optimization space. In the following subsections,
we develop the weighted mini-bucket elimination bounds for
IDs (WMBE-ID) based on this idea.

Derivation of the Bounds
Given an ID M :“ xX,ΨΨΨ,Oy, we apply the weighted
mini-bucket decomposition by Eq. (2) for one variable
at a time following the constrained elimination ordering
O : tX|X|, X|X|´1, ¨ ¨ ¨ , X1u. The intermediate messages
are sent to lower mini-buckets as illustrated in Figure 2. To
tighten the upper bound, the auxiliary valuations between
mini-buckets can be introduced, yielding the following pa-
rameterized bound for each bucket independently,

wX
ÿ

X

q
â

α“1

ΨαpXαqď

q
â

α“1

wαX
ÿ

Xα

rΨαpXαqb
δpα´1,αqpXq

δpα,α`1qpXq
s, (5)

where δpα,α`1qpXq is the cost shifting valuation between
mini-buckets from the α-th mini-bucket to the pα`1q-th mini-
bucket. Following the example in Figure 2, the parameterized
upper bound to the weighted mini-bucket decomposition at
Bucket S2 can be written as,

r

wS2
ÿ

S2

pλD1 , ηD1q

δpS2,S12q
s b r

wS12
ÿ

S12

pP pS12|S0, S1q, 0q b δpS2,S12q
s.

However, the value component of the parameterized bound
in Eq (5) cannot be served as an objective function for tight-
ening the upper bound to the MEU because the scope size of
the combined valuations from mini-buckets after eliminating
variable Xα at the right-hand side of the inequality is as large

as the induced width. Therefore, we propose the following
surrogate objective function for minimizing the upper bound
as follows.

Theorem 1. (weighted MBE Bounds for IDs) Given an ID
M :“ xX,ΨΨΨ,Oy and a constrained variable elimination or-
dering O :“tX|X|, X|X|´1, ¨ ¨ ¨ , X1u, assume that the vari-
ables tX|X|, X|X|´1, ¨ ¨ ¨Xn`1u are already eliminated by
weighted mini-bucket elimination algorithm. Let ΨXipX1:iq

be the combination of the valuations allocated to bucket Xi

of the join-tree, QXi :“ t1, ¨ ¨ ¨ , qXiu be the mini-bucket
partitioning for bucket Xi, and ΨXn

α pXXi
α q be the combina-

tion of the valuations allocated at the α-th mini-bucket. Then,
the exact MEU of the subproblem defined over variables
X1:n :“ tX1, ¨ ¨ ¨ , Xnu can be bounded by

w1:n
ÿ

X1:n

r

n
â

i“1

ΨXipX1:iqs (6)

ď

w1:ń 1
ÿ

X1:ń 1

r

ń 1
â

i“1

ΨXipX1:iqs b r
â

αPQXn

wαXn
ÿ

Xn

ΨXn
α pXXn

α qs (7)

ď

n
â

i“1

r
â

αPQXi

w
Xi,α
1:n
ÿ

X1:n

ΨXi
α pX

Xi
α qs (8)

The weights w1:n :“ twX1
, ¨ ¨ ¨wXnu in Eq. (6) is the set of

weights of the variables X1:n, each of them is either 1 for Xi

being a chance variable or 0 for a decision variable, and the
weights wXi,α

1:n in Eq. (8) is the set of weights of the variables
X1:n in the α-th mini-bucket partition in bucket Xn such that
wXk “

řn
i“1

ř

αPQXi
wXi,αXk

.

Proof. The upper bound of Eq. (7) can be obtained by ap-
plying the weighted mini-bucket scheme in Eq. (2) to the
bucket Xn, and the upper bound of Eq. (8) can be obtained
by first partitioning all buckets to mini-buckets and apply-
ing the fully decomposed bound of Eq. (3) to each mini-
bucket, α P QXi for all Xi P X (Ping, Liu, and Ihler 2015;
Lee, Ihler, and Dechter 2018).

Optimizing the Upper Bounds
Optimization Objectives and Parameters The upper
bound derived in Theorem 1 can be reparameterized by
the cost functions on the chain of mini-buckets before
processing and sending messages. Given an ID M :“
xX,ΨΨΨ,Oy and a constrained variable elimination ordering
O :“ tX|X|, X|X|´1, ¨ ¨ ¨ , X1u, the weighted mini-bucket
bounds for IDs in Theorem 1 can be parameterized over the
chain of mini-bucketsQXn as follows, assuming that variable
Xn is removed after reparameterization.

r

n´1
â

i“1

â

αPQXi

w
Xi,α

1:n´1
ÿ

X1:n´1

ΨXi
α pX

Xi
α qsb

r
â

αPQXn

wXn,α1:n
ÿ

X1:n

ΨXn
α pXXn

α q
δXn
pά 1,αqpXnq

δXn
pα,ὰ 1qpXnq

s (9)



Algorithm 1 Weighted Mini-Bucket Elimination Bounds for
IDs (WMBE-ID)
Require: Influence diagram M “ xX,ΨΨΨ,Oy, total constrained

elimination order O :“ tXN , XN´1, ¨ ¨ ¨ , X1u, i-bound, iter-
ation limit L,

Ensure: an upper bound of the MEU
1: Initialization: Generate a schematic mini-bucket tree (Dechter

and Rish 2003) and allocate valuations to proper mini-buckets.
2: UbÐ p1, 0q
3: for iÐ N to 1 do
4: Partition bucket Xi to mini-buckets QXi :“ t1, ¨ ¨ ¨ , qXiu

with i-bound
5: for α P QXi do
6: ΨXi

α pX
Xi
α q Ð combine valuations at the mini-bucket α

7: end for
8: iter “ 0
9: Initialize join-graph with the uniform weights for all remain-

ing mini-buckets tQX1 , ¨ ¨ ¨QXnu
10: Evaluate objective function Eq. (9) for all remaining mini-

buckets tQX1 , ¨ ¨ ¨QXnu
11: while iter ă L or until bounds improved do
12: Update a set of cost functions tδpα,ὰ 1q|αPQXi

u subject to
the constraints in Eq. (13) and (14)

13: Update a set of weights twXi,αXi
|α P QXiu

14: end while
15: for α P QXi do

16: pλXiα , ηXiα q Ð
ř
w
Xi,α
Xi

Xi
Ψ̃Xi
α pX

Xi
α q

17: if pλXiα , ηXiα q is constant then
18: UbÐ Ubb pλXiα , ηXiα q
19: else
20: Send message pλXiα , ηXiα q to the closest bucket labelled

by the variable appearing in the scope of the message
21: end if
22: end for
23: end for
24: Return value component of Ub

The optimization parameters are the set of cost functions
between two mini-buckets and the weights over the mini-
buckets QXn ,

tδXn
pα,ὰ 1qpXnq|@α, α`1 P QXnu (10)

twXn,αXn
|@α, α`1 P QXnu, (11)

where δXn
pα,ὰ 1qpXnq is defined by the probability component

λXn
pα,ὰ 1qpXnq and the value component ηXn

pα,ὰ 1qpXnq. The
objective function for the optimization can be defined by the
value component of Eq. (9),

n´1
ÿ

i“1

ÿ

αPQXi

řw
Xi,α

1:n´1

X1:n´1
V Xiα

řw
Xi,α

1:n´1

X1:n´1
PXiα

` (12)

ÿ

αPQXn

řwXn,α1:n

X1:n
PXnα

λXn
pα´1,αq

λXn
pα,α`1q

r
V Xnα

PXnα
´

ηXn
pα,α`1q

λXn
pα,α`1q

`
ηXn
pα´1,αq

λXn
pα´1,αq

s

řwXn,α1:n

X1:n
PXnα

λXn
pα´1,αq

λXn
pα,α`1q

,

where ΨXi
α :“ pPXiα , V Xiα q after omitting the scope XXi

α .
Note that, the evaluation of upper bounds while performing

the weighted mini-bucket elimination requires reconfiguring
the join-graph and weight parameters of the remaining mini-
buckets after eliminating a variable. However, the evaluation
of the optimization objective inside optimization procedure
does not require re-evaluation of all mini-buckets because
the fully decomposed bounds of all nodes except the mini-
buckets under optimization does not change subject to the
changes in the cost functions and weights. In the empiri-
cal evaluation, the cost functions and weights are updated
separately by calling the constrained optimization routines
to update the cost and the exponentiated gradient descent
(Kivinen and Warmuth 1997) for updating the weights of
mini-buckets.

Constraints for Optimizing Cost Functions Since the
powered-sum elimination operator is defines over the ab-
solute value of a function, the value components at all
mini-buckets are constrained to remain positive after repa-
rameterization. Let ΨXn

α pXαq be the valuation at the α-
th mini-bucket of bucket Xn with the probability compo-
nent λXnα pXαq and the value component ηXnα pXαqq, and
δpα,ὰ 1qpXnq :“ pλpα,ὰ 1qpXnq, ηpα,ὰ 1qpXnqq be the cost
shifting valuation between the α-th and pα` 1q-th mini-
buckets. Then, the non-negativity of the value components
after the reparameterization is ensured by:

ηXnα pXαq

λXnα pXαq
´
ηpα,α`1qpXnq

λpα,α`1qpXnq
`
ηpα´1,αqpXnq

λpα´1,αqpXnq
ě 0. (13)

In addition, the non-negativity of probability components is
ensured by:

λpα,α`1qpXnq ě 0 (14)

for all mini-buckets α P QXn . Equipped with the optimiza-
tion objective and constraints, any constrained optimization
procedure can be applied to reparameterize the mini-buckets.
For the empirical evaluation, we integrated off-the-shelf op-
timization libraries such as sequential least square program-
ming (Kraft 1988).

Interleaving Elimination and Optimization Algorithm 1
outlines the overall procedure of the weighted mini-bucket
elimination interleaved with reparameterization to compute
the upper bound of MEU. Given an input ID M and a total
constrained elimination order O, the schematic bucket tree
elimination algorithm (Dechter 1999) is called to generate
a join-tree and allocate valuations at the initialization step
(line 1). Variables are processed from first to last in the order-
ing, as follows. Given the current variable Xi, the algorithm
partitions its bucket into mini-buckets QXi and combines
the valuations placed in each mini-bucket (lines 4–7). The
fully decomposed join-graph decomposition based bound is
pre-computed using the uniform weights at all mini-buckets
remaining in the problem (lines 9–10). Subsequently, the cost
functions and weights that parameterize the mini-buckets
corresponding to variable Xi are updated in order to tighten
the upper bound of the inequality Eq. (9). After the opti-
mization step, messages from mini-buckets are computed by
marginalizing the reparameterized valuations Ψ̃Xi

α using the
powered-sum operator with weights twXi,αXi

|@α P QXiu.



Domain n f k s w

FH-MDP 99, 145, 170 120, 170, 240 3, 3, 5 7, 9, 9 21, 39, 43

FH-POMDP 57, 92, 96 72, 128, 140 2, 2, 3 5, 6, 9 28, 43, 47

RAND 60, 77, 91 60, 77, 91 2, 2, 2 3, 3, 3 20, 27, 41

BN 54, 54, 100 54, 54, 100 2, 2, 2 6, 10, 10 19, 24, 28

Table 1: Benchmark statistics. We show the minimum, median, and
maximum values for each of the problem parameters: n – the num-
ber of chance and decision variables, f – the number of probability
and utility functions, k – the domain size, s – the scope size, and w
– the induced width, respectively.

Experiments
We compare the performance of our proposed bounding
scheme WMBE-ID with earlier approaches on 4 domains
each containing 5 problem instances. The benchmark statis-
tics are summarized in Table 1.

Benchmarks

For our purpose, we generated 4 domains in the following
way: (1) Factored FH-MDP instances are generated from
two stage factored MDP templates by varying the number of
state and action variables, the scope size of functions, and
the length of time steps between 3 and 10. (2) Factored FH-
POMDP instances are generated similarly to MDP instances,
but it incorporates observed variables. (3) Random influence
diagrams (RAND) are generated from a random topology of
influence diagram by varying the number of chance, decision,
and value nodes. (4) BN instances are IDs converted from
the Bayesian network released in the UAI-2006 probabilistic
inference challenge by converting random nodes to decision
nodes and adding utility nodes.

Algorithms

We evaluate the proposed WMBE-ID algorithm in 3 differ-
ent configurations: (1) uniform weights without cost updates
(WMBE-U) (2) uniform weights with cost updates (WMBE-
UC), and (3) update both weights and costs (WMBE-
WC). For comparison, we consider the following earlier ap-
proaches: the mini-bucket elimination bound (MBE), MBE
combined with the re-ordering relaxation (MBE-Re), and
the state-of-the-art join graph decomposition bounds for IDs
(JGDID). We implemented all algorithms in Python using
the NumPy (Oliphant 2015) and SciPy (Jones et al. 2001 )
libraries. WMBE-U, MBE, and MBE-Re are non-iterative
algorithm that computes the upper bounds in a single pass.
On the other hand, WMBE-UC, WMBE-WC, and JGDID are
iterative algorithms that reparameterize cost functions and
weights until the iteration limit or convergence. The number
of iterations of WMBE-UC and WBME-WC is the maxi-
mum number of calls allowed to reparameterizing the cost
functions of mini-buckets by the off-the-shelf optimization
library, sequential least square programming in SciPy (Jones
et al. 2001 ) with the default parameters. JGDID updates all
parameters by the gradient descent method at each iteration.

Comparing on Individual Instances
Table 2 shows the quality of upper bounds of all 6 algorithms
at each instance of four domains with the i-bounds 1, 5, 10,
and 15, and the iteration limit 1, 5, 10, and 20. We can see
that the quality of the bound from MBE and MBE-Re is a
magnitude worse than the other algorithms. JGDID algorithm
generates the most tight bound on many of the cases but it
consistently produces worse bounds with higher i-bound and
it takes more time. On the other hand, WMBE-ID algorithms
consistently improve the quality of the bounds with higher
i-bounds.

Comparing the 3 variants of WMBE-ID algorithms, opti-
mizing both weights and cost functions greatly improved the
quality of bound with additional time overhead. In case of ID
from BN 78 w19d3 we can also observe that WMBE-
WC produces better bound than the best bound produced
by JGDID; 23.44 in 1078 seconds by WMBE-WC with
i-bound 15, and 27.53 in 1281 seconds by JGDID with i-
bound 1. Similarly, WBME-WC produced better bounds
for mdp9-32-3-8-3 instance; 21.48 in 5905 seconds by
WMBE-WC with i-bound 10, and 23.58 in 15340 seconds
by JGDID with i-bound 1.

Comparing WMBE-ID vs. JGDID
Table 3 compares the quality of the upper bounds as well
as the running time against JGDID(i=1). Clearly, we can
see that JGDID with i-bound 10 shows degradation of the
quality of the bounds on all 20 instances. On the other
hand, both WMBE-UC and WMBE-WC improves the up-
per bounds with higher i-bounds, and WMBE-WC produces
tighter bounds than JGDID on 7 instances with the i-bound
15 in shorter time bounds than JGDID(i=1).

On Using WMBE-ID as Heuristics
The experiments shows that WMBE-ID produces high qual-
ity bounds in a shorter time bounds compared to JGDID, and
it improves the tightness of the bounds with higher i-bounds
as opposed to JGDID. More importantly, WMBE-ID can be
pre-compiled as a static heuristic function if all the interme-
diate messages are stored as a look up table before starting
search. This characteristic is especially desired for heuristic
evaluation functions that require less overhead on comput-
ing the heuristic values. The weighted mini-bucket heuristic
functions for MAP and MMAP have shown state-of-the-art
performance when used to guide AND/OR search strategies
(Otten and Dechter 2012; Marinescu et al. 2018). Therefore
our plan is to integrate WMBE-ID as a heuristic generator
for AND/OR search algorithms for solving IDs.

Conclusion
We presented a new bounding scheme for influence dia-
grams, called WMBE-ID, which computes upper bounds
of the MEU by interleaving variable elimination with opti-
mizing partial decomposition within each variable’s bucket.
Compared with the previous approaches, our proposed up-
per bounding scheme produces high quality upper bounds
in shorter time bounds. This is instrumental for our plan to



Instance
Algorithm

i=1 i=5
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

ID_from_BN_78_w19d3 WMBE-U (47, 418) (52, 147.78) - - -
(54, 54, 2, 10, 19) WMBE-UC (277, 381) (532, 381) (430, 381) (484, 381) (236, 151.58) (378, 151,58) (488, 151.58) (400, 151.58)

WMBE-WC (30, 237) (660, 235) (1089, 228) (803, 235) (292, 77.75) (709, 84.18) (625, 61.35) (770, 77.32)
JGDID (0.51, 889) (973, 28.34) (1281, 27.53) - (0.7, 4362) (915, 118) (2731, 33.64) (6076, 32.59)
MBE (1, 314234) - - - (1, 2957) - - -

MBE-Re (1, 245894) - - - (1, 19059) - -

Algorithm
i=10 i=15

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (214, 46.93) - - - (252, 27,79) - - -
WMBE-UC (341, 44.95) (489, 44.94) (539, 44.94) (467, 44.94) (247, 27,79) (270, 27.79) (586, 27.79) (259, 27.79)
WMBE-WC (291, 38.20) (501, 38.34) (557, 37.84) (557, 37.84) (333, 23,56) (438, 23.44) (715, 23.44) (1078, 23.44)

JGDID (1, 4561) (3530, 90.23) (7433, 48.15) (15235, 47.08) (1, 4513) (7391, 45.21) (15720, 42.34) -
MBE (1, 113) - - - (1, 37.38) - - -

MBE-Re (1, 329) - - - (1, 49.43) - - -

Instance
Algorithm

i=1 i=5
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

mdp9-32_3_8_3 WMBE-U (466, 2.86E+9) - - - (494, 1.25E+8) - - -
(99, 120, 3, 9, 43) WMBE-UC (6040, 1.01E+9) (8052, 1.91E+9) (9991, 1.00E+9) (7866, 1.00E+9) (2146, 7.48E+7) (4169, 7.48E+7) (5667, 7.48E+7) (6718, 7.48E+7)

WMBE-WC (8017, 30.6) (21496, 69.53) (10085, 2628) (17214, 80.78) (6691, 23.89) (16113, 116.13) (14653, 357) (16888, 59.16)
JGDID (2.8, 1.65E+11) (7625, 48.22) (15340, 23.58) - (3, 2.58E+13) (6790, 7104) (18589, 634) (30243, 27.57)
MBE (3, 2.4E+21) - - - (3, 4.3E+14) - - -

MBE-Re - - - - - - - -

Algorithm
i=10 i=15

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (581, 1666593) - - - (790, 372057) - - -
WMBE-UC (3047, 825028) (3720, 825513) (4747, 824649) (6327, 824641) (4054, 319426) (6330, 33415) (7109, 321955) (5019, 321183)
WMBE-WC (5905, 21.48) (7588, 146) (11945, 105) (143243,. 46.45) (8266, 20,47) (14521, 78.54) (20770, 69.13) (24150, 45.5)

JGDID (4, 4.01E+14) (4282, 8.75E+8) (9294, 4.40E+7) (21315, 4.62E+6) (7, 4.63E+14) (9250, 2.42E+8) (19791, 5.35E+7) (40074, 7.39E+5)
MBE (2.6, 159E+12) - - - (2, 1.73E+10) - - -

MBE-Re - - - - - - - -

Instance
Algorithm

i=1 i=5
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

pomdp8-14_9_3_12_4 WMBE-U (312, 9.3E+14) - - - (2, 3.4E+14) - - -
(96, 140, 2, 6, 47) WMBE-UC (731, 9.3E+14) (2105, 9.3E+14) (5674, 9.3E+14) (8311, 9.3E+14) (2744, 2.4E+13) (2616, 2.4E+13) (2815, 2.4E+13) (2815, 2.4E+13)

WMBE-WC (672, 1.8E+13) (2640, 1.27E+13) (4434, 1.24E+13) (8105, 1.24E+13) (549, 1E+12) (2747, 7.23E+11) (3516, 7.23E+11) (4770, 7.21E+11)
JGDID (2.05, 1.8E+16) (1920, 3.73E+10) (4458, 8.65E+9) (7111, 6.12E+8) (3, 2.75E+19) - - -
MBE (3, 1.94E+22) - - - (3, 2.57E+18) - - -

MBE-Re (4, 2.9E+18) - - - (2, 3.4E+14) - - -

Algorithm
i=10 i=15

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (755, 1.90E+10) - - - (1861, 9.49E+8) - - -
WMBE-UC (832, 1.90E+10) (2145, 1.90E+10) (3391, 1.90E+10) (3057, 1.90E+10) (35236, 1.45E+7) (55864, 1.45E+7) (61070, 14503836) (61401, 1.45E+7)
WMBE-WC (904, 4866832237( (1532, 4.95E+9) (3301, 4.92E+9) (5855, 4.88E+9) (35313, 2.87E+7) (67977, 8.97E+6) (81550, 8.97E+6) (87807, 1.45E+11)

JGDID (4, 3.2E+18) (3224, 3.48E+12) (7101, 5.55E+11) (14635, 4.42E+9) (12, 1.4E+18) (12196, 4.39E+11) (28338, 1.29E+11) (49188, 6.81E+9)
MBE (2, 1.4E+15) - - - (3, 7.3E+12) - - -

MBE-Re (1, 326947477) - - - (1, 284607) - - -

Instance
Algorithm

i=1 i=5
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

rand-c70d7o1-01 WMBE-U (64, 1028113) - - - (109, 9227) - - -
(91, 91, 2, 3, 41) WMBE-UC (183, 1.04E+6) (327, 1.04E+6) (489, 1.04E+6) (620, 1.04E+6) (329, 7588) (346, 8196) (732, 8196) (613, 7625)

WMBE-WC (287, 316431) (779, 413886) (655, 305882) (820, 293482) (354, 3782) (461, 4021) (1351, 3886) (2649, 4092)
JGDID (1, 2.15E+7) (337, 61104) (842, 758) (1453, 686) (1, 1.84E+7) (1248, 11213) (3195, 762) (4397, 736)
MBE (1, 2.69E+9) - - - (1, 445863) - - -

MBE-Re (1, 2.61E+9) - - - (2, 739433)

Algorithm
i=10 i=15

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (160, 1863) - - - (193, 1542) - - -
WMBE-UC (765, 1835) (1225, 1820) (1463, 1819) (1058, 1820) (806, 1521) (1066, 1518) (1734, 1516) (1113, 1512)
WMBE-WC (428, 1812) (706, 1731) (418, 1717) (1234, 1749) (1028, 1510) (1638, 1576) (921, 1576) (1892, 1576)

JGDID (1, 20049757) (4228, 2167) (8358, 1303) (15787, 795) (2, 2.37E+7) (7837, 2006) (15134, 1357) -
MBE (1, 4937) - - - (1, 7027) - - -

MBE-Re (1, 40695) - - - (1, 16139) - - -

Table 2: The performance of the bounding schemes on individual instances. n is the number of variables, f is the number of
functions, k is the maximum domain size, s is the maximum scope size, w is the constrained induced width. We show the (time,
upper bound) for various i-bounds and number of iterations for algorithms updating the costs or weights. WMBE-U is the
mini-bucket elimination with uniform weights, WMBE-UC preforms cost shifting without optimizing the weight, WMBE-WC
optimizes both weights and costs, JGDID is the fully decomposed bound over a join graph that optimizes both weights and
costs, MBE is the simple mini-bucket elimination, and MBE-Re is mini-bucket elimination with relaxed variable ordering. MBE,
MBE-RE, and WMBE-U do not optimize the bound. The best upper bounds are highlighted.



WMBE-UC WMBE-WC JGDID (i=10)

Instance i=10, iter=5 i=15, iter=5 i=10, iter=5 i=15, iter=5 i=10. iter<100

ID_from_BN_0_w28d6 13.89% 7.42 73.66% 4.34 16.56% 3.36 56.41% 2.93 4.10323766 1.30
ID_from_BN_0_w29d6 15.36% 1.16E+01 18.26% 3.75 19.38% 5.29 19.12% 2.96 2.55257594 1.58
ID_from_BN_78_w19d3 36.85% 1.63 20.33% 1.01 37.73% 1.39 33.01% 8.52E-01 15.8240436 1.70
ID_from_BN_78_w23d6 4.53% 2.59 4.91% 1.40 5.38% 1.33 13.45% 1.10 1.27099854 1.79
ID_from_BN_78_w24d6 11.12% 5.08 12.33% 2.37 8.00% 4.24 22.92% 1.56 1.66577736 1.83

mdp5-16_3_8_10 5.79% 1.02E+09 38.05% 5.13E+03 11.01% 8.26 49.74% 7.54E-01 1.1375437 4.68E+11
mdp6-20_5_5_5 14.09% 2.94E+05 20.17% 5.29E+03 48.94% 6.06 27.61% 8.54E-01 3.38715936 2.69E+04
mdp7-28_3_6_5 10.66% 4.26E+09 13.78% 1.43E+08 18.54% 4.52 43.47% 9.44E-01 1.28478854 1.56E+07
mdp8-28_3_6_4 15.52% 2.81E+07 23.15% 5.50E+05 38.35% 5.27E+01 46.77% 9.10 2.28022631 8.69E+03
mdp9-32_3_8_3 13.38% 3.56E+04 22.77% 1.44E+04 27.30% 6.32 52.24% 3.39 1.41892342 2.65E+03

pomdp10-12_7_3_8_4 25.70% 5.83E-01 246.94% 1.33E-02 28.42% 2.08E-01 282.16% 8.28E-03 2.64238123 3.23E-01
pomdp6-12_6_2_6_3 53.85% 1.39E+01 26.62% 7.04 29.69% 6.02 52.48% 5.16E+01 1.09018931 7.36
pomdp7-20_10_2_10_3 22.72% 6.10E+02 46.78% 5.64 27.76% 5.14E+01 44.04% 4.19 1.74323656 7.28E+01
pomdp8-14_9_3_12_4 19.86% 3.10E+01 45.87% 1.55 14.19% 8.08 60.84% 5.53E-01 1.99441208 7.22
pomdp9-14_8_3_10_4 36.27% 2.47E+01 503.77% 1.19E-01 39.76% 6.54 666.74% 5.66E-02 3.95469321 1.70E+01

rand-c50d15o1-03 29.02% 2.64 51.31% 1.24 52.92% 2.35 128.04% 1.12 15.1473433 1.35
rand-c50d5o1-01 45.44% 9.11E-01 24.30% 6.75E-01 50.52% 8.46E-01 31.86% 6.82E-01 16.8680706 1.02
rand-c70d14o1-01 45.02% 2.08E+01 470.27% 8.98 59.53% 8.47 319.50% 9.40 18.7158034 1.23
rand-c70d21o1-01 35.12% 1.89E+01 114.52% 3.84 40.17% 7.24 148.38% 2.75 8.84579305 1.16
rand-c70d7o1-01 84.32% 2.65 73.37% 2.21 48.63% 2.52 112.71% 2.30 14.7530922 1.15

Table 3: Comparing the ratio of time and quality of upper bounds against JGDID(i=1). WMBE-UC and WMBE-WC were
provided with i-bound 10 and 15 with the number of iteration fixed to 5, and JGDID were provided i-bound 1 and 10 with the
maximum number iteration limited by 100. All the quantities are normalized by the statistics of JGDID(i=1).

use such bounds as a heuristic evaluation function for search
algorithms for solving influence diagrams.
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