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ABSTRACT

We focus on temporal self-supervision for GAN-based video generation tasks.
While adversarial training successfully yields generative models for a variety of
areas, temporal relationship in the generated data is much less explored. This is
crucial for sequential generation tasks , e.g. video super-resolution and unpaired
video translation. For the former, state-of-the-art methods often favor simpler
norm losses such as L? over adversarial training. However, their averaging nature
easily leads to temporally smooth results with an undesirable lack of spatial detail.
For unpaired video translation, existing approaches modify the generator networks
to form spatio-temporal cycle consistencies. In contrast, we focus on improving
the learning objectives, and propose a temporally self-supervised algorithm. For
both tasks, we show that temporal adversarial learning is key to achieving tem-
porally coherent solutions without sacrificing spatial detail. We also propose a
novel Ping-Pong loss to improve the long-term temporal consistency. It effec-
tively prevents recurrent networks from accumulating artifacts temporally without
depressing detailed features. We also propose a first set of metrics to quantitatively
evaluate the accuracy as well as the perceptual quality of the temporal evolution.
A series of user studies confirms the rankings computed with these metrics.

1 INTRODUCTION

Generative adversarial models (GANs) have been extremely successful at learning complex distribu-
tions such as natural images (Zhu et al., 2017;|Isola et al.,[2017)). However, for sequence generation,
directly applying GANs without carefully engineered constraints typically results in strong artifacts
over time due to the significant difficulties introduced by the temporal changes. In particular, con-
ditional video generation tasks are very challenging learning problems where generators should not
only learn to represent the data distribution of the target domain, but also learn to correlate the out-
put distribution over time with conditional inputs. Their central objective is to faithfully reproduce
the temporal dynamics of the target domain and not resort to trivial solutions such as features that
arbitrarily appear and disappear over time.

In our work, we propose a novel adversarial learning method for a recurrent training approach that
supervises both spatial content as well as temporal relationships. We apply our approach to two
video-related tasks that offer substantially different challenges: video super-resolution (VSR) and
unpaired video translation (UVT). With no ground truth motion available, the spatio-temporal ad-
versarial loss and the recurrent structure enable our model to generate realistic results while keep-
ing the generated structures coherent over time. With the two learning tasks we demonstrate how
spatio-temporal adversarial training can be employed in paired as well as unpaired data domains. In
addition to the adversarial network which supervises the short-term temporal coherence, long-term
consistency is self-supervised using a novel bi-directional loss formulation, which we refer to as
“Ping-Pong” (PP) loss in the following. The PP loss effectively avoids the temporal accumulation of
artifacts, which can potentially benefit a variety of recurrent architectures. The central contributions
of our work are: a spatio-temporal discriminator unit together with a careful analysis of training
objectives for realistic and coherent video generation tasks, a novel PP loss supervising long-term
consistency, in addition to a set of metrics for quantifying temporal coherence based on motion esti-
mation and perceptual distance. Together, our contributions lead to models that outperform previous
work in terms of temporally-coherent detail, which we quantify with a wide range of metrics and
user studies.
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| CycleGAN

Figure 1: When learning a mapping between Trump and Obama, the CycleGAN model gives good spatial
features, but collapses to essentially static outputs of Obama. It manages to transfer facial expressions back to
Trump using tiny differences encoded in its Obama outputs, instead of learning a meaningful mapping. Being
able to establish the correct temporal cycle-consistency between domains, ours and RecycleGAN can generate
correct blinking motions. Our model outperforms the latter in terms of coherent detail that is generated.

2 RELATED WORK

Deep learning has made great progress for image generation tasks. While regular losses such as L?
(Kim et al 2016} [Lai et al 2017) offer good performance for image super-resolution (SR) tasks
in terms of PSNR metrics, GAN researchers found adversarial training (Goodfellow et alJ 2014)
to significantly improve the perceptual quality in multi-modal problems including image SR (Ledig|
et al 2016)), image translations (Zhu et al.} 2017} Tsola et al [2017)), and others. Perceptual met-
rics (Zhang et all[2018};[Prashnani et al., 2018)) are proposed to reliably evaluate image similarity by
considering semantic features instead of pixel-wise errors.

Video generation tasks, on the other hand, require realistic results to change naturally over time.
Recent works in VSR improve the spatial detail and temporal coherence by either using multiple
low-resolution (LR) frames as inputs (Jo et al., 2018} Tao et al.,[2017; [Liu et al., 2017), or recurrently
using previously estimated outputs (Sajjadi et al., 2018). The latter has the advantage to re-use
high-frequency details over time. In general, adversarial learning is less explored for VSR and
applying it in conjunction with a recurrent structure gives rise to a special form of temporal mode
collapse, as we will explain below. For video translation tasks, GANs are more commonly used but
discriminators typically only supervise the spatial content. E.g., does not employ
temporal constrains and generators can fail to learn the temporal cycle-consistency. In order to
learn temporal dynamics, RecycleGAN (Bansal et al., 2018) proposes to use a prediction network in
addition to a generator, while a concurrent work (Chen et al., chose to learn motion translation
in addition to spatial content translation. Being orthogonal to these works, we propose a spatio-
temporal adversarial training for both VSR and UVT and we show that temporal self-supervision
is crucial for improving spatio-temporal correlations without sacrificing spatial detail. While L?
temporal losses based on warping are used to enforce temporal smoothness in video style transfer

tasks (Ruder et all, 2016}, [Chen et al.l [2017), concurrent GAN-based VSR work (Pérez-Pellitero
and UVT work (Park et al., [2019), it leads to an undesirable smooth over spatial detail

and temporal changes in outputs. Likewise, the L? temporal metric represents a sub-optimal way
to quantify temporal coherence and perceptual metrics that evaluate natural temporal changes are




Under review as a conference paper at ICLR 2020

unavailable up to now. We work on this open issue, propose two improved temporal metric and
demonstrate the advantages of temporal self-supervision over direct temporal losses.

Previous work, e.g. tempoGAN (Xie et al.,2018) and vid2vid (Wang et al.| 2018b)), have proposed

adversarial temporal losses to achieve time consistency. While tempoGAN employs a second tem-
poral discriminator with multiple aligned frames to assess the realism of temporal changes, it is not
suitable for videos, as it relies on ground truth motions and employs a single-frame processing that
is sub-optimal for natural images. On the other hand, vid2vid focuses on paired video translations
and proposes a video discriminator based on a conditional motion input that is estimated from the
paired ground-truth sequences. We focus on more difficult unpaired translation tasks instead, and
demonstrate the gains in quality of our approach in the evaluation section. For tracking and optical
flow estimation, L2-based time-cycle losses were proposed to constrain motions
and tracked correspondences using symmetric video inputs. By optimizing indirectly via motion
compensation or tracking, this loss improves the accuracy of the results. For video generation, we
propose a PP loss that also makes use of symmetric sequences. However, we directly constrain
the PP loss via the generated video content, which successfully improves the long-term temporal
consistency in the video results.

3 LEARNING TEMPORALLY COHERENT CONDITIONAL VIDEO GENERATION

Generative Network Before explaining the temporal
self-supervision in more detail, we outline the gener-

ative model to be supervised. Our generator networks o T Gpog . N
produce image sequences in a frame-recurrent manner P =
with the help of a recurrent generator G and a flow es- O el i \
timator F' . We follow previous work o Gasp /Tg:}—»b
2018), where G produces output g; in the target do- i o —
T e . . | Domain A | Domain B
main B from conditional input frame a; from the in- ' P 1
put domain A, and recursively uses the previous gen- gt N //VE;H‘\\
erated output g;_;. F is trained to estimate the mo- L g ~& b| !
tion v; between a;_1 and a;, which is then used as a tx\ G S
motion compensation that aligns g;—1 to the current It N p-1a2h. 5

frame. This procedure, also shown in Fig. 2h), can be Y b

summarized as: g; = G(a;, W(gi—1,v¢)), where vy =

F(a;_1,a;) and W is the warping operation. While Figure 2: a)G.b) The UVT cycle link using recurrent G.
one generator is enough to map data from A to B for

paired tasks such as VSR, unpaired generation requires a second generator to establish cycle consis-
tency. 2017). In the UVT task, we use two recurrent generators, mapping from domain
A to B and back. As shown in Fig.), given g2 % = Gyp(ar, W(g=3%, v;)), we can use a; as the
labeled data of gf 7*7® = G, (g2 %, W (¢g8=7:~,v;)) to enforce consistency. A ResNet architecture
is used for the VSR generator G and a encoder-decoder structure is applied to UVT generators and
F' . We intentionally keep generators simple and in line with previous work, in order to demonstrate
the advantages of the temporal self-supervision that we will explain in the following paragraphs.

Spatio-Temporal Adversarial Self-Supervision The central aes || @ |[@ens |
building block of our approach is a novel spatio-temporal dis- ' Conditional LR Triplet I,
criminator Ds ; that receives triplets of frames. This contrasts ----—--- -~ """ —----i ... ‘
with typically used spatial discriminators which supervise only ' ge-1 gc  Ge+1
a single image. By concatenating multiple adjacent frames along | _Original Triplet I, | | _Original Triplet I _|
the channel dimension, the frame triplets form an important build- ey wem e rrer U B o o
ing block for learning because they can provide networks with |

gradient information regarding the realism of spatial structures | 2P P wa | e AR AT | '

as well as short-term temporal information, such as first- and
second-order time derivatives.

We propose a Dy ; architecture, illustrated in Fig. [3] and Fig. A . o/1
e o . : " Figure 3: Conditional VSR D .
that primarily receives two types of triplets: three adjacent frames
and the corresponding warped ones. We warp later frames back-
ward and previous ones forward. While original frames contain the full spatio-temporal infor-
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mation, warped frames more easily yield temporal information with their aligned content. For
the input variants we use the following notation: I, = {gt—1,9¢,9t+1}, I = {bi—1,bt,be41};
Lug = {W(ge-1,vt), ge, W (ge41,00) }, Lup = {W (be—1,v¢), be, W (bes1,v1) }.

For VSR tasks, D; ; should guide the generator to learn the correlation between LR inputs and high-
resolution (HR) targets. Therefore, three LR frames I, = {a;—_1, at, a¢11} from the input domain

are used as a conditional input. The input of D ; can be summarized as Ils’)t = {Ip, Lyp, I, } labelled

as real and the generated inputs I, = {I,, L, 1,} labelled as fake. In this way, the conditional
D, will penalize G if I, contains less spatial details or unrealistic artifacts according to I,,I;. At
the same time, temporal relationships between the generated images I,,, and those of the ground
truth I, should match. With our setup, the discriminator profits from the warped frames to classify
realistic and unnatural temporal changes, and for situations where the motion estimation is less
accurate, the discriminator can fall back to the original, i.e. not warped, images.

For UVT tasks, we demonstrate that the temporal cycle- | 3 | o b3
consistency between different domains can be established using { g I . {2 | x

" . .. . . .. Static Triplet I Static Triplet .
the supervision of unconditional spatio-temporal discriminators. ‘'---------- ‘- *

This is in contrast to previous work which focuses on the genera- | geall g0 Nlgesal! s i[Bea[ B¢ |[Bese
tive networks to form spatio-temporal cycle links. Our approach i_(_)ljg_in_al_ Triplet, |
actually yields improved results, as we will show below, and ---------—-- .
. . . . . 191 g, e b1/ by |bes1
Fig. [I] shows a preview of the quality that can be achieved using : (W () &
spatio-temporal discriminators. In practice, we found it crucial to | Warped Triplet 5 |
ensure that generators first learn reasonable spatial features, and
only then improve their temporal correlation. Therefore, different
to the Dy, of VST that always receives 3 concatenated triplets o
as an input, the unconditional D, ; of UVT only takes one triplet  Figure 4: Unconditional UVT D, ;.
at a time. Focusing on the generated data, the input for a single
batch can either be a static triplet of I,, = {gt, g+, g: }, the warped triplet L,,4, or the original triplet
I,. The same holds for the reference data of the target domain, as shown in Fig. El With suffi-
cient but complex information contained in these triplets, transition techniques are applied so that
the network can consider the spatio-temporal information step by step, i.e., we initially start with
100% static triplets I, as the input. Then, over the course of training, 25% of them transition to
Lyg triplets with simpler temporal information, with another 25% transition to I, afterwards, lead-
ing to a (50%,25%,25%) distribution of triplets. Details of the transition calculations are given in
Appendix [D| Here, the warping is again performed via F' .

Original Triplet I;,

Warped Triplet I,,,;

While non-adversarial training typically employs loss formulations with static goals, the GAN train-
ing yields dynamic goals due to discriminative networks discovering the learning objectives over
the course of the training run. Therefore, their inputs have strong influence on the training process
and the final results. Modifying the inputs in a controlled manner can lead to different results and
substantial improvements if done correctly, as will be shown in Sec.[d] Although the proposed con-
catenation of several frames seems like a simple change that has been used in a variety of projects,
it is an important operation that allows discriminators to understand spatio-temporal data distribu-
tions. As will be shown below, it can effectively reduce temporal problems encountered by spatial
GANs. While L?—based temporal losses are widely used in the field of video generation, the spatio-
temporal adversarial loss is crucial for preventing the inference of blurred structures in multi-modal
data-sets. Compared to GANs using multiple discriminators, the single D ; network can learn to
balance the spatial and temporal aspects from the reference data and avoid inconsistent sharpness as
well as overly smooth results. Additionally, by extracting shared spatio-temporal features, it allows
for smaller network sizes.

Self-Supervision for Long-term Temporal Consistency When relying on a previous output as
input, i.e., for frame-recurrent architectures, generated structures easily accumulate frame by frame.
In an adversarial training, generators learn to heavily rely on previously generated frames and can
easily converge towards strongly reinforcing spatial features over longer periods of time. For videos,
this especially occurs along directions of motion, and these solutions can be seen as a special form
of temporal mode collapse. We have noticed this issue in a variety of recurrent architectures, exam-
ples are shown in Fig. [5]a) and the Dst in Fig. [T} While this issue could be alleviated by training
with longer sequences, we generally want generators to be able to work with sequences of arbitrary
length for inference. To address this inherent problem of recurrent generators, we propose a new
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Figure 5: a) Result without PP loss. The VSR network is trained with a recurrent frame-length of 10. When
inference on long sequences, frame 15 and latter frames of the foliage scene show the drifting artifacts. b)
Result trained with PP loss. These artifacts are removed successfully for the latter. ¢) The ground-truth image.
With our PP loss (shown on the right), the L? distance between g; and g, is minimized to remove drifting
artifacts and improve temporal coherence.

bi-directional “Ping-Pong” loss. For natural videos, a sequence with forward order as well as its
reversed counterpart offer valid information. Thus, from any input of length n, we can construct a
symmetric PP sequence in form of ay,...a,,—1, @y, Gp—1,...a1 as shown in Fig. El When inferring
this in a frame-recurrent manner, the generated result should not strengthen any invalid features
from frame to frame. Rather, the result should stay close to valid information and be symmetric,
i.e., the forward result g; = G(at, g:+—1) and the one generated from the reversed part, g; = G(ax,
gi+1), should be identical. Based on this observation, we train our networks with extended PP
sequences and constrain the generated outputs from both “legs” to be the same using the loss:
Loy = Z?;ll llgt — g¢'||, - Note that in contrast to the generator loss, the L? norm is a correct
choice here: We are not faced with multi-modal data where an L? norm would lead to undesirable
averaging, but rather aim to constrain the recurrent generator to its own, unique version over time.
The PP terms provide constraints for short term consistency via ||gn—1 — gn—1'||,, While terms such
as ||g1 — g1'||, prevent long-term drifts of the results. As shown in Fig.b), this PP loss successfully
removes drifting artifacts while appropriate high-frequency details are preserved. In addition, it ef-
fectively extends the training data set, and as such represents a useful form of data augmentation. A
comparison is shown in Appendix [E]to disentangle the effects of the augmentation of PP sequences
and the temporal constrains. The results show that the temporal constraint is the key to reliably
suppressing the temporal accumulation of artifacts, achieving consistency, and allowing models to
infer much longer sequences than seen during training.

Perceptual Loss Terms As perceptual metrics, both pre-trained NNs (Johnson et al., 2016, Wang
and in-training discriminators 2018) were successfully used in previous
work. Here, we use feature maps from a pre-trained VGG-19 network (Simonyan & Zisserman,
2014), as well as Dy, itself. In the VSR task, we can encourage the generator to produce features
similar to the ground truth ones by increasing the cosine similarity between their feature maps. In
UVT tasks without paired ground truth data, we still want the generators to match the distribution
of features in the target domain. Similar to a style loss in traditional style transfer (Johnson et al.,
2016), we here compute the D, ; feature correlations measured by the Gram matrix instead. The
feature maps of D, ; contain both spatial and temporal information, and hence are especially well
suited for the perceptual loss.

Loss and Training Summary We now explain how to integrate the spatio-temporal discriminator
into the paired and unpaired tasks. We use a standard discriminator loss for the D, ; of VSR and a
least-square discriminator loss for the D, ; of UVT. Correspondingly, a non-saturated L4, is used
for the G and F of VSR, and a least-squares one is used for the UVT generators. As summarized in
Tablem G and F are trained with the mean squared 10ss Lonent, adversarial losses L4, , perceptual
losses L , the PP loss Lpp , and a warping loss Lyarp, Where again g, b and ® stand for generated
samples, ground truth images and feature maps of VGG-19 or D, ;. We only show losses for the
mapping from A to B for UVT tasks, as the backward mapping simply mirrors the terms. We refer
to our full model for both tasks as TecoGAN belowﬂ Training parameters and details are given in

Appendix

'Source code, training data, and trained models will be published upon acceptance.
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Table 1: Summary of loss terms.

Loss for VSR, D, UVT, DY,
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Figure 6: In VSR of the foliage scene, adversarial models (ENet, DsOnly, DsDt, DsDtPP, TecoGAN®and
TecoGAN) yield better perceptual quality than methods using L? loss (FRVSR and DUF). In temporal profiles
on the right, DsDt, DsDtPP and TecoGAN show significantly less temporal discontinuities compared to ENet
and DsOnly. The temporal information of our discriminators successfully suppresses these artifacts.

4 ANALYSIS AND EVALUATION OF LEARNING OBJECTIVES

In the following, we illustrate the effects of temporal supervision using two ablation studies. In
the first one, models trained with ablated loss functions show how L,4, and Lpp change the overall
learning objectives. Next, full UVT models are trained with different Dy ; inputs. This highlights
how differently the corresponding discriminators converge to different spatio-temporal equilibriums,
and the general importance of providing suitable data distributions from the target domain. While
we provide qualitative and quantitative evaluations in the following, we also refer the reader to our
supplemental |html documentﬂ with video clips that more clearly highlight the temporal differences.

Loss Ablation Study Below we compare variants of our full TecoGAN model to EnhanceNet
(ENet) (Sajjadi et al.| 2017), FRVSR (Sajjadi et al., 2018), and DUF for VSR, and
CycleGAN (Zhu et al., 2017) and RecycleGAN (Bansal et al., 2018)) for UVT. Specifically, ENet and
CycleGAN represent state-of-the-art single-image adversarial models without temporal information,
FRVSR and DUF are state-of-the-art VSR methods without adversarial losses, and RecycleGAN is
a spatial adversarial model with a prediction network learning the temporal evolution.

For VSR, we first train a DsOnly model that uses a frame-recurrent G and F' with a VGG-19 loss
and only the regular spatial discriminator. Compared to ENet, which exhibits strong incoherence
due to the lack of temporal information, DsOnly improves temporal coherence thanks to the frame-
recurrent connection, but there are noticeable high-frequency changes between frames. The tem-
poral profiles of DsOnly in Fig. [6] and [8] correspondingly contain sharp and broken lines. When
adding a temporal discriminator in addition to the spatial one (DsDf), this version generates more

%2 Anonymized and time-stamped supplemental material availabble at:
https://www.dropbox.com/sh/n0718n51slhle9c/ARAAVNgTIxsSzslpJdQgebxV10a?dl=0.


https://www.dropbox.com/sh/n07l8n51slh1e9c/AAAVngT9xsSzs1pJQqe5xV1Oa?dl=0
https://www.dropbox.com/sh/n07l8n51slh1e9c/AAAVngT9xsSzs1pJQqe5xV1Oa?dl=0
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coherent results, and its temporal profiles are sharp and coherent. However, DsDt often produces the
drifting artifacts discussed in Sec. [3] as the generator learns to reinforce existing details from previ-
ous frames to fool D, with sharpness, and satisfying D; with good temporal coherence in the form
of persistent detail. While this strategy works for generating short sequences during training, the
strengthening effect can lead to very undesirable artifacts for long-sequence inferences. By adding
the self-supervision for long-term temporal consistency £,,,, we arrive at the DsDtPP model, which
effectively suppresses these drifting artifacts with an improved temporal coherence. In Fig. [6] and
Fig. [8] DsDtPP results in continuous yet detailed temporal profiles without streaks from temporal
drifting. Although DsDtPP generates good results, it is difficult in practice to balance the generator
and the two discriminators. The results shown here were achieved only after numerous runs manu-
ally tuning the weights of the different loss terms. By using the proposed D; ; discriminator instead,
we get a first complete model for our method, denoted as TecoGAN® . This network is trained with
a discriminator that achieves an excellent quality with an effectively halved network size, as illus-
trated on the right of Fig.[7] The single discriminator correspondingly leads to a significant reduction
in resource usage. Using two discriminators requires ca. 70% more GPU memory, and leads to a
reduced training performance by ca. 20%. The TecoGAN®model yields similar perceptual and
temporal quality to DsDtPP with a significantly faster and more stable training.

Since the TecoGAN®model requires less training resources, we also trained a larger generator with
50% more weights. In the following we will focus on this larger single-discriminator architecture
with PP loss as our full TecoGAN model for VSR. Compared to the TecoGAN®model, it can gen-
erate more details, and the training process is more stable, indicating that the larger generator and
D, ; are more evenly balanced. Result images and temporal profiles are shown in Fig. |§| and Fig. @
Video results are shown in Sec. 4 of the supplemental material.

We also carry out a similar ablation study for the UVT task. Again, we start from a single-image
GAN-based model, a CycleGAN variant which already has two pairs of spatial generators and dis-
criminators. Then, we train the DsOnly variant by adding flow estimation via F' and extending the
spatial generators to frame-recurrent ones. By augmenting the two discriminators to use the triplet
inputs proposed in Sec. [3] we arrive at the Dst model with spatio-temporal discriminators, which
does not yet use the PP loss. Although UVT tasks are substantially different from VSR tasks, the
comparisons in Fig.[T|and Sec. 4.6 of our supplemental material yield similar conclusions. In these
tests, we use renderings of 3D fluid simulations of rising smoke as our unpaired training data. These
simulations are generated with randomized numerical simulations using a resolution of 642 for do-
main A and 2563 for domain B, and both are visualized with images of size 2562. Therefore, video
translation from domain A to B is a tough task, as the latter contains significantly more turbulent
and small-scale motions. With no temporal information available, the CycleGAN variant generates
HR smoke that strongly flickers. The DsOnly model offers better temporal coherence by relying on
its frame-recurrent input, but it learns a solution that largely ignores the current input and fails to
keep reasonable spatio-temporal cycle-consistency links between the two domains. On the contrary,
our Dy, enables the Dst model to learn the correlation between the spatial and temporal aspects,
thus improving the cycle-consistency. However, without £,,,, the Dst model (like the DsDt model
of VSR) reinforces detail over time in an undesirable way. This manifests itself as inappropriate
smoke density in empty regions. Using our full TecoGAN model which includes £, yields the
best results, with detailed smoke structures and very good spatio-temporal cycle-consistency.

For comparison, a DsDtPP model involving a larger number of separate networks, i.e. four discrimi-
nators, two frame-recurrent generators and the F', is trained. By weighting the temporal adversarial
losses from Dt with 0.3 and the spatial ones from Ds with 0.5, we arrived at a balanced training run.
Although this model performs similarly to the TecoGAN model on the smoke dataset, the proposed
spatio-temporal D, ; architecture represents a more preferable choice in practice, as it learns a nat-
ural balance of temporal and spatial components by itself, and requires fewer resources. Continuing
along this direction, it will be interesting future work to evaluate variants, such as a shared Dy ; for
both domains, i.e. a multi-class classifier network.

Besides the smoke dataset, an ablation study for the Obama and Trump dataset from Fig. [T|shows a
very similar behavior, as can be seen in the supplemental material.

Spatio-temporal Adversarial Equilibriums Our evaluation so far highlights that temporal adver-
sarial learning is crucial for achieving spatial detail that is coherent over time for VSR, and for
enabling the generators to learn the spatio-temporal correlation between domains in UVT. Next, we
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Figure 7: Visual summary of VSR models. LPIPS (x-axis) measures spatial detail and temporal coherence is
measured by tLP (y-axis) and tOF (bubble size with smaller as better). The middle graph zooms in the red-
dashed-box region on the left, containing models in our ablation study. The right graph shows network sizes.

will shed light on the complex spatio-temporal adversarial learning objectives by varying the infor-
mation provided to the discriminator network. The following tests D, ; networks that are identical
apart from changing inputs, and we focus on the smoke dataset.

In order to learn the spatial and temporal features of the target domain as well as their correla-
tion, the simplest input for D, ; consists of only the original, unwarped triplets, i.e. {I; or I;}.
Using these, we train a baseline model, which yields a sub-optimal quality: it lacks sharp spatial
structures, and contains coherent but dull motions. Despite containing the full information, these
input triplets prevent D ; from providing the desired supervision. For paired video translation
tasks, the vid2vid network achieves improved temporal coherence by using a video discriminator
to supervise the output sequence conditioned with the ground-truth motion. With no ground-truth
data available, we train a vid2vid variant by using the estimated motions and original triplets, i.e
{Iy + F(gt—1,9¢) + F(gt41, 9¢) or Iy + F(be—1, b)) + F(bi41, by) }, as the input for Dy ;. However,
the result do not significantly improve. The motions are only partially reliable, and hence don’t help
for the difficult unpaired translation task. Therefore, the discriminator still fails to fully correlate
spatial and temporal features. We then train a third model, concat, using the original triplets and the
warped ones, i.e. {Ig +1ygorly +1,5 }. In this case, the model learns to generate more spatial details
with a more vivid motion. ILe., the improved temporal information from the warped triplets gives the
discriminator important cues. However, the motion still does not fully resemble the target domain.
We arrive at our final TecoGAN model for UVT by controlling the composition of the input data:
as outlined above, we first provide only static triplets {I,, or Ly}, and then apply the transitions
of warped triplets {I,,4 or I}, and original triplets {I, or I} over the course of training. In this
way, the network can first learn to extract spatial features, and build on them to establish temporal
features. Finally, discriminators learn features about the correlation of spatial and temporal content
by analyzing the original triplets, and provide gradients such that the generators learn to use the mo-
tion information from the input and establish a correlation between the motions in the two unpaired
domains. Consequently, the discriminator, despite receiving only a single triplet at once, can guide
the generator to produce detailed structures that move coherently. Video comparisons are shown in
Sec 5. of the supplemental material.

Results and Metric Evaluation While the visual results discussed above provide a first indicator
of the quality our approach achieves, quantitative evaluations are crucial for automated evaluations
across larger numbers of samples. Below we focus on the VSR task as ground-truth data is avail-
able in this case. We conduct user studies and present evaluations of the different models w.r.t.
established spatial metrics. We also motivate and propose two novel temporal metrics to quantify
temporal coherence. A visual summary is shown in Fig.

For evaluating image SR, Blau & Michaelil (2018)) demonstrated that there is an inherent trade-off
between the perceptual quality of the result and the distortion measured with vector norms or low-
level structures such as PSNR and SSIM. On the other hand, metrics based on deep feature maps
such as LPIPS (Zhang et al., 2018) can capture more semantic similarities. We measure the PSNR
and LPIPS using the Vid4 scenes. With a PSNR decrease of less than 2dB over DUF which has
twice the model size of ours, TecoGAN outperforms all methods by more than 40% on LPIPS.
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Table 2: Averaged VSR metric evaluations for the Vid4 data set with the following metrics, PSNR: pixel-wise
accuracy. LPIPS (AlexNet): perceptual distance to the ground truth. T-diff: pixel-wise differences of warped
frames. tOF: pixel-wise distance of estimated motions. tLP: perceptual distance between consecutive frames.
User study: Bradley-Terry scores (Bradley & Terry), [1952)). Performance is averaged over 500 images up-scaled
from 320x134 to 1280x536. More details can be found in Appendixandg

Methods | PSNR1 | st [ mam [on [l e [y, ) [ )
DsOnly 24.14 1.727 || 6.852 | 2.157 | 2.160 - 0.8(G)+1.7(F) -
DsDt 24.75 1.770 || 5.071 | 2.198 | 0.614 - 0.8(G)+1.7(F) -
DsDtPP 25.77 1.733 || 4.369 | 2.103 | 0.489 - 0.8(G)+1.7(F) -
TecoGAN®™ 25.89 1.743 4.076 | 2.082 | 0.718 - 0.8(G)+1.7(F) 37.07
TecoGAN 25.57 1.623 || 4.961 | 1.897 | 0.668 3.258 1.3(G)+1.7(F) 41.92
ENet 22.31 2.458 || 9.281 | 4.009 | 4.848 1.616 0.8 -
FRVSR 2691 2.506 || 3.648 | 2.090 | 0.957 2.600 || 0.8(SRNet)+1.7(F) 36.95
DUF 27.38 2.607 || 3.298 | 1.588 | 1.329 2.933 6.2 942.21
Bi-cubic 23.66 5.036 || 3.152 | 5578 | 2.144 0.0 - -

Table 3: For the Obama& Trump dataset, the averaged tLP and tOF evaluations closely correspond to our user
studies. The table below summarizes user preferences as Bradley-Terry scores.

UVT scenes | Trump—Obama | Obama— Trump AVG User Studies T, ref. to
metrics tLPJ tOF] tLP| tOF| tLP| tOF] original input | arbitrary target
CycleGAN 0.0176 | 0.7727 | 0.0277 | 1.1841 | 0.0234 | 0.9784 0.0 0.0
RecycleGAN | 0.0111 | 0.8705 | 0.0248 | 1.1237 | 0.0179 | 0.9971 0.994 0.202
TecoGAN 0.0120 | 0.6155 | 0.0191 | 0.7670 | 0.0156 | 0.6913 1.817 0.822

While traditional temporal metrics based on vector norm differences of warped frames, e.g. T-diff,
can be easily deceived by very blurry results, e.g. bi-cubic interpolated ones, we propose to use a
tandem of two new metrics, tOF and tLP, to measure the consistence over time. tOF measures the
pixel-wise difference of motions estimated from sequences, and tLP measures perceptual changes
over time using deep feature map:

tOF = |OF (by—1,bt) — OF(gt—1,9:)|l, and tLP = ||LP(b;—1,b:) — LP(gs—1,90)|l; » (1)

where OF represents an optical flow estimation with LucasKanade and L P is the perceptual
LPIPS metric. In tLP, the behavior of the reference is also considered, as natural videos exhibit
a certain degree of changes over time. In conjunction, both pixel-wise differences and perceptual
changes are crucial for quantifying realistic temporal coherence. While they could be combined
into a single score, we list both measurements separately, as their relative importance could vary
in different application settings. Our evaluation with these temporal metrics in Table 2] shows that
all temporal adversarial models outperform spatial adversarial ones, and the full TecoGAN model
performs very well: With a large amount of spatial detail, it still achieves good temporal coherence,
on par with non-adversarial methods such as DUF and FRVSR. For VSR, we have confirmed these
automated evaluations with several user studies. Across all of them, we find that the majority of the
participants considered the TecoGAN results to be closest to the ground truth.

For the UVT tasks, where no ground-truth data is available, we can still evaluate tOF and tLP metrics
by comparing the motion and the perceptual changes of the output data w.r.t. the ones from the input
data , i.e., tOF = |[OF (a1-1,a¢) — OF(g¢=1", g¢ )|, and tLP= || LP(at—1, a:) — LP(g{=3", g7 7%)||,-
With sharp spatial features and coherent motion, TecoGAN outperforms previous work on the
Obama&Trump dataset, as shown in Table [3] although it is worth to point out that the tOF is less
informative in this case, as the motion in the target domain is not necessarily pixel-wise aligned with
the input. Overall, TecoGAN achieves good tLP scores thanks to its temporal coherence, on par with
RecycleGAN, and its spatial detail is on par with CycleGAN. As for VSR, a perceptual evaluation
by humans in the right column of Table [3]confirms our metric evaluations for the UVT task (details

in Appendix [C).
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5 CONCLUSIONS AND DISCUSSION

In paired as well as unpaired data domains, we have demonstrated that it is possible to learn stable
temporal functions with GANs thanks to the proposed discriminator architecture and PP loss. We
have shown that this yields coherent and sharp details for VSR problems that go beyond what can be
achieved with direct supervision. In UVT, we have shown that our architecture guides the training
process to successfully establish the spatio-temporal cycle consistency between two domains. These
results are reflected in the proposed metrics and user studies.

While our method generates very realistic results for a wide range of natural images, our method
can generate temporally coherent yet sub-optimal details in certain cases such as under-resolved
faces and text in VSR, or UVT tasks with strongly different motion between two domains. For the
latter case, it would be interesting to apply both our method and motion translation from concurrent
work (Chen et al} 2019). This can make it easier for the generator to learn from our temporal
self supervision. In our method, the interplay of the different loss terms in the non-linear training
procedure does not provide a guarantee that all goals are fully reached every time. However, we
found our method to be stable over a large number of training runs, and we anticipate that it will
provide a very useful basis for wide range of generative models for temporal data sets.
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APPENDIX

In the following, we first provide qualitative analysis(Appendix [A) using multiple results that are
mentioned but omitted in our main document due to space constraints. We then explain details of
the metrics and present the quantitative analysis based on them(Appendix [B). The conducted user
studies are in support of our TecoGAN network and proposed temporal metrics (Appendix[C). Then,
we give technical details of our spatio-temporal discriminator (Sec. [D), details of network architec-
tures and training parameters (Appendix [} Appendix [G). In the end, we discuss the performance of
our approach in Appendix

A  QUALITATIVE ANALYSIS

For the VSR task, we test our model on a wide range of video data, including the generally used
Vid4 dataset shown in Fig. [§ and [I2} detailed scenes from the movie Tears of Steel (ToS,
shown in Fig.[I2] and others shown in Fig.[0] As mentioned in the main document, the TecoGAN
model is trained with down-sampled inputs and it can similarly work with original images that were
not down-sampled or filtered, such as a data-set of real-world photos (Liao et al} 2013). In Fig.
we compared our results to two other methods (Liao et al 2015} [Tao et al. 2017) that have used
the same dataset. With the help of adversarial learning, our model is able to generate improved and
realistic details in down-sampled images as well as captured images.

Temporal profiles———» x

:sInQ

DsDtPP

TecoGAN®

TecoGAN

v ENet

Figure 8: VSR temporal profile comparisons of the
calendar scene (time shown along y-axis). Teco-
GAN models lead to natural temporal progressions,
and our final model closely matches the desired Figure 9: Additional VSR comparisons. The TecoGAN
ground truth behavior over time. model generates sharp details in both scenes.
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Table 4: Metrics evaluated for the VSR Vid4 scenes.

PSNRt BIC | ENet | FRVSR | DUF | TecoGAN | TecoGAN™ | DsOnly | DsDt | DsDtPP
calendar 20.27 | 19.85 | 23.86 |24.07 23.21 23.35 2223 22776 | 22.95
foliage 23.57 | 21.15 | 2635 |26.45 24.26 25.13 22.33 | 2273 | 25.00
city 24.82 | 23.36 | 27.71 |28.25 26.78 26.94 25.86 |26.52| 27.03
walk 25.84 | 2490 | 29.56 | 30.58 28.11 28.14 2649 | 2737 | 28.14
average 23.66 | 22.31 | 2691 | 27.38 25.57 25.89 24.14 | 24775 | 25.77
LPIPS | x10 | BIC | ENet | FRVSR | DUF | TecoGAN | TecoGAN™ | DsOnly | DsDt | DsDtPP
calendar 5.935|2.191 | 2.989 |3.086 1.511 2.142 1.532 | 2.111 | 2.112
foliage 5.338 | 2.663 | 3.242 | 3.492 1.902 1.984 2.113 12.092 | 1.902
city 5.451 | 3431 | 2.429 |2.447 2.084 1.940 2.120 | 1.889 | 1.989
walk 3.655 | 1.794 | 1.374 | 1.380 1.106 1.011 1.215 | 1.057 | 1.051
average 5.036 | 2.458 | 2.506 | 2.607 1.623 1.743 1.727 | 1.770 | 1.733
tOF | x10 BIC | ENet | FRVSR | DUF | TecoGAN | TecoGAN™ | DsOnly | DsDt | DsDtPP
calendar 4.956 | 3.450 | 1.537 |1.134 1.342 1.403 1.609 | 1.683 | 1.583
foliage 4922 13.775 | 1.489 | 1.356 1.238 1.444 1.543 | 1.562 | 1.373
city 7.967 | 6.225 | 2.992 | 1.724 2.612 2.905 2920 |2936| 3.062
walk 5.150 | 3.203 | 2.569 |2.127 2.571 2.765 2745 2796 | 2.649
average 5.578 | 4.009 | 2.090 | 1.588 1.897 2.082 2.157 ]2.198 | 2.103
tLP | x 100 BIC | ENet | FRVSR | DUF | TecoGAN | TecoGAN™ | DsOnly | DsDt | DsDtPP
calendar 3.258 | 2957 | 1.067 | 1.603 0.165 1.087 0.872 | 0.764 | 0.670
foliage 243416372 | 1.644 |2.034 0.894 0.740 3422 10493 | 0.454
city 2.193 | 7953 | 0.752 | 1.399 0.974 0.347 2.660 |0.490 | 0.140
walk 0.851 [ 2.729 | 0.286 | 0.307 0.653 0.635 1.596 | 0.697 | 0.613
average 2.144 | 4.848 | 0.957 | 1.329 0.668 0.718 2.160 |0.614 | 0.489
T-diff | x100| BIC | ENet |FRVSR | DUF | TecoGAN | TecoGAN®™ | DsOnly | DsDt | DsDtPP| GT
calendar 2271 9.153 | 3.212 [2.750| 4.663 3.496 6.287 |4.347| 4.167 |6.478
foliage 3.745(11.997| 3.478 |3.115| 5.674 4.179 8.961 |6.068| 4.548 |4.396
city 1.974| 7.788 | 2.452 |2.244| 3.528 2.965 4.929 |3.525] 2.991 [4.282
walk 4.101| 7.576 | 5.028 |4.687| 5.460 5.234 6.454 |5.714| 5.305 |5.525
average 3.152| 9.281 | 3.648 [3.298| 4.961 4.076 6.852 |5.071| 4.369 |5.184

For UVT tasks, we train models for Obama and Trump translations, LR- and HR- smoke simulation
translations, as well as translations between smoke simulations and real-smoke captures. While
smoke simulations usually contain strong numerical viscosity with details limited by the simulation
resolution, the real smoke, captured using the setup from [Eckert et al.| (2018)), contains vivid fluid
motions with many vortices and high-frequency details. As shown in Fig. [IT] our method can be
used to narrow the gap between simulations and real-world phenomenon.

B METRICS AND QUANTITATIVE ANALYSIS

Spatial Metrics We evaluate all VSR methods with PSNR together with the human-calibrated
LPIPS metric (Zhang et al., 2018). While higher PSNR values indicate a better pixel-wise accuracy,
lower LPIPS values represent better perceptual quality and closer semantic similarity. Mean values
of the Vid4 scenes [Liu & Sun| (2011) are shown on the top of Table [Z_f} Trained with direct vector
norms losses, FRVSR and DUF achieve high PSNR scores. However, the undesirable smoothing in-
duced by these losses manifests themselves in larger LPIPS distances. ENet, on the other hand, with
no information from neighboring frames, yields the lowest PSNR and achieves an LPIPS score that
is only slightly better than DUF and FRVSR. TecoGAN model with adversarial training achieves
an excellent LPIPS score, with a PSNR decrease of less than 2dB over DUF, which is very reason-
able, since PSNR and perceptual quality were shown to be anti-correlated (Blau & Michaeli, [2018)),
especially in regions where PSNR is very high. Based on good perceptual quality and reasonable
pixel-wise accuracy, TecoGAN outperforms all other methods by more than 40% for LPIPS.

Temporal Metrics For both VSR and UVT, evaluating temporal coherence without ground-truth
motion is a very challenging problem. The metric 7-diff = ||g: — W (g:—1,v:)||, was used by Chen
et al.| (2017) as a rough assessment of temporal differences. As shown on bottom of Table ] T-diff,
due to its local nature, is easily deceived by blurry method such as the bi-cubic interrelation and
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Table 5: Metrics evaluated for the VSR of ToS.

PSNRT| BIC | ENet |[FRVSR | DUF |TecoGAN | tOF | x10| BIC | ENet |[FRVSR | DUF | TecoGAN
room|26.90(25.22| 29.80 [30.85| 29.31 room|1.735/1.625| 0.861 [0.901| 0.737
bridge|28.34|26.40| 32.56 |33.02| 30.81 bridge|5.485|4.037| 1.614 |1.348| 1.492
face|33.75(32.17| 39.94 [40.23| 38.60 face|4.302|2.255| 1.782 [1.577| 1.667
average|29.58|27.82| 34.04 (34.60| 32.75 average|4.110(2.845| 1.460 [1.296| 1.340

LPIPS | x10| BIC |ENet [FRVSR | DUF |TecoGAN | tLP | x100| BIC | ENet |[FRVSR| DUF | TecoGAN
room|5.167(2.427| 1.917 |1.987| 1.358 room|1.320(2.491| 0.366 [0.307| 0.590
bridge|4.897|2.807| 1.761 |1.684| 1.263 bridge|2.237|6.241| 0.821 |0.526| 0.912
face|2.241|1.784| 0.586 [0.517| 0.590 face|1.270(1.613| 0.290 |0.314| 0.379
average|4.169(2.395| 1.449 [1.414| 1.086 average|1.696(3.827| 0.537 [0.403| 0.664

can not correlate well with visual assessments of coherence. By measuring the pixel-wise motion
difference using tOF in together with the perceptual changes over time using tLP, we show the tem-
poral evaluations for the VSR task in the middle of Table ] Not surprisingly, the results of ENet
show larger errors for all metrics due to their strongly flickering content. Bi-cubic up-sampling,
DUF, and FRVSR achieve very low T-diff errors due to their smooth results, representing an easy,
but undesirable avenue for achieving coherency. However, the overly smooth changes of the for-
mer two are identified by the tLP scores.While our DsOnly model generates sharper results at the
expense of temporal coherence, it still outperforms ENet there. By adding temporal information to
discriminators, our DsDt, DsDt+PP, TecoGAN®and TecoGAN improve in terms of temporal met-
rics. Especially the full TecoGAN model stands out here. For the UVT tasks, temporal motions
are evaluated by comparing to the input sequence. With sharp spatial features and coherent motion,
TecoGAN outperforms previous work on the Obama& Trump dataset, as shown in Table 3]

Spatio-temporal Evaluations Since temporal
metrics can trivially be reduced for blurry im- 0.3
age content, we found it important to evaluate
results with a combination of spatial and tem- 0.25
poral metrics. Given that perceptual metrics are
already widely used for image evaluations, we 02
believe it is the right time to consider perceptual

tpiepy,  @®ENet @FRVSR O DUF @ TecoGAN

changes in temporal evaluations, as we did with %*°

our proposed temporal coherence metrics. Al- 01

though not perfect, they are not easily deceived.

Specifically, tOF is more robust than a direct . e

pixel-wise metric as it compares motions instead T'N % PieAPP (error)
of image content. In the supplemental material, <

we visualize the motion difference and it can 0.7 0.8 0.9 1 1.1

well reflect the visual inconsistencies. On the tPieP] [BIC |ENet|FRVSR|DUF [TecoGAN
other hand, we found that our calculation of tLP calendar|0.091[0.194[0.023 [0.028 [0.021

is a general concept that can work reliably with ~ [foliage |0.155]0.276]0.040 |0.037 ]0.036
different perceptual metric: When repeating the ~ [city  [0.136/0.286/0.025 ]0.0283)0.0276
tLP evaluation with the PieAPP metric (Prash-]  [Walk  [0.064]0.155]0.072 ]0.042 ]0.060
nani et al) 2018) instead of LP, i.e., tPieP = . . o

1/ (we_1,9e) — F(gi-1, )], » where f(-) indicates Figure 13: Tables and visualization of perceptual
the perceptual error function of PieAPP, we get metrics computed with PieAPP (Prashnani et al.

close to identical results, listed in Fig.[T3] The 2018) (instead of LPIPS used in Fig.[7|previously)
conclusions from tPieP also closely match the ©n ENet, FRVSR, DUF and TecoGAN for the

LPIPS-based evaluation: our network architec- VSR of Vid4. Bubble size indicates the tOF score.

ture can generate realistic and temporally coher-
ent detail, and the metrics we propose allow for a stable, automated evaluation of the temporal
perception of a generated video sequence.

Besides the previously evaluated the Vid4 dataset, with graphs shown in Fig. [T4] [T5] we also get
similar evaluation results on the Tears of Steel data-sets (room, bridge, and face, in the following
referred to as 70S scenes) and corresponding results are shown in Table[5|and Fig.[T6 In all tests, we
follow the procedures of previous work (Jo et al., [2018}|Sajjadi et al., 2018)) to make the outputs of
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Figure 14: Bar graphs of temporal metrics for Vid4.
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Figure 15: Spatial metrics for Vid4. Figure 16: Metrics for ToS.

all methods comparable, i.e., for all result images, we first exclude spatial borders with a distance of
8 pixels to the image sides, then further shrink borders such that the LR input image is divisible by
8 and for spatial metrics, we ignore the first two and the last two frames, while for temporal metrics,
we ignore first three and last two frames, as an additional previous frame is required for inference.
In the following, we conduct user studies for the Vid4 scenes. By comparing the user study results
and the metric breakdowns shown in Table 4} we found our metrics to reliably capture the human
temporal perception, as shown in Appendixé

C USER STUDIES

We conduct several user studies for the VSR task using five different methods, namely bi-cubic
interpolation, ENet, FRVSR, DUF and our TecoGAN. The established 2AFC design (Fechner &
[Wundt, 1889}, [Um et al.} 2017)) is applied, i.e., participants have a pair-wise choice, with the ground-
truth video shown as reference. One example can be seen in Fig.[T7] The videos are synchronized
and looped until user made the final decision. With no control to stop videos, users Participants
cannot stop or influence the playback, and hence can focus more on the whole video, instead of
specific spatial details. Videos positions (left/A or right/B) are randomized.

After collecting 1000 votes from 50 users for every scene, i.e. twice for all possible pairs (5 x 4/2 =
10 pairs), we follow common procedure and compute scores for all models with the Bradley-Terry
model (1952). The outcomes for the Vid4 scenes can be seen in Fig. [I8] (overall scores are listed in
Table 2] of the main document).

From the Bradley-Terry scores for the Vid4 scenes we can see that the TecoGAN model performs
very well, and achieves the first place in three cases, as well as a second place in the walk scene. The
latter is most likely caused by the overall slightly smoother images of the walk scene, in conjunction
with the presence of several human faces, where our model can lead to the generation of unexpected
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details. However, overall the user study shows that users preferred the TecoGAN output over the
other two deep-learning methods with a 63.5% probability.

This result also matches with our metric evaluations. In Table @ while TecoGAN achieves spatial
(LPIPS) improvements in all scenes, DUF and FRVSR are not far behind in the walk scene. In terms
of temporal metrics tOF and tLP, TecoGAN achieves similar or lower scores compared to FRVSR
and DUF for calendar, foliage and city scenes. The lower performance of our model for the walk
scene is likewise captured by higher tOF and tLP scores. Overall, the metrics confirm the perfor-
mance of our TecoGAN approach and match the results of the user studies, which indicate that our
proposed temporal metrics successfully capture important temporal aspects of human perception.

For UVT tasks which have no ground-truth data, we carried out two sets of user studies: One uses
an arbitrary sample from the target domain as the reference and the other uses the actual input
from the source domain as the reference. On the Obama&Trump data-sets, we evaluate results
from CycleGAN, RecycleGAN, and TecoGAN following the same modality, i.e. a 2AFC design
with 50 users for each run. E.g., on the left of Fig. [I9) users evaluate the generated Obama in
reference with the input Trump on the y-axis, while an arbitrary Obama video is shown as the
reference on the x-axis. Effectively, the y-axis is more important than the x-axis as it indicates
whether the translated result preserves the original expression. A consistent ranking of TecoGAN
> RecycleGAN > CycleGAN is shown on the y-axis with clear separations, i.e. standard errors
don’t overlap. The x-axis indicates whether the inferred result matches the general spatio-temporal
content of the target domain. Our TecoGAN model also receives the highest scores here, although
the responses are slightly more spread out. On the right of Fig.[T9] we summarize both studies in
a single graph highlighting that the TecoGAN model is consistently preferred by the participants of
our user studies.

D TECHNICAL DETAILS OF THE SPATIO-TEMPORAL DISCRIMINATOR

Motion Compensation Used in
Warped Triplet In the TecoGAN
architecture, Dy ; detects the temporal
relationships between /N, and TN/,
with the help of the flow estimation
network F. However, at the boundary
of images, the output of F is usually
less accurate due to the lack of reliable
neighborhood information. There is a
higher chance that objects move into
the field of view, or leave suddenly,
which significantly affects the images
warped with the inferred motion. An
example is shown in Fig. 20] This
increases the difficulty for D, 4, as it

Ca'nnot ful.ly rely on the images qug Figure 20: Near image boundaries, flow estimation is less accu-
ah.gned via warping.  To alleviate e and warping often fails to align well. First two columns show
this problem, we only use the center original and warped frames and the third one shows differences
region of I N, gvt and IN, g ; as the input after warping (ideally all black). The top row shows things move
of the discriminator, and we reset a into the view with problems near lower boundaries, while the sec-
boundary of 16 pixels. Thus, for an ond row has objects moving out of the view.

input resolution of N7, and N/, of

128 x 128 for the VSR task, the inner part in size of 96 x 96 is left untouched, while the border
regions are overwritten with zeros.

W (y:—1,vt)

[|W (yt—1,ve) — yell1

The flow estimation network F with the loss L r should only be trained to support G in reaching
the output quality as determined by D; ,, but not the other way around. The latter could lead to F
networks that confuse D ; with strong distortions of IV, g . and I N, Sy ¢ In order to avoid the this
undesirable case, we stop the gradient back propagation from I N Sg’ . and IN f . to F. In this way,
gradients from D, ; to F are only back propagated through the generated samples g;—1, g; and g;11
into the generator network. In this way D; ; can guide G to improve the image content, and F learns
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Figure 17: A sample setup of user study.
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Figure 18: Tables and bar graphs of Bradley-Terry
scores and standard errors for Vid4 VSR.

X-axis: Generated | Bradley-Terry | Std. X-axis: Generated | Bradley-Terry | Std. X-axis: Generated | Bradley-Terry | Std.
Obama vs. Obama scores Error ~ Obama vs. Obama scores Error  Obama vs. Obama scores Error
CycleGAN 0 0 CycleGAN 0.806 0.177  CycleGAN 0 0
RecycleGAN 1.322 0.197  RecycleGAN 0 0 RecycleGAN 0.202 0.118
TecoGAN 1.520 0.201  TecoGAN 1.727 0.208  TecoGAN 0.822 0.123
Y-axis: Generated | Bradley-Terry | Std. X-axis: Generated | Bradley-Terry | Std. X-axis: Generated | Bradley-Terry | Std.
Obama vs. Trump scores Error ~ Obama vs. Obama scores Error ~ Obama vs. Obama scores Error
CycleGAN 0 0 CycleGAN 0 0 CycleGAN 0 0
RecycleGAN 1.410 0.208  RecycleGAN 0.623 0.182  RecycleGAN 0.994 0.135
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Figure 19: Tables and graphs of Bradley-Terry scores and standard errors for Obama& Trump UVT.

to warp the previous frame in accordance with the detail that G can synthesize. However, F does
not adjust the motion estimation only to reduce the adversarial loss.

Curriculum Learning for UVT Discriminators As mentioned in the main part, we train the
UVT Dy, with 100% spatial triplets at the very beginning. During training, 25% of them gradually
transfer into warped triplets and another 25% transfer into original triplets. The transfer of the
warped triplets can be represented as: (1—a)I.y+al, g, with o growing form O to 1. For the original
triplets, we additionally fade the “warping” operation out by using (1 — &)y + o{W (g¢—1, v *
B), gt, W(gt+1,v; * 8)}, again with a growing form 0 to 1 and 3 decreasing from 1 to 0. We found
this smooth transition to be helpful for a stable training.

E DATA AUGMENTATION AND TEMPORAL CONSTRAINS IN THE PP LOSS

Since training with sequences of arbitrary length is not possible with current hardware, problems
such as the streaking artifacts discussed above generally arise for recurrent models. In the proposed
PP loss, both the Ping-Pang data augmentation and the temporal consistency constraint contribute to
solving these problems. In order to show their separated contributions, we trained another TecoGAN
variant that only employs the data augmentation without the constraint (i.e., A\, = 0 in Table E[)
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Denoted as PP-Augment, we show its results in comparison with the DsDt and TecoGAN®models
in Fig.[21] Video results are shown in the in the supplemental material.

During training, the generator of DsDt DsDt PP-Augment TecoGAN®
receives 10 frames, and generators of PSNR: 24.75, LPIPS: 1.77,|PSNR: 24.98, LPIPS: 1.81,[PSNR: 25.89, LPIPS: 1.74,
PP-Augment and TecoGAN®see 19 oLP:OSI4OF2198 | (LP:0.850.1OF 1903 18
frames. While DsDt shows strong =\@ ; HI 1) 2
recurrent accumulation artifacts early @
on, the PP-Augment version slightly [&
reduces the artifacts. In Fig. 21} it :
works good for frame 15, but shows &
artifacts from frame 32 on. Only our 2
regular model (TecoGAN®) success-
fully avoids temporal accumulation —
for all 40 frames. Hence, with the PP
constraint, the model avoids recurrent
accumulation of artifacts and works
well for sequences that are substan-
tially longer than the training length.
Among others, we have tested our model with ToS sequences of lengths 150, 166 and 233. For all
of these sequences, the TecoGAN model successfully avoids temporal accumulation or streaking
artifacts.

Figure 21: 1st & 2nd row: Frame 15 & 40 of the Folzage
scene. While DsDt leads to strong recurrent artifacts early on, PP-
Augment shows similar artifacts later in time (2nd row, middle).
TecoGAN®model successfully removes these artifacts.

F NETWORK ARCHITECTURE

In this section, we use the following notation to specify all network architectures used: conc() rep-
resents the concatenation of two tensors along the channel dimension; C/CT (input, kernel_size,
output_channel, stride_size) stands for the convolution and transposed convolution operation, re-
spectively; “+” denotes element-wise addition; BilinearUp2 up-samples input tensors by a factor of
2 using bi-linear interpolation; BicubicResize4(input) increases the resolution of the input tensor to
4 times higher via bi-cubic up-sampling; Dense(input, output_size) is a densely-connected layer,
which uses Xavier initialization for the kernel weights.

The architecture of our VSR generator G is:

conc(zy, W(ge—1,v¢)) = lin s C(lm,3 64,1), ReLU — lo;
Residual Block(l;) — l;41 withi =0, . -1,
CT (I, 3,64,2), ReLU — Lpo; CT(Lypo, 3,64, 2), ReLU - Lupt:
C(lupa,3,3,1),ReLU = ;55 B1cublcRes1ze4(ast) +lres = Gt -

In TecoGAN®, there are 10 sequential residual blocks in the generator ( I, = ljo ), while the
TecoGAN generator has 16 residual blocks ( I, = l16 ). Each ResidualBlock(l;) contains the
following operations: C(l;,3,64,1),ReLU — r;; C(r;,3,64,1) + 1; — liy1.

The VSR D, ;’s architecture is:

INY , or INY ; — Lin; C(lin, 3,64, 1), Leaky ReLU — lo;
C(lp,4,64,2),BatchNorm, Leaky ReLU — I1; C(l1,4, 64, 2), BatchNorm, Leaky ReLU — lo;
C(l2,4,128,2), BatchNorm, Leaky ReLU — I3; C (I3, 4, 256, 2), BatchNorm, Leaky ReLU — [4;
Dense(ly, 1), sigmoid — I,y -

VSR discriminators used in our variant models, DsDt, DsDtPP and DsOnly, have a similar architec-
ture as D ;. They only differ in terms of their inputs.

The flow estimation network F has the following architecture:

conc(zt, Tt—1) = lins C(lin, 3,32,1), Leaky ReLU — lo;
C(lp,3,32,1), Leaky ReLU, MaxPooling — l1; C(ly, 3,64, 1), Leaky ReLU — lo;
C(lg,3,64,1), Leaky ReLU, MaxPooling — l3; C(l3,3,128,1), Leaky ReLU — l4;
C(l4,3,128,1), Leaky ReLU, MaxPooling — I5; C(I5, 3, 256, 1), Leaky ReLU — [g;
C(lg, 3,256, 1), Leaky ReLU, BilinearUp2 — I7; C(l7, 3,128, 1), Leaky ReLU — lg;
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C(ls,3,128,1),Leaky ReLU, BilinearUp2 — lg; C'(ly, 3,64, 1), Leaky ReLU — 10;
C(l0,3,64,1), Leaky ReLU, BilinearUp2 — I11; C'(l11, 3,32, 1), Leaky ReLU — l12;
C(l12,3,2,1),tanh — lyy4; Loy * Max Vel — vy .

Here, Max Vel is a constant vector, which scales the network output to the normal velocity range.

While F is the same for UVT tasks, UVT generators have an encoder-decoder structure:

conc(x¢, W(gt—1,v¢)) = lin 3 C(lin, 7,32, 1), InstanceNorm, ReLU — lo;
C(lo, 3,64, 2), InstanceNorm, ReLU — [1; C(l1, 3,128, 2), InstanceNorm, ReLU — l3;
Residual Block(lz 4+ 1) — l34; withi =0,...,n — 1;
CT(lnt2,3,64,2), InstanceNorm, ReLU — l,,43; CT (1513, 3, 32, 2), InstanceNorm, ReLU — 1,4 4;
CT(ln+4a,7,3,1),tanh — lous

Residual Block(l2 + 1) contains the following operations: C(l2+i, 3,128, 1), InstanceNorm, ReLU —
toti ;C(ta+i, 3,128, 1), InstanceNorm — ro44; o4 + loyi — lsys. We use 10 residual blocks for all
UVT generators.

Since UVT generators are larger than the VSR generator, we also use a larger D, ; architecture:

INY , or INY ; — lin; C(lin, 4, 64, 24), ReLU — lo;
C(lo, 4,128, 2), InstanceNorm, Leaky ReLU — [1; C'(l1, 4, 256, 2), InstanceNorm, Leaky ReLU — [5;
C(l2,4,512,2), InstanceNorm, Leaky ReLU — I3; Dense(lz, 1) = lout -

Again, all ablation studies use the same architecture with different inputs.

G TRAINING DETAILS

‘We use the non-saturated GAN for VSR and LSGAN (Mao et al.,[2017) for UVT and both of them
can prevent the gradient vanishing problem of a vanilla GAN (Goodfellow et al.l 2014). While we
train stably with a dynamic discriminator updating strategy, i.e. discriminators are not updated when
there is already a large difference between D(I°) and D(I¢), the training process could potentially be
further improved with modern GAN algorithms, e.g. Wasserstein GAN (Gulrajani et al.,[2017).We
train G and F’ together for VSR , while we simply use the pre-trained F' for UVT.

For the VSR task, our training data-set consists of 250 short HR videos, each with 120 frames.
We use sequences with a length of 10 and a batch size of 4. A black image is used as the first
previous frame of each video sequence. l.e., one batch contains 40 frames and with the PP loss
formulation, the NN receives gradients from 76 frames in total for every training iteration. To
improve the stability of the adversarial training, we pre-train G and F with a simple L? loss of
> 1lge = belly + AwLowarp for 500k batches. We use 900k batches for the adversarial training stage.
The data-sets of the UVT tasks contain around 2400 to 3600 frames. We train the generators with a
sequence length of 6 and a batch size of 1. Since temporal triplets are gradually faded in, we do not
pre-train models for UVT tasks. With smaller datasets, we train UVT models with 100k batches.

In the pre-training stage of VSR, we train the F and a generator with 10 residual blocks. An ADAM
optimizer with 3 = 0.9 is used throughout. The learning rate starts from 10~* and decays by
50% every 50k batches until it reaches 2.5 * 107, This pre-trained model is then used for all
TecoGAN variants as initial state. In the adversarial training stage of VSR, all TecoGAN variants
are trained with a fixed learning rate of 5 * 10~°. The generators in DsOnly, DsDt, DsDtPP and
TecoGAN®have 10 residual blocks, whereas the TecoGAN model has 6 additional residual blocks in
its generator. Therefore, after loading 10 residual blocks from the pre-trained model, these additional
residual blocks are faded in smoothly with a factor of 2.5 * 10~°. We found this growing training
methodology, first introduced by Growing GAN (Karras et al.,|[2017), to be stable and efficient in
our tests. When training the VSR DsDt and DsDtPP, extra parameters are used to balance the two
cooperating discriminators properly. Through experiments, we found D; to be stronger. Therefore,
we reduce the learning rate of D; to 1.5 * 1075 in order to keep both discriminators balanced. At
the same time, a factor of 0.0003 is used on the temporal adversarial loss to the generator, while the
spatial adversarial loss has a factor of 0.001. During the VSR training, input LR video frames are
cropped to a size of 32 x 32. In all VSR models, the Leaky ReLU operation uses a tangent of 0.2
for the negative half space. Additional training parameters are listed in Table [6]
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Table 6: Training parameters

VSR ParamDsOnly DsDt‘ DsDtPP  [TecoGAN®[TecoGAN UVT Param DsOnly[Dst[DsDtPP TecoGAN
Ao le-3 |Ds: le-3, Dt: 3e-4] le-3 le-3 Ao 0.5 Ds: 03 0.5
Ap 0.0 [0.0] 0.5 Ap 0.0 ]0.0 100.0
g 0.02 for VGG and 1.0 for Discriminator Ao from 10° decays to 0.0
Aws Ae 1.0,1.0 Ao 0.0, a pre-trained F is used for UST tasks
et | Ses | e | Se5 | 5es Ac 100

For all UVT tasks, we use a learning rate of 10~* to train the first 90k batches and the last 10k
batches are trained with the learning rate decay from 10~* to 0. Images of the input domain are
cropped into a size of 256 x 256 when training, while the original size is 288 x 288. While the
Additional training parameters are also listed in Table @ For UVT, Lcontent and L are only used to
improve the convergence of the training process. We fade out the L¢onen; in the first 10k batches and
the L is used for the first 80k and faded out in last 20k.

H PERFORMANCE

TecoGAN is implemented in TensorFlow. While generator and discriminator are trained together,
we only need the trained generator network for the inference of new outputs after training, i.e., the
whole discriminator network can be discarded. We evaluate the models on a Nvidia GeForce GTX
1080Ti GPU with 11G memory, the resulting VSR performance for which is given in Table[2]

The VSR TecoGAN®model and FRVSR have the same number of weights (843587 in the SRNet,
i.e. generator network, and 1.7M in F), and thus show very similar performance characteristics with
around 37 ms spent for one frame. The larger VSR TecoGAN model with 1286723 weights in the
generator is slightly slower than TecoGAN®, spending 42 ms per frame. In the UVT task, generators
spend around 60 ms per frame with a size of 512 x 512. However, compared with the DUF model,
with has more than 6 million weights in total, the TecoGAN performance significantly better thanks
to its reduced size.
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