
Under review as a conference paper at ICLR 2019

LEARN FROM NEIGHBOUR: A CURRICULUM THAT
TRAIN LOW WEIGHTED SAMPLES BY IMITATING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks, which gain great success in a wide spectrum of applica-
tions, are often time, compute and storage hungry. Curriculum learning proposed
to boost training of network by a syllabus from easy to hard. However, the rela-
tionship between data complexity and network training is unclear: why hard ex-
ample harm the performance at beginning but helps at end. In this paper, we aim
to investigate on this problem. Similar to internal covariate shift in network for-
ward pass, the distribution changes in weight of top layers also affects training of
preceding layers during the backward pass. We call this phenomenon inverse ”in-
ternal covariate shift”. Training hard examples aggravates the distribution shifting
and damages the training. To address this problem, we introduce a curriculum loss
that consists of two parts: a) an adaptive weight that mitigates large early punish-
ment; b) an additional representation loss for low weighted samples. The intuition
of the loss is very simple. We train top layers on ”good” samples to reduce large
shifting, and encourage ”bad” samples to learn from ”good” sample. In detail, the
adaptive weight assigns small values to hard examples, reducing the influence of
noisy gradients. On the other hand, the less-weighted hard sample receives the
proposed representation loss. Low-weighted data gets nearly no training signal
and can stuck in embedding space for a long time. The proposed representation
loss aims to encourage their training. This is done by letting them learn a bet-
ter representation from its superior neighbours but not participate in learning of
top layers. In this way, the fluctuation of top layers is reduced and hard samples
also received signals for training. We found in this paper that curriculum learning
needs random sampling between tasks for better training. Our curriculum loss is
easy to combine with existing stochastic algorithms like SGD. Experimental result
shows an consistent improvement over several benchmark datasets.

1 INTRODUCTION

Deep neural networks (DNNs) continue to make significant improvement, solving tasks from image
classification to translation or reinforcement learning. State-of-art network often has hundreds of
layers. The training of these networks can be both GPU and time consuming. Curriculum learning
aims to boost network training with a chosen curriculum or syllabus (Bengio et al., 2009). The basic
idea of learning from progressively harder tasks has found increasingly wide utilization in many
complex situations (Zaremba & Sutskever, 2015; Reed & De Freitas, 2016; Graves et al., 2016). Re-
searchers found hand-chosen syllabus ordered by difficulty can either accelerate or enhance network
training (Zaremba & Sutskever, 2015; Bengio et al., 2009). Except from human priored curricu-
lum, researchers have also gained large progress in automatic curriculum (Graves et al., 2017; Jiang
et al., 2017; Fan et al., 2018). Much of the community’s focus is on learning a weight for sampling or
weighting samples respect to the original task. Even the progress, curriculum learning still remains
to be one of the main challenge for machine learning (Mitchell, 1980; Wang & Cottrell, 2015).

One question unclear is how data complexity is related to training progress. Intuitively, mining
hard samples (Forsyth, 2014) only helps later training and is harmful when model is in early stage.
(Weinshall & Cohen, 2018) explained by proving the convergence rate increases with samples’
current loss. However, experimental results showed that hard samples is not only slow to converge,
but also harms the training of other samples. Noting that the forward and backward pass of neural
network are both successive Markov chain (Tishby & Zaslavsky, 2015), we argue this instability

1

Under review as a conference paper at ICLR 2019

is partly caused by a reversed ”internal covariate shift” (Ioffe & Szegedy, 2015) on the backward
pass. Consider a typical network computing output = F2(F1(u,Θ1),Θ2), the update Θ1 =

Θ1−alpha∗ ∂output
∂F1(u,Θ1)

∂F1(u,Θ1)
∂u assumes the top layer F2(y,Θ2) to be the right ”classifier”. Large

changes in Θ2 will lead to a total retraining of ”feature extractor” F1. Hard samples, with incorrect
feature, has large gradient on Θ2 and can change it greatly. The network then has to disastrously
relearn a totally new feature extractor Θ1 for the new classifier Θ2. The fluctuation slows down
training greatly.

In this paper, we aim to address this issue by introducing a curriculum loss that consists of two parts:
1) an adaptive weight that mitigates large loss in the early stage. 2) an additional representation loss
that encourages training of low weighted data. We begins with the first part: Most hard examples
have inseparable feature in the early stage, and training top layers on these samples can be useless.
Moreover, lying in a chaotic embedding space, gradients of these samples can be uncontrollable.
To reduce the fluctuation caused by these samples, we mitigate the punishment of hard samples by
weighting them. This is similar to (Jiang et al., 2017) where the MentorNet assigns low weights
to hard samples. In this way, we increase the attention on easier samples. The inverse internal
covariate shift is reduced due to small gradients on parameters. Then we comes to the second part:
small weight can also slow the training of hard samples. Without enough signal, the performance of
these samples are not guaranteed and leads to long training time in hard negative mining stage. To
accelerate training, we need to be fair to these hard samples. Remembering hard samples increase
inverse internal covariate shift. So we only train the feature extractor layers by a representation loss.
The representation loss updates hard examples’ feature respect to current classifier. This is done
by first finding the superior neighbours of sample, and then letting samples to imitate their feature.
More specifically, a hard sample i with low weight receives another L2 loss ||fi − 1

n

∑
j∈N fj ||22

for feature training. N is the subset that is similar to data i but performs better with margin. The
neighbouring update strategy encourages feature of same class to stay in cluster. Once the cluster is
formed, learning a classifier can be very easy.

For each sample, our curriculum loss forms a specific curriculum from learning neighbours to learn-
ing classification. Thus we call our curriculum to be data-specific – every data has it own curricu-
lum and is independent with each other. We emphasize data-specific because we show that a ran-
dom sampling is needed between each independent subtasks to acquire an unbiased estimate. With
data-specific, each data is a subtask and sampling tasks becomes equal to sampling data. Simply
train our network with SGD satisfies the requirements. What’s more, our data-specific curriculum
scheme avoids the complex designing of data ordering. Our work can easily generalize to focal loss
(Lin et al., 2017), multi-armed bandit (Graves et al., 2017) and self-paced learning (Kumar et al.,
2010). We verify our loss on three benchmarks: MNIST, Cifar10 and Cifar100. Experimental results
showed our proposed algorithm brings consistent improvement and can accelerate convergence.

2 RELATED WORK

Our research mainly involves curriculum learning. The central idea of curriculum learning can
be dated back to (Elman, 1993). (Hinton, 2007) proposed an error based sampling method and
accelerated training speed significantly on MNIST. The pioneering work of curriculum learning
(Bengio et al., 2009) then gained great attention in the field of machine learning. Many hand-crafted
curriculum (Lee & Grauman, 2011; Zaremba & Sutskever, 2015) is proposed recently. Most of
the work requires either a pre-defined rule or priored threshold. Recently, (Zhou & Bilmes, 2018)
proposes minmax curriculum learning that adaptively selects a sequence of training subsets for a
succession of stages in machine learning.

To avoid pre-defined curriculum, researchers tried to automatically synthesize the track for training.
(Graves et al., 2017) proposed an automatic curriculum learning method in the context of NLP
applications. The selection of data is modeled by multi-armed bandit (MAB) and different gains are
examined carefully as reward signal in Exp3 algorithm. (Jiang et al., 2017) proposed ”MentorNet”
and used it to regularize noisy labeled data during training. MentorNet prevent overfitting on the
corrupted data by dynamically predict a weight for each sample. It can be easily attached to Self-
Paced Learning (Kumar et al., 2010), which finds easy samples and learn a new vector at every
iteration. Fan et al. (2018) trains a teacher to teach student network. The teacher is trained by doing
policy gradient with respect to the expected reward. (Kendall & Gal, 2017) learns a weight for each

2

Under review as a conference paper at ICLR 2019

data by uncertainty Bayesian learning. The loss is presumed Gaussian and uncertainty equals to
the variance. In their later work (Kendall et al., 2017), the weight of uncertainty is used to balance
gradient between multi-task training.

(Weinshall & Cohen, 2018) provided an theoretical analysis about curriculum learning in the context
of linear model. Theoretical results is empirically used in transfer learning. It is proved in the paper
that convergence rate increases with the current loss. Our work is also related to batch normalization
(BN) (Ioffe & Szegedy, 2015). The author states the internal covariate shift introduce large fluctu-
ation, and address the problem by a layer-wise normalization. We’re also interested in the internal
covariate shift, but in the backward pass.

3 MOTIVATION OF OUR WORK

This section aims to give an analysis of curriculum learning and explain our motivation of proposing
the algorithm. In Section 3.1, we explain why randomness is important to curriculum learning and
how viewing each data to be a subtask benefits us. In Section 3.2, we explain how do curriculum
might helps training of deep networks.

3.1 RANDOM SYLLABUS

The goal of curriculum learning is to find a good syllabus for better training (Bengio et al., 2009).
Thus randomness seems to violate the the basic idea of curriculum learning. However, consider a
student who aims to learn many different courses – math, computer, music, basketball and art. To
avoid forgetting (Kirkpatrick et al., 2016), an ideal curriculum for him should sample uniformly
from these courses. The order of easy to hard should only take effects in one subtask like music. We
show network training benefits more from randomness. We suppose the original task can be split
into n independent subtasks T1, T2, ..., Tn. Our target goal is their union Ttarget =

⋃n
k=1 Tk and

the prior on each task is denoted as P (Tk). We show the following reasons for requiring random
sampling on Tk:

1. Batch Normalization. Batch Normalization computes the running mean of each mini-
batch for reducing internal covariate shift. The ground truth of mean here is m =
ET∼P (T)[EX∼T (X)]. However, if we focus the training of some specific task Ti, then
the running mean computed by EX∼Ti

(X) can be a totally biased estimate to m. (See
Fig.1) A biased mean itself contains too much information about specific group. Subtract-
ing it can leads to totally wrong solution. The extremely example is training positive and
negative samples respectively. The results can be disastrous.

2. Network also faces the problem of forgetting (Kirkpatrick et al., 2016). Even if the dataset
can be ordered from easy to hard, training on totally different samples makes network for-
get. So it is needed to randomly revisit the examples trained before. (Zaremba & Sutskever,
2015)

Therefore, a reasonable curriculum should random sampling among independent subtasks
T1, T2, ..., Tn. It is only needed to order data in specific subtask. However, the correlation be-
tween data can be extremely complex, and the splitting can be non-computable. Thus in this paper,
we consider each sample to be an independent subtask and assign a easy-to-hard course to each
data. In this way, simply combining SGD with our curriculum loss gives an unbiased estimate to the
dataset.

3.2 INVERSE ”INTERNAL COVARIATE SHIFT”

The term ”internal covariate shift” was first proposed to depict the change in the input distribution
of each layer during training (Ioffe & Szegedy, 2015). This is caused by the Markov chain structure
of deep networks: given the output of preceding layers, the update of later layers is fixed and does
not rely on the update of layers ahead. Batch normalization (Ioffe & Szegedy, 2015) and residual
connection (He et al., 2015) can relieve this problem.

However, deep networks not only have a Markov chain in forward pass, but also have another
Markov chain with inverse direction in backward pass. This leads to similar situation. We use

3

Under review as a conference paper at ICLR 2019

Task 1

Task 2

Training
Distribution

Batch
Normalization Task 1

Task 2

Test
Distribution

Batch
Normalization

(a) Training
(b) Testing

Figure 1: Error caused by biased sampling with batch normalization: Consider a network is trained
on Task 1 and Task 2 separately. (a) During training, batch normalization only estimate the running
mean of each task (b) batch normalization use learned mean for prediction. The classifier fails to
predict the right answer in this case.

output = F2(F1(u,Θ1),Θ2) to delegate the network, where F1 and F2 are all couple of layers.
We call F1 the feature extractor and F2 the classifier. The gradient g(Θ1) of feature extractor is
computed by ∂F2(F1(u,Θ1),Θ2)

∂F1(u,Θ1)
∂F1(u,Θ1)

∂Θ1
. When input u is fixed, g(Θ1) can be viewed as a network

with input Θ2. Note that the change of ∂F2(F1(u,Θ1),Θ2)
∂F1(u,Θ1) caused by change in Θ2 can exploded with

number of layers. A frequently changed Θ2 leads to very unstable g(Θ1). Therefore, even when an
ideal feature extractor is obtained, a under-fitted classifier can totally destroy it. This is also related
to transfer learning, where researchers fix the front layers and fine-tune only the ”classifier” layers.

Figure 2: CIFAR-100. We run a K-means with K equals to 500 after every epoch, then we examine
the components of each cluster. At start of training, features are almost randomly distributed and
each cluster consists an average of over 30 classes. The entropy of each cluster decreases with
training time. In experiments, we found that the cross entropy loss of many samples are very close to
the cross entropy in its cluster. To some extent, this means they cannot separate from its neighbours
under current learning rate.

We then investigate how data complexity might relate to training procedure. In the early stage, most
hard examples are almost inseparable – their features F1(u,Θ1) are surrounded by features from
different classes (See Fig.2). Training on these samples can hardly improve the ”classifier” layer
F2(y,Θ2). Instead, undesired gradient on θ2 is computed and bring large inverse internal covariate
shift. Now consider simpler samples. Simple samples, with separable features at very beginning,

4

Under review as a conference paper at ICLR 2019

can help ”classifier” converge quickly. A well-defined classifier further promotes representation
learning, and enables training on harder task. By intuitively viewing the training of network to be
an iterative training of classifier and feature extractor, the benefit of curriculum is straightforward.
We argue that a well-designed curriculum in fact reduce the inverse internal covariate shift. Thus
the training can be accelerated.

We empirically analyze the instability of training hard samples with experiments – We dynamically
classified the training samples to 10 hardness degree according to their loss and show how samples
of each degree affects training through time. To alleviate biased sampling, we clustered images
using their feature in Cifar-100 into C groups at the every end of epoch. The data is then ordered
by loss and assigned a hardness degree in its own group. The task of specific degree is obtained by
collecting samples with the same hardness degree from all C groups. In every epoch, we simply
train network on an easy to hard manner. Experiments show tasks with high hard scores often harms
the training at the beginning, and even harm the training of following simple tasks.

(a) Fluctuation of accuracy (b) Benefit of different task

Figure 3: Left: training data ordered from easy to hard every epoch. The network fluctuate greatly.
Right: accuracy gain obtained by training specific task, the task becomes harder when the line is
closer to red.

We tested the network on testing set after every task. In this way, we can have a detailed analyze
on how hard samples harms the performance of network. From Fig.3 left, we can find a large
fluctuation of testing accuracy. Accuracy drops after training on the hard task in most cases and then
rises again after training on simpler tasks. In Fig.3 right, we showed the accuracy gain of different
task. The accuracy gain is computed by testing accuracy after training task t minus testing accuracy
before training t. In the figure, the simplest task corresponds to the brightest green curve. The
color gradually shifts to red with increasing difficulty. We can clearly observe from the plot that
purely training hard samples can be extremely harmful as their gain are always below zero. One
thing needed to note is that: tough the large fluctuation, the performance of this schedule slightly
surpasses performance of random sampling.

4 PROPOSED CURRICULUM LOSS

In this section, we introduce our proposed curriculum loss. It is formed by two parts: 1. a weighted
cross-entropy loss; 2. a feature learning loss. The first part is designed to reduce large variation of
network. The second part aims to accelerate training of samples low-weighted by the first part. We
first discuss our design of feature learning loss, then we discuss the curriculum loss as a whole.

4.1 FEATURE LEARNING FROM NEIGHBOURHOOD

We have already found out that training on hard samples can harm training of network. Yet, we
do not want it to receive no training signal at all. As training on hard samples mainly harms top
layers, we avoid the updating on these layers. Instead, we directly update feature extractor layer by

5

Under review as a conference paper at ICLR 2019

finding some ”better” feature for each example. The idea behind the algorithm is simple: in order
to make training schedule more stable, we try to reduce fluctuation of classifier by training it only
on ”good” examples, the ”bad” examples should only learn from the ”good” ones but not participate
in the training. Thus our goal is to find some ”good” neighbours to learn from. We choose the
neighbours with superior performance to be the current target. More specifically, at timestep t,
St(x) denoted the set of data that surpass x with a margin Mt. We then compute the k-nearest
sample Nt(x) = {y ∈ Mt|||F1(x) − F1(y)||22 ∈ topk} in Mt. Nt(x) is then used as the target
feature space. The loss for x to improve is the L2 distance between feature of x and feature of target:

Lfeature(x) = ||F1(x)− 1

k

∑
y∈Nt(x)

F1(y)||22 (1)

The feature loss tells hard examples to stay close to samples with better performance. In embedding
space, it encourages clustering of feature belonged to same class. For classifier, the clustered input
is more stable and decreases fluctuation of weights during training. In implementation, the feature
F1(x) of samples are stored in a cache. The nearest neighbour and feature loss is computed by
retrieving history features from the cache. This is extremely computation efficient and costs almost
no extra time.

4.2 DATA-SPECIFIC CURRICULUM LOSS

Now we introduce our curriculum loss. As mentioned earlier in this paper, we view each data to
be an independent subtask. Each of them possess its own curriculum. The content of curriculum is
set according to the current performance Lt(x) of sample x. Same as the idea discussed above, we
relieve punishment caused by hard samples and instead assigns it another loss. In order to do this,
we defined weight of original task to be αt(x) and is computed as in Eqn.2. αt(x) decrease with
loss, but promise a convergence to 1 with growing of time.

αt(x) = eLt(x)/(1+γ∗epoch) (2)

Ct = αt ∗ Lt + (1− αt) ∗ Lfeature (3)

As the feature learning loss is used to solve under-training of samples with small αt, we likely weight
the the feature loss with 1 − αt. This ensures a sufficient loss to update features when αt is small.
Noted that αt finally converges to 1. This means our curriculum loss Ct converges to classification
loss Lt finally. The whole algorithm can be viewed at Algorithm.1. Our algorithm acts like a fishing
net where each sample correspond to one cross. In order to learn a good representation space, we
only push the top of fishing net (good examples) and let higher (superior) data to pull its lower (hard)
neighbours.

Algorithm 1 Framework of curriculum learning for our system.
Input: Input dataset D
Output: Model parameters w of learned network

0: Random initialize model parameter w
1: while Not converged do
1: Sample a mini-batch Bt uniformly from training set
1: Compute loss LT of Bt and each data feature FT
1: Update cache with Ft and find k nearest superior neighbour Nt,k for each sample
1: Compute curriculum coefficient α = eLT /(1+γ∗epoch)

1: Compute curriculum loss Ct = α ∗ Lt + (1− α) ∗ ||FT − 1
k

∑k
j=1Nt,k||22

1: w = w − lr ∗ ∇wCt
2: end while

return parameters w =0

6

Under review as a conference paper at ICLR 2019

Table 1: Experiment results on MNIST, CIFAR-10 and CIFAR-100
Methods Accuracy

MNIST CIFAR-10 CIFAR-100
Stochastic Sampling 99.24% 93.19% 73.43%
Our Proposed Method 99.45% 93.92% 75.35%

5 EXPERIMENTS

5.1 DATASETS AND SETTINGS

For evaluation, we used three datasets: MNIST (Lecun et al., 1998), CIFAR-10 and CIFAR-100
(Alex & Hinton, 2009). MNIST consists 70,000 training images of hand-written images or size 28
* 28. 10,000 among them is served as testing set. For MNIST dataset, we pre-process the images
with global normalization. CIFAR-10 and CIFAR-100 are datasets with 32 * 32 images, with 10 and
100 classes respectively. Both datasets consist of 50,000 training images and 10,000 testing images.
For CIFAR-10 and CIFAR-100, we further do data augmentation by random clipping and random
flipping except from basic normalization.

For MNIST, we use a network with 3 convolution layer with batch normalization and 1 fully con-
nected layer. Each convolution layer use kernel size 5 * 5 and 32 channels. For CIFAR-10 and
CIFAR-100, we train ResNet18 (He et al., 2015). All the network is trained by SGD with initial
learning rate 0.01. Refer to settings in (Zagoruyko & Komodakis, 2016), we decay the learning rate
for CIFAR-10 and CIFAR-100 every 50 and 60 epoch respectively.

For hyper parameters in our curriculum algorithm, γ is set as 0.2 in experiments with MNIST and
CIFAR-10, and 0.1 in experiments with CIFAR-100 for a slower convergence rate. We also clip
the gradient if feature loss Lfeature is less than 1. The margin Mt for superior neighbourhood
searching decreases linearly from 0.2 to zero with learning epoch. And we use feature output by
the last group of convolution to calculate feature loss. For baseline, we train the chosen network on
MNIST, CIFAR-10 and CIFAR-100 only with cross entropy loss.

5.2 EXPERIMENT RESULTS

The performance of our proposed method is shown in Table.1. Results showed our method got
an universal improvement on all three datasets. For the hardest CIFAR-100, we got the largest
improvement 1.92%. In our experiment, change ResNet from 18 layers to 50 layers only brings
about 1% improvement. We argue this large improvement is gained by forcing hard examples to
keep similar with its neighbour. This decrease the possibility of using irrelevant information like
background to learn classification.

We further analyze how testing accuracy changes with training epoch. Fig.4 showed the the accu-
racy/epoch curve. We can notice that our curriculum loss shows no advantage and even slower over
random sampling at the beginning. However, when the learning rate decays, our learning algorithm
outstrip baseline in one epoch. This phenomenon is highly explainable. While we add an additional
task for network to train on, the network will be slightly affected by it at the beginning. However,
the curriculum loss always encourages the training of hard examples and make it stay near the good
features. Thus when the learning rate decays, they converges immediately. The baseline need about
additional 30 epoch to reach best performance 73.43%, and our proposed curriculum on need about
an additional 4 epoch to reach 75.35%. This is a great boost in speed.

5.3 DISCUSSION

In this paper, we analyze the inverse internal covariate shift in one layer. The analysis can be easily
extended to multi-layer. However, extending the curriculum loss to every layer is impracticable. The
solution to multi-layered inverse covariate shift remains open. One possible solution is a ”batch nor-
malization” in the gradient space. But this can be counter-intuitive since normalization of gradients
by running mean is hard to understand. As far as we can see, curriculum learning is one of the most

7

Under review as a conference paper at ICLR 2019

(a) MNIST (b) CIFAR-10 (b) CIFAR-100

Figure 4: The curve of accuracy

favorable solutions. And we believe a good solution to this problem can bring at least same gain as
batch normalization.

6 CONCLUSION

In this paper, we aims to better understanding the mechanism and designing of curriculum learning.
We propose the inverse ”internal covariate shift” is part of the reason for curriculum learning to
success. We also analyze how randomness helps curriculum training. Based on the analysis, we
presented a novel data-specific curriculum loss which assigns each data a curriculum. Our curricu-
lum loss migates large early loss to avoid fluctuation and introduce another representation loss to
enhance training of low weighted examples. Experimental results showed our proposed algorithm
have an consistent performance improvement on all datasets and accelerate training.

REFERENCES

Krizhevsky Alex and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. 2009.

Jeffrey L Elman. Learning and development in neural networks: the importance of starting small.
Cognition, 48(1):71–99, 1993.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. CoRR,
abs/1805.03643, 2018. URL http://arxiv.org/abs/1805.03643.

David A Forsyth. Object detection with discriminatively trained part-based models. IEEE Computer,
47(2):6–7, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabskabar-
winska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. international conference on machine learning, pp. 1311–
1320, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Geoffrey E Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research,
165:535–547, 2007.

8

http://arxiv.org/abs/1805.03643
http://arxiv.org/abs/1512.03385

Under review as a conference paper at ICLR 2019

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Regularizing
very deep neural networks on corrupted labels. CoRR, abs/1712.05055, 2017. URL http:
//arxiv.org/abs/1712.05055.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? CoRR, abs/1703.04977, 2017. URL http://arxiv.org/abs/1703.04977.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. CoRR, abs/1705.07115, 2017. URL http://arxiv.org/
abs/1705.07115.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. CoRR, abs/1612.00796, 2016. URL http://arxiv.org/abs/
1612.00796.

M. P. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent vari-
able models. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta (eds.), Advances in Neural Information Processing Systems 23, pp.
1189–1197. Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/
3923-self-paced-learning-for-latent-variable-models.pdf.

Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yong Jae Lee and Kristen Grauman. Learning the easy things first: Self-paced visual category
discovery. pp. 1721–1728, 2011.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. CoRR, abs/1708.02002, 2017. URL http://arxiv.org/abs/1708.
02002.

Tom M. Mitchell. The need for biases in learning generalizations. 1980.

Scott E Reed and Nando De Freitas. Neural programmer-interpreters. international conference on
learning representations, 2016.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. CoRR,
abs/1503.02406, 2015. URL http://arxiv.org/abs/1503.02406.

Panqu Wang and Garrison W. Cottrell. Basic level categorization facilitates visual object recogni-
tion. CoRR, abs/1511.04103, 2015. URL http://arxiv.org/abs/1511.04103.

Daphna Weinshall and Gad Cohen. Curriculum learning by transfer learning: Theory and experi-
ments with deep networks. CoRR, abs/1802.03796, 2018. URL http://arxiv.org/abs/
1802.03796.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv: Neural and Evolutionary Com-
puting, 2015.

Tianyi Zhou and Jeff Bilmes. Minimax curriculum learning: Machine teaching with desirable diffi-
culties and scheduled diversity. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=BywyFQlAW.

9

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1712.05055
http://arxiv.org/abs/1712.05055
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://papers.nips.cc/paper/3923-self-paced-learning-for-latent-variable-models.pdf
http://papers.nips.cc/paper/3923-self-paced-learning-for-latent-variable-models.pdf
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1503.02406
http://arxiv.org/abs/1511.04103
http://arxiv.org/abs/1802.03796
http://arxiv.org/abs/1802.03796
http://arxiv.org/abs/1605.07146
https://openreview.net/forum?id=BywyFQlAW

	Introduction
	Related Work
	Motivation of our work
	random syllabus
	inverse "internal covariate shift"

	Proposed Curriculum Loss
	Feature learning from neighbourhood
	Data-specific curriculum loss

	Experiments
	Datasets and Settings
	Experiment Results
	Discussion

	Conclusion

