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Abstract

A central goal in the study of the primate visual cortex and hierarchical models for object recognition is
understanding how and why single units trade off invariance versus sensitivity to image transformations. For
example, in both deep networks and visual cortex there is substantial variation from layer-to-layer and unit-
to-unit in the degree of translation invariance. Here, we provide theoretical insight into this variation and
its consequences for encoding in a deep network. Our critical insight comes from the fact that rectification
simultaneously decreases response variance and correlation across responses to transformed stimuli, naturally
inducing a positive relationship between invariance and dynamic range. Invariant input units then tend to
drive the network more than those sensitive to small image transformations. We discuss consequences of this
relationship for Al: deep nets naturally weight invariant units over sensitive units, and this can be strengthened
with training, perhaps contributing to generalization performance. Our results predict a signature relationship
between invariance and dynamic range that can now be tested in future neurophysiological studies.

1 Introduction

Invariances to image transformations, such as translation and scaling, have been reported in single units in visual cortex, but just
as often sensitivity to these transformations has been found (El-Shamayleh and Pasupathy, 2016, Sharpee et al. 2013, Rust and
DiCarlo, 2012). Similarly, in deep networks there is variation in translation invariance both within and across layers (Pospisil et al.,
2018, Shen et al., 2016, Shang et al., 2016, Goodfellow et al., 2009). Notionally, information about the position of the features
composing objects may be important to category selectivity. For example, the detection of eyes, nose, and lips are not sufficient for
face recognition, the relative positions of these parts must also be encoded. Thus it is reasonable to expect some balance between
invariance and sensitivity to position. We empirically observe that in a popular deep network, in both its trained and untrained
state, invariant units tend to have higher dynamic range than sensitive units (Figure 1B and C). This raises the possibility that
the effective gain on invariant units into the subsequent layer is stronger than that of sensitive units. Here we provide theoretical
insight into how rectification in a deep network could naturally biase networks to this difference between invariant and sensitive
units. We do this by examining how co-variance of a multivariate normal distribution is influenced by rectification, and we then
test these insights in a deep neural network.

2 Statistical model

The response of a unit in a feed forward neural network is: r = @ - g(S) where S is the response of all n input units in the
previous layer, g the non-linearity of rectification g(z) = maxz(0, z), & is the n x 1 vector of weights, and r is the response of
the unit. Randomly sampling from a distribution of input images, the response S takes on a distribution with some expectation
and covariance across these images: F[S] = u (an n x 1 vector), and Cov[S] = ¥ (an n x n matrix). The application of the

non-linearity transforms these moments: E[g(S)] = ji, Cov[g(S)] = %. Let S; be the responses to randomly sampled input
images and S, the responses to a transformation of those same images. So the moments of the full distribution are:

Sil [ Sil [Zia 2o
g {52] B Lb]’ Cov [SJ B [2271 2272}

where 2171 is the covariance of rectified input units responding to the original images, 2272 is the covariance of rectified input units
to the transformed images and X1 » is the covariance between rectified input units responding to the reference and transformed

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



images. We note we only define the 1st two moments above and no assumption about the distribution of the rectified responses is
made. The covariance of an output unit with weights « on the n rectified input units is:
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so the correlation between the response of the output unit to the reference and transformed images is:
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Below we investigate how the f]i, ; depend on X; ; and 1, which provides insight into a relationship between j’ and 52 . We begin
by examining a model of a single rectified input unit responding to the reference and transformed images.

2.1 Single rectified input

We model the responses, S1 and So, of a single input unit to the reference and transformed inputs, respectively, as a bivariate

normal distribution:
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When these responses are acted on by rectification, both the variances of the responses and the correlation between the sets of
responses is decreased. This observation is analogous to that of de la Rocha et al. (2007) where they investigated the influence of
neuronal firing threshold rectification on the pairwise correlations between neurons as a function of firing rate. We extend this
observation in the next section to consider how this effect influences invariance in downstream units.

It is instructive to consider a schematic (Figure 2A) of the distribution of responses. The fall in correlation occurs because the
variance from the linear relationship Var(E[S2|S1]) decreases as a result of truncation, whereas the residual E[Var(S1]51)] is
not reduced as much. (see Intuition behind variance correlation relation). For further demonstration, see de la Rocha et al. (2007).

In the following section, we will write the correlation and variance after rectification explicitly as a function of the relevant
parameters: 7 (u/0)? and p(u/o, p).

2.2 Unit integrating across multiple rectified input units

Here we extend from the single input unit case to the multi-input unit case by examining the invariance p’ resulting from taking
weighted combinations of rectified input units. Our key insight is that invariance increases to the degree that directions of maximal
variance in the response distribution of rectified input units are integrated. For a first order approximation of this relationship we
approximate input covariance before rectification as an identity matrix scaled by the average variance:
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This approximation improves as off diagonal covariance shrinks and #(Uz)mcreases. Thus our approximate model is: Cov[S;] =

Cov[Sa] = %11 = 332 = 021 where o2 is averaged across the diagonals of the original S; and S, E[S] = E[@g] =p=
[41...4tn]T where means are approximated by averaging across the original S; and Sy. Cov[S1, S2] = 12 = po2l where
po? > 0 justified by the assumption of a small transformation thus correlation is positive.

For convenience sort the p; in from high to low, then it naturally follows that the eigenvectors of 21,2 and 2171 are the same: I the
identity (since the covariance matrices are diagonal) and the eigenvalues are simply the entries of the diagonal (in order from high

to low since p, and o2 are decreasing in y; see Figure 2B) so we have:
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thus we have the geometric picture described in Figure 3A exactly. The denominator as a function of the direction of a unit
length 1 (length of @ does not change p’ ) is an axis aligned ellipsoid with length along the ith axis of 52(u; /o). Notice that the
numerator is the variation of the output unit thus more invariant units contribute more variance than less invariant units assuming
there is not a negative correlation between w? and 52 p;. The numerator is another axis aligned ellipsoid (blue) with length along
the ith axis of 2(u;/0)p(pi/o, p) this numerator ellipsoid is contained within the denominator since p’ < 1. Recognizing /'
wi 5 (pi/o)
i 7“1'25'2(#1/‘7)
correlation of w;? with G7 than output units will tend to have a higher invariance then the average of input units thus pushing
output units invariance upwards.

as a weighted arithmetic mean with with weights ¢; = (note Y ¢; = 1) we see that if there is not a negative
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Performing simulations of a few simple input unit covariance structures shows that the p’ to 52 / relationship is maintained, though
its form changes (Figure 3B). Integrating over a population of input units the form of the relationship changes from the single input
unit case (Figure 3B black dashed and dotted line). Averaging over input units with different 1; /o shifts the relationship because
of the curvature of the non-linear transform of the ratio p(x/o, p). Finally, in the case where input units have non-zero correlation
(i.e. shared tuning, off-diagonals of ¥; ; non-zero; Figure 3B red and cyan) overall variance increases because correlated input
units are being added.

3 Experimental results

Here we analyze the covariance structure of the inputs of a popular deep neural
network (AlexNet) for translations of input images. We first tested the network
in its untrained state by presenting a collection of 500 image patches drawn from
the 2012 ImageNet validation set. References images were cropped enough to

Untrained Trained
Layer  Distance

allow the original and translated images to fit within the maximal receptive field  Conv2 Far 0.44 0.35
of the units being tested. We included a small and a large translation, and at each Close 0.92 0.58
convolutional layer we measured the correlation and variance. We find a positive ~ Conv3  Far 0.67 0.56
relationship at all layers with significant Spearman’s ranked correlation for both Close 0.94 0.75
transformations (Table 1 Untrained). The strength of the relationship tended to  Conv4  Far 0.65 0.48
be stronger for the smaller translation (Figure 1C, orange). Thus in a popular Close 0.92 0.65
deep network with no training, units which tended to have greater invariance also ~ Conv5 Far 0.64 0.18
had higher dynamic range. We repeated the same analysis in AlexNet after it Close 0.86 0.64

was fully trained for object recognition. Again we observed a significant positive
relationship (Table 1 Trained; Figure 1B). The relationship was somewhat weaker Table 1: Table of Spearman’s ranked corre-
than in the trained network. Thus training weakens but does not remove the bias of lation coefficient (r5) between p and o % in
the network to associate higher dynamic range with higher translation invariance. AlexNet layers and for the trained and un-

. .. trained network. All val < 0.001.
Finally, we asked whether the network may compensate for this imbalance by ramed ietwor vaes p

placing weights of higher magnitude on low dynamic range units (a negative

correlation between 67 and w?), thus effectively removing this bias. We measured whether the percent of weight magnitude on a
given input unit across output units was greater for input units with higher variance. We found Conv3 (s = 0.34) and Conv4
(rs = 0.19) tended to have higher weights on higher variance input units while there was no correlation in Conv2 and and Conv5.
This indicates the network does not compensate for the imbalance in dynamic range between invariant and sensitive units but
actually sometimes emphasizes it.

4 Discussion

We have documented an empirical relationship between the dynamic range of unrectified units in a deep network and their
invariance. We provided a simple 1st order statistical model to explain this effect in which rectification caused the population
representation to primarily vary in dimensions that were invariant to small image perturbations, whereas small perturbations were
represented in directions of lower variance. Further work can investigate whether this imbalance improves generalization because
of the emphasis placed on invariant over sensitive units.

We note this relationship is weaker in the trained then untrained network further work can udnerstand this difference. Our
approximations assumed low covariance between input units and homoegenous input variance while this may be expected in a
random network it may not be true in a trained network. More crucially further theoretical work should consider the influence of
co-variance between input units and invariance of output units as a function of weights.

To extend insights from simplified, artificial networks to neurobiology, it will first of all be important to test whether cortical
neurons showing more invariance also tend to have a higher dynamic range. If they do, this will establish a fundamental theoretical
connection between computations of deep networks and the brain.

5 Response to reviewer comments

We thank our reviewers for their careful and insightul comments. Above we have taken their comments into account in editing our
final draft. Below we address their three main concerns.

5.1 Intuition behind variance correlation relation

It is instructive to consider a schematic (Figure 2A) of the distribution of responses. The probability mass of the response is broken
into 4 quadrants, the 1st green is unaffected by rectifications, the 2nd (purple) is projected onto the vertical axis (thick purple), the
3rd (red) is projected onto the origin (red dot), and the 4th (green) projected onto the horizontal axis (thick green). The diagonal
line is the line of best fit expressing the linear relationship and the vertical line is a conditional distribution whose variance is the
conditional residual which averaged gives the residual variance of the linear relationship. 52 decreases as /o decreases because
the spread of the distribution is truncated to the degree that the distribution falls beneath the threshold. For correlation it is useful
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to consider: o
- Var(Best Linear Predictor) Var[E[S2|51]]

- Var(Best Linear Predictor) + Var(Residual) - Var[E[Ss|S1]] + E[Var(Ss|S1)]

where Var[E[S,|S1]] = Var[pSi] = p?Var(S;) decreases more rapidly then the average residual E[Var(S,|S;)]. Notionally
we can think of Var[E[S2|S51]] as the vertical height of the diagonal line that has not been truncated (solid not truncated, dashed

truncated) in Figure 2A and E[V ar(S2|S;)] as the average length of vertical lines not truncated. Notice that the ratio of truncated
to untruncated is lower for the diagonal then the vertical average. In the figure at . = 0 the diagonal line is cut in half and so is the
length of a vertical line drawn here. But at all other positions (xz > 0) where a vertical line would be drawn the vertical solid lines
length is truncated less than half thus on average the vertical line is less truncated than the diagonals vertical length.

5.2 Rectification does not explain invariance

We would like to emphasize we are not arguing that rectification explains the generalization properties of networks only that its
influence on covariance may be one of many factors influencing invariance.

5.3 Justification of simplifying assumptions

We would like to emphasize that in this paper we pursue intuition by trying to understand a simple approximation to rectifications
influence on invariance which results in a simple analytic form. Our first approximation is to remove off-diagonal covariances.
Since the influences of off-diagonals are additive they can be seen as modulating the effects induced by the diagonals:

@ S = T diag(X)@ + @ (2 — diag(X)w ~ w7 diag(X)w
Thus here we analytically study the first order effect of rectification in output neurons on the basis of the variance but not covariance
of their inputs.

Finally we approximate the diagonal of the input variance with the average variance an approximation which minimizes squared
error

. I N
wT diag(X)w ~ wTIE Z o?

variation in ¢ will hurt the strength of this approximation but not change the main effect unless this variation is negatively
correlated with y; thus canceling out the relationship between correlation and variance. We would not expect this negative
correlation in an untrained network and further work can check whether this, potentially interesting, relationship exists in trained
networks. We note that normalization enforces this approximation and thus these approximations may be particularly suited to
networks using normalization.
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Figure 1: Empirical relationship between invariance and response
variance. (A) Example stimuli conditions: reference position images
cropped to 3/4 of unit maximal receptive field, then consider the
correlation of responses across images for a small shift (1/8 of RF) and
large shift (1/4 of RF). (B) The variance of unrectified responses from
Conv3 units in trained AlexNet to the reference position plotted against
Fisher’s z of reference images and shift images (orange small shift, blue
large shift). Both show strong positive relationship with Spearman’s
ranked correlation coefficient () listed in legend. (C) Same plot for the
untrained AlexNet showing little change in the form of the relationship
except for its strength.
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Figure 2: Influence of rectification on variance and correlation in
bivariate normal. (A) Transformation of bivariate normal by rectification.
Distribution in quadrant I is preserved (pink), quadrant II, IV collapsed
onto S; and Sy axis respectively (thick green, blue lines), and III
mapped onto origin (red). (B) Plotting 52(u/0) against p(u/a, p)
there is a positive relationship because both are increasing with u/o.
p is transformed to Fisher’s z and &2 plotted on log axis revealing an
approximate relationship: a(6%)° = z(p).
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Figure 3: 5’ to 52/ relationship in unrectified unit resulting from in-
tegrating over rectified input units. (A) Schematic intuition of p’ to
&%/ relationship. In blue 21,2, in red 53171, pink vector is w. Axes
are eigenvectors with vertical axis having larger associated eigenvalue.
Ratio of w? ¥ 2@ and @’ ¥ 140 increases as @ points in direction of
greater variation of both. (B) Simulation of integrating over populations
of rectified input units varying average 1/c (within a trace), input unid
correlation (p across colors), and neighborhood size of /o averaged
over (line pattern).
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