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ABSTRACT

Building on the recent successes of distributed training of RL agents, in this paper
we investigate the training of RNN-based RL agents from distributed prioritized
experience replay. We study the effects of parameter lag resulting in represen-
tational drift and recurrent state staleness and empirically derive an improved
training strategy. Using a single network architecture and fixed set of hyper-
parameters, the resulting agent, Recurrent Replay Distributed DQN, quadruples
the previous state of the art on Atari-57, and matches the state of the art on
DMLab-30. It is the first agent to exceed human-level performance in 52 of the
57 Atari games.

1 INTRODUCTION

Reinforcement Learning (RL) has seen a rejuvenation of research interest recently due to repeated
successes in solving challenging problems such as reaching human-level play on Atari 2600 games
(Mnih et al., 2015), beating the world champion in the game of Go (Silver et al., 2017), and playing
competitive 5-player DOTA (OpenAI, 2018b). The earliest of these successes leveraged experience
replay for data efficiency and stacked a fixed number of consecutive frames to overcome the partial
observability in Atari 2600 games. However, with progress towards increasingly difficult, partially
observable domains, the need for more advanced memory-based representations increases, neces-
sitating more principled solutions such as recurrent neural networks (RNNs). The use of LSTMs
(Hochreiter & Schmidhuber, 1997) within RL has been widely adopted to overcome partial observ-
ability (Hausknecht & Stone, 2015; Mnih et al., 2016; Espeholt et al., 2018; Gruslys et al., 2018).

In this paper we investigate the training of RNNs with experience replay. We have three primary
contributions. First, we demonstrate the effect of experience replay on parameter lag, leading to
representational drift and recurrent state staleness. This is potentially exacerbated in the distributed
training setting, and ultimately results in diminished training stability and performance. Second, we
perform an empirical study into the effects of several approaches to RNN training with experience
replay, mitigating the aforementioned effects. Third, we present an agent that integrates these find-
ings to achieve significant advances in the state of the art on Atari-57 (Bellemare et al., 2013) and
matches the state of the art on DMLab-30 (Beattie et al., 2016). To the best of our knowledge, our
agent, Recurrent Replay Distributed DQN (R2D2), is the first to achieve this using a single network
architecture and fixed set of hyper-parameters.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Our work is set within the Reinforcement Learning (RL) framework (Sutton & Barto, 1998), in
which an agent interacts with an environment to maximize the sum of discounted, γ ∈ [0, 1), re-
wards. We model the environment as a Partially Observable Markov Decision Process (POMDP)
given by the tuple (S,A, T ,R, Ω,O) (Monahan, 1982; Jaakkola et al., 1995; Kaelbling et al., 1998).
The underlying Markov Decision Process (MDP) is defined by (S, A, T , R), where S is the set of
states,A the set of actions, T a transition function mapping state-actions to probability distributions
over next states, and R : S ×A → R is the reward function. Finally, Ω gives the set of observations
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potentially received by the agent and O is the observation function mapping (unobserved) states to
probability distributions over observations.

Within this framework, the agent receives an observation o ∈ Ω, which may only contain partial
information about the underlying state s ∈ S. When the agent takes an action a ∈ A the environment
responds by transitioning to state s′ ∼ T (·|s, a) and giving the agent a new observation o′ ∼ Ω(·|s′)
and reward r ∼ R(s, a).

Although there are many approaches to RL in POMDPs, we focus on using recurrent neural networks
(RNNs) with backpropagation through time (BPTT) (Werbos, 1990) to learn a representation that
disambiguates the true state of the POMDP.

The Deep Q-Network agent (DQN) (Mnih et al., 2015) learns to play games from the Atari-57
benchmark by using frame-stacking of 4 consecutive frames as observations, and training a convo-
lutional network to represent a value function with Q-learning (Watkins & Dayan, 1992), from data
continuously collected in a replay buffer (Lin, 1993). Other algorithms like the A3C (Mnih et al.,
2016), use an LSTM and are trained directly on the online stream of experience without using a
replay buffer. Hausknecht & Stone (2015) combined DQN with an LSTM by storing sequences in
replay and initializing the recurrent state to zero during training.

2.2 DISTRIBUTED REINFORCEMENT LEARNING

Recent advances in reinforcement learning have achieved significantly improved performance by
leveraging distributed training architectures which separate learning from acting, collecting data
from many actors running in parallel on separate environment instances (Horgan et al., 2018; Espe-
holt et al., 2018; Gruslys et al., 2018; OpenAI, 2018b;a; Jaderberg et al., 2018).

Distributed replay allows the Ape-X agent (Horgan et al., 2018) to decouple learning from acting,
with actors feeding experience into the distributed replay buffer and the learner receiving (random-
ized) training batches from it. In addition to distributed replay with prioritized sampling (Schaul
et al., 2016), Ape-X uses n-step return targets (Sutton, 1988), the double Q-learning algorithm
(van Hasselt et al., 2016), the dueling DQN network architecture (Wang et al., 2016) and 4-frame-
stacking. Ape-X achieved state-of-the-art performance on Atari-57, significantly out-performing the
best single-actor algorithms. It has also been used in continuous control domains and again showed
state-of-the-art results, further demonstrating the performance benefits of distributed training in RL.

IMPALA (Espeholt et al., 2018) is a distributed reinforcement learning architecture which uses a
first-in-first-out queue with a novel off-policy correction algorithm called V-trace, to learn sequen-
tially from the stream of experience generated by a large number of independent actors. IMPALA
stores sequences of transitions along with an initial recurrent state in the experience queue, and since
experience is trained on exactly once, this data generally stays very close to the learner parameters.
Espeholt et al. (2018) showed that IMPALA could achieve strong performance in the Atari-57 and
DMLab-30 benchmark suites, and furthermore was able to use a single large network to learn all
tasks in a benchmark simultaneously while maintaining human-level performance.

2.3 THE RECURRENT REPLAY DISTRIBUTED DQN AGENT

We propose a new agent, the Recurrent Replay Distributed DQN (R2D2), and use it to study the
interplay between recurrent state, experience replay, and distributed training. R2D2 is most similar
to Ape-X, built upon prioritized distributed replay and n-step double Q-learning (with n = 5),
generating experience by a large number of actors (typically 256) and learning from batches of
replayed experience by a single learner. Like Ape-X, we use the dueling network architecture of
Wang et al. (2016), but provide an LSTM layer after the convolutional stack, similarly to Gruslys
et al. (2018).

Instead of regular (s, a, r, s′) transition tuples, we store fixed-length (m = 80) sequences of (s, a, r)
in replay, with adjacent sequences overlapping each other by 40 time steps, and never crossing
episode boundaries. When training, we unroll both online and target networks (Mnih et al., 2015)
on the same sequence of states to generate value estimates and targets. We leave details of our exact
treatment of recurrent states in replay for the next sections.
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Like Ape-X, we use 4-frame-stacks and the full 18-action set when training on Atari. On DMLab,
we use single RGB frames as observations, and the same action set discretization as Hessel et al.
(2018b). Following the modified Ape-X version in Pohlen et al. (2018), we do not clip rewards, but
instead use an invertible value function rescaling of the form h(x) = sign(x)(

√
|x|+ 1 − 1) + εx

which results in the following n-step targets for the Q-value function:

ŷt = h

(
n−1∑
k=0

rt+kγ
k + γnh−1

(
Q(st+n, a

∗; θ−)
))

, a∗ = arg max
a

Q(st+n, a; θ).

Here, θ− denotes the target network parameters which are copied from the online network parame-
ters θ every 2500 learner steps.

Our replay prioritization differs from that of Ape-X in that we use a mixture of max and mean
absolute n-step TD-errors δi over the sequence: p = ηmaxi δi + (1 − η)δ̄. We set η and the
priority exponent to 0.9. This more aggressive scheme is motivated by our observation that averaging
over long sequences tends to wash out large errors, thereby compressing the range of priorities and
limiting the ability of prioritization to pick out useful experience.

Finally, compared to Ape-X, we used the slightly higher discount of γ = 0.997, and disabled the
loss-of-life-as-episode-end heuristic that has been used in Atari agents in some of the work since
(Mnih et al., 2015). A full list of hyper-parameters is provided in the Appendix.

We train the R2D2 agent with a single GPU-based learner, performing approximately 5 network up-
dates per second (each update on a mini-batch of 64 length-80 sequences), and each actor performing
∼ 260 environment steps per second on Atari (∼ 130 per second on DMLab).

3 TRAINING RECURRENT RL AGENTS WITH EXPERIENCE REPLAY

In order to achieve good performance in a partially observed environment, an RL agent requires
a state representation that encodes information about its state-action trajectory in addition to its
current observation. The most common way to achieve this is by using an RNN, typically an LSTM
(Hochreiter & Schmidhuber, 1997), as part of the agent’s state encoding. To train an RNN from
replay and enable it to learn meaningful long-term dependencies, whole state-action trajectories
need to be stored in replay and used for training the network. Hausknecht & Stone (2015) compared
two strategies of training an LSTM from replayed experience:

• Using a zero start state to initialize the network at the beginning of sampled sequences.

• Replaying whole episode trajectories.

The zero start state strategy’s appeal lies in its simplicity, and it allows independent decorrelated
sampling of relatively short sequences, which is important for robust optimization of a neural net-
work. On the other hand, it forces the RNN to learn to recover meaningful predictions from an
atypical initial recurrent state (‘initial recurrent state mismatch’), which may limit its ability to fully
rely on its recurrent state and learn to exploit long temporal correlations. The second strategy on
the other hand avoids the problem of finding a suitable initial state, but creates a number of prac-
tical, computational, and algorithmic issues due to varying and potentially environment-dependent
sequence length, and higher variance of network updates because of the highly correlated nature of
states in a trajectory when compared to training on randomly sampled batches of experience tuples.

Hausknecht & Stone (2015) observed little difference between the two strategies for empirical agent
performance on a set of Atari games, and therefore opted for the simpler zero start state strategy.
One possible explanation for this is that in some cases, an RNN tends to converge to a more ‘typical’
state if allowed a certain number of ‘burn-in’ steps, and so recovers from a bad initial recurrent state
on a sufficiently long sequence. We also hypothesize that while the zero start state strategy may
suffice in the mostly fully observable Atari domain, it prevents a recurrent network from learning
actual long-term dependencies in more memory-critical domains (e.g. on DMLab).

To fix these issues, we propose and evaluate two strategies for training a recurrent neural network
from randomly sampled replay sequences, that can be used individually or in combination:
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Figure 1: Top row shows Q-value discrepancy ∆Q as a measure for recurrent state staleness. (a)
Diagram of how ∆Q is computed, with green box indicating a whole sequence sampled from replay.
For simplicity, l = 0 (no burn-in). (b) ∆Q measured at first state and last state of replay sequences,
for agents training on a selection of DMLab levels (indicated by initials) with different training
strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom
row. (c) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds.

• Stored state: Storing the recurrent state in replay and using it to initialize the network at
training time. This partially remedies the weakness of the zero start state strategy, however
it may suffer from the effect of ‘representational drift’ leading to ‘recurrent state staleness’,
as the stored recurrent state generated by a sufficiently old network could differ significantly
from a typical state produced by a more recent version.

• Burn-in: Allow the network a ‘burn-in period’ by using a portion of the replay sequence
only for unrolling the network and producing a start state, and update the network only on
the remaining part of the sequence. We hypothesize that this allows the network to partially
recover from a poor start state (zero, or stored but stale) and find itself in a better initial state
before being required to produce accurate outputs.

In all our experiments we will be using the proposed agent architecture from Section 2.3 with replay
sequences of length m = 80, with an optional burn-in prefix of l = 40 or 20 steps. Our aim is to
assess the negative effects of representational drift and recurrent state staleness on network training
and how they are mitigated by the different training strategies. For that, we will compare the Q-
values produced by the network on sampled replay sequences when unrolled using one of these
strategies and the Q-values produced when using the true stored recurrent states at each step (see
Figure 1a, showing different sources for the hidden state).

More formally, let ot, . . . , ot+m and ht, . . . , ht+m denote the replay sequence of observations and
stored recurrent states, and denote by ht+1 = h(ot, ht; θ) and q(ht; θ) the recurrent state and Q-
value vector output by the recurrent neural network with parameter vector θ, respectively. We write
ĥt for the hidden state, used during training and initialized under one of the above strategies (either
ĥt = 0 or ĥt = ht). Then ĥt+i = h(ot+i−1, ĥt+i−1; θ̂) is computed by unrolling the network
with parameters θ̂ on the sequence ot, . . . , ot+l+m−1. We estimate the impact of representational
drift and recurrent state staleness by their effect on the Q-value estimates, by measuring Q-value
discrepancy

∆Q =
‖q(ĥt+i; θ̂)− q(ht+i; θ̂)‖2
|maxa,j(q(ĥt+j ; θ̂))a|

for the first (i = l) and last (i = l + m − 1) states of the non-burn-in part of the replay sequence
(see Figure 1a for an illustration). The normalization by the maximal Q-value helps comparability
between different environments and training stages, as the Q-value range of an agent can vary dras-
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tically between these. Note that we are not directly comparing the Q-values produced at acting and
training time, q(ht; θ) and q(ĥt; θ̂), as these can naturally be expected to be distinct as the agent
is being trained. Instead we focus on the difference that results from applying the same network
(parameterized by θ̂) to the distinct recurrent states.

In Figure 1b, we are comparing agents trained with the different strategies on several DMLab en-
vironments in terms of this proposed metric. It can be seen that the zero start state heuristic results
in a significantly more severe effect of recurrent state staleness on the outputs of the network. As
hypothesized above, this effect is greatly reduced for the last sequence states compared to the first
ones, after the RNN has had time to recover from the atypical start state, but the effect of staleness
is still substantially worse here for the zero state than the stored state strategy. Another potential
downside of the pure zero state heuristic is that it prevents the agent from strongly relying on its
recurrent state and exploit long-term temporal dependencies, see Section 5.

We observe that the burn-in strategy on its own partially mitigates the staleness problem on the initial
part of replayed sequences, while not showing a significant effect on the Q-value discrepancy for
later sequence states. Empirically, this translates into noticeable performance improvements, as can
be seen in Figure 1c. This itself is noteworthy, as the only difference between the pure zero state and
the burn-in strategy lies in the fact that the latter unrolls the network over a prefix of states on which
the network does not receive updates. In informal experiments (not shown here) we observed that
this is not due to the different unroll lengths themselves (i.e., the zero state strategy without burn-in,
on sequences of length l + m, performed worse overall). We hypothesize that the beneficial effect
of burn-in lies in the fact that it prevents ‘destructive updates’ to the RNN parameters resulting from
highly inaccurate initial outputs on the first few time steps after a zero state initialization.

The stored state strategy, on the other hand, proves to be overall much more effective at mitigating
state staleness in terms of the Q-value discrepancy, which also leads to clearer and more consistent
improvements in empirical performance. Finally, the combination of both methods consistently
yields the smallest discrepancy on the last sequence states and the most robust performance gains.

We conclude the section with the observation that both stored state and burn-in strategy provide
substantial advantages over the naive zero state training strategy, in terms of (indirect) measures of
the effect of representation drift and recurrent state staleness, and empirical performance. Since they
combine beneficially, we use both of these strategies (with burn-in length of l = 40) in the empirical
evaluation of our proposed agent in Section 4. Additional results on the effects of distributed training
on representation drift and Q-value discrepancy are given in the Appendix.

4 EXPERIMENTAL EVALUATION

In this section we evaluate the empirical performance of R2D2 on two challenging benchmark suites
for deep reinforcement learning: Atari-57 (Bellemare et al., 2013) and DMLab-30 (Beattie et al.,
2016). One of the fundamental contributions of Deep Q-Networks (DQN) (Mnih et al., 2015) was to
set as standard practice the use of a single network architecture and set of hyper-parameters across
the entire suite of 57 Atari games. Unfortunately, expanding past Atari this standard has not been
maintained and, to the best of our knowledge, at present there is no algorithm applied to both Atari-
57 and DMLab-30 under this standard. In particular, we will compare performance with Ape-X and
IMPALA for which hyper-parameters are tuned separately for each benchmark.

For R2D2, we use a single neural network architecture and a single set of hyper-parameters across all
experiments. This demonstrates greater robustness and generality than has been previously observed
in deep RL. It is also in pursuit of this generality, that we decided to disable the (Atari-specific)
heuristic of treating life losses as episode ends, and did not apply reward clipping. Despite this,
we observe state-of-the-art performance in both Atari and DMLab, validating the intuitions derived
from our empirical study. A more detailed ablation study of the effects of these modifications is
presented in the Appendix.

4.1 ATARI-57

The Atari-57 benchmark is built upon the Arcade Learning Environment (ALE) (Bellemare et al.,
2013), and consists of 57 classic Atari 2600 video games. Initial human-level performance was
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Figure 2: Atari-57 results. Left: median human-normalized scores and training times of various
agent architectures. Diagram reproduced and extended from (Horgan et al., 2018). Right: Example
individual learning curves of R2D2, averaged over 3 seeds, and Ape-X, single seed.

achieved by DQN (Mnih et al., 2015), and since then RL agents have improved significantly through
both algorithmic and architectural advances. Currently, state of the art for a single actor is achieved
by the recent distributional reinforcement learning algorithms IQN (Dabney et al., 2018) and Rain-
bow (Hessel et al., 2018a), and for multi-actor results, Ape-X (Horgan et al., 2018).

Figure 2 (left) shows the median human-normalized scores across all games for R2D2 and related
methods (see Appendix for full Atari-57 scores and learning curves). R2D2 achieves an order of
magnitude higher performance than all single-actor agents and quadruples the previous state-of-
the-art performance of Ape-X using fewer actors (256 instead of 360), resulting in higher sample-
and time-efficiency. Table 1 lists mean and median human-normalized scores for R2D2 and other
algorithms, highlighting these improvements.

In addition to achieving state-of-the-art results on the entire task suite, R2D2 also achieves the
highest ever reported agent scores on a large fraction of the individual Atari games, in many cases
‘solving’ the respective games by achieving the highest attainable score. In Figure 2 (right) we
highlight some of these individual learning curves of R2D2. As an example, notice the performance
on MS.PACMAN is even greater than that of the agent reported in (van Seijen et al., 2017), which
was engineered specifically for this game. Furthermore, we notice that Ape-X achieves super-human
performance for the same number of games as Rainbow (49), and that its improvements came from
improving already strong scores. R2D2 on the other hand is super-human on 52 out of 57 games.
Of those remaining, we anecdotally observed that three (SKIING, SOLARIS, and PRIVATE EYE) can
reach super-human performance with higher discount rates and faster target network updates. The
other two (MONTEZUMA’S REVENGE and PITFALL) are known hard exploration problems, and
solving these with a general-purpose algorithm will likely require new algorithmic insights.

4.2 DMLAB-30

DMLab-30 is a suite of 30 problems set in a 3D first-person game engine, testing for a wide range
of different challenges (Beattie et al., 2016). While Atari can largely be approached with only
frame-stacking, DMLab-30 requires long-term memory to achieve reasonable performance. Per-
haps because of this, and the difficulty of integrating recurrent state with experience replay, top-
performing agents have, to date, always come in the form of actor-critic algorithms trained in (near)
on-policy settings. For the first time we show state-of-the-art performance on DMLab-30 using a
value-function-based agent. We stress that, different from the state-of-the-art IMPALA architecture
(Espeholt et al., 2018), the R2D2 agent uses the same set of hyper-parameters here as on Atari.

Here we are mainly interested in comparing to the IMPALA ‘experts’, not to its multi-task variant.
Since the original IMPALA experts were trained on a smaller amount of data (approximately 333M

6



Published as a conference paper at ICLR 2019

M
ea

n 
Ep

is
od

e 
Re

tu
rn

M
ea

n 
Ep

is
od

e 
Re

tu
rn

# Environment Frames # Environment Frames# Environment Frames

M
ea

n 
C

ap
pe

d 
N

or
m

al
iz

ed
 S

co
re

explore object rewards many language select located object

rooms watermaze lasertag three opponents large

R2D2

IMPALA (Deep)

R2D2+
IMPALA

IMPALA (Original)

Figure 3: DMLab-30 comparison of R2D2 and R2D2+ with our re-run of IMPALA shallow and
deep in terms of mean-capped human-normalized score (Espeholt et al., 2018).

Atari-57 DMLab-30
Human-Normalized Score Median Mean Median Mean-Capped
Ape-X (Horgan et al., 2018) 434.1% 1695.6% – –
Reactor (Gruslys et al., 2018) 187.0% – – –
IMPALA, deep (Espeholt et al., 2018) 191.8% 957.6% 49.0% 45.8%
IMPALA, shallow (re-run) – – 89.7% 73.6%
IMPALA, deep (re-run) – – 107.5% 85.1%
R2D2+ – – 99.5% 85.7%
R2D2, feed-forward 589.2% 1974.4% – –
R2D2 1920.6% 4024.9% 96.9% 78.3%

Table 1: Comparison of Atari-57 and DMLab-30 results. R2D2 average final score over 3 seeds (1
seed for feed-forward variant), IMPALA final score over 1 seed, Ape-X best training score with 1
seed. Our re-run of IMPALA uses the same improved action set from (Hessel et al., 2018b) as R2D2,
and is trained for a comparable number of environment frames (10B frames; the original IMPALA
experts in (Espeholt et al., 2018) were only trained for approximately 333M frames). R2D2+ refers
to the adapted R2D2 variant matching deep IMPALA’s 15-layer ResNet architecture and asymmetric
reward clipping, as well as using a shorter target update period of 400.

environment frames) and since R2D2 uses the improved action set introduced in (Hessel et al.,
2018b), we decided to re-run the IMPALA agent with improved action set and for a comparable
training time (10B environment frames) for a fairer comparison, resulting in substantially improved
scores for the IMPALA agent compared to the original in (Espeholt et al., 2018), see Table 1.

Figure 3 compares R2D2 with IMPALA. We note that R2D2 exceeds the performance of the (shal-
low) IMPALA version, despite using the exact same set of hyper-parameters and architecture as the
variant trained on Atari, and in particular not using the ‘optimistic asymmetric reward clipping’ used
by all IMPALA agents1.

To demonstrate the potential of our agent, we also devise a somewhat adapted R2D2 version for DM-
Lab only (R2D2+) by adding asymmetric reward clipping, using the 15-layer ResNet from IMPALA
(deep), and reducing the target update frequency from 2500 to 400 for better sample efficiency. To
fit the larger model in GPU memory, we reduced the batch size from 64 to 32 in these runs only.
We observe that this modified version yields further substantial improvements over standard R2D2
and matches deep IMPALA in terms of sample efficiency as well as asymptotic performance. Both
our re-run of deep IMPALA and R2D2+ are setting new state-of-the-art scores on the DMLab-30
benchmark.

1This domain-specific heuristic aids exploration on a certain subset of the DMLab-30 levels.
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Figure 4: Ablations with reward clipping instead of value function rescaling (Clipped), smaller
discount factor of γ = 0.99 (Discount), and feed-forward (Feed-Forward) variants of R2D2.
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Figure 5: Effect of restricting R2D2’s policy’s memory on MS.PACMAN and EMSTM WATERMAZE.

5 ANALYSIS OF AGENT PERFORMANCE

Atari-57 is a class of environments which are almost fully observable (given 4-frame-stack obser-
vations), and agents trained on it are not necessarily expected to strongly benefit from a memory-
augmented representation. The main algorithmic difference between R2D2 and its predecessor,
Ape-X, is the use of a recurrent neural network, and it is therefore surprising by how large a margin
R2D2 surpasses the previous state of the art on Atari. In this section we analyze the role of the
LSTM network and other algorithmic choices for the high performance of the R2D2 agent.

Since the performance of asynchronous or distributed RL agents can depend on subtle implementa-
tional details and even factors such as precise hardware setup, it is impractical to perform a direct
comparison to the Ape-X agent as reported in (Horgan et al., 2018). Instead, here we verify that the
LSTM and its training strategy play a crucial role for the success of R2D2 by a comparison of the
R2D2 agent with a purely feed-forward variant, all other parameters held fixed. Similarly, we con-
sider the performance of R2D2 using reward clipping without value rescaling (Clipped) and using a
smaller discount factor of γ = 0.99 (Discount). The ablation results in Figure 4 show very clearly
that the LSTM component is crucial for boosting the agent’s peak performance as well as learning
speed, explaining much of the performance difference to Ape-X. Other design choices have more
mixed effects, improving in some games and hurting performance in others. Full ablation results (in
particular, an ablation over the full Atari-57 suite of the feed-forward agent variant, as well as an
ablation of the use of the life-loss-as-episode-termination heuristic) are presented in the Appendix.

In our next experiment we test to what extent the R2D2 agent relies on its memory, and how this
is impacted by the different training strategies. For this we select the Atari game MS.PACMAN, on
which R2D2 shows state-of-the-art performance despite the game being virtually fully observable,
and the DMLab task EMSTM WATERMAZE, which strongly requires the use of memory. We train
two agents on each game, using the zero and stored state strategies, respectively. We then evaluate
these agents by restricting their policy to a fixed history length: at time step t, their policy uses an
LSTM unrolled over time steps ot−k+1, . . . , ot, with the hidden state ht−k replaced by zero instead
of the actual hidden state (note this is only done for evaluation, not at training time of the agents).

8
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In Figure 5 (left) we decrease the history length k from ∞ (full history) down to 0 and show the
degradation of agent performance (measured as mean score over 10 episodes) as a function of k.
We additionally show the difference of max-Q-values and the percentage of correct greedy actions
(where the unconstrained variant is taken as ground truth).

We observe that restricting the agent’s memory gradually decreases its performance, indicating its
nontrivial use of memory on both domains. Crucially, while the agent trained with stored state shows
higher performance when using the full history, its performance decays much more rapidly than for
the agent trained with zero start states. This is evidence that the zero start state strategy, used in past
RNN-based agents with replay, limits the agent’s ability to learn to make use of its memory. While
this doesn’t necessarily translate into a performance difference (like in MS.PACMAN), it does so
whenever the task requires an effective use of memory (like EMSTM WATERMAZE). This advantage
of the stored state compared to the zero state strategy may explain the large performance difference
between R2D2 and its close cousin Reactor (Gruslys et al., 2018), which trains its LSTM policy
from replay with the zero state strategy.

Finally, the right and middle columns of Figure 5 show a monotonic decrease of the quality of Q-
values and the resulting greedy policy as the available history length k is decreased to 0, providing
a simple causal link between the constraint and the empirical agent performance.

For a qualitative comparison of different behaviours learned by R2D2 and its feed-forward variant,
we provide several agent videos at https://bit.ly/r2d2600.

6 CONCLUSIONS

Here we take a step back from evaluating performance and discuss our empirical findings in a
broader context. There are two surprising findings in our results.

First, although zero state initialization was often used in previous works (Hausknecht & Stone,
2015; Gruslys et al., 2018), we have found that it leads to misestimated action-values, especially
in the early states of replayed sequences. Moreover, without burn-in, updates through BPTT to
these early time steps with poorly estimated outputs seem to give rise to destructive updates and
hinder the network’s ability to recover from sub-optimal initial recurrent states. This suggests that
either the context-dependent recurrent state should be stored along with the trajectory in replay, or
an initial part of replayed sequences should be reserved for burn-in, to allow the RNN to rely on
its recurrent state and exploit long-term temporal dependencies, and the two techniques can also be
combined beneficially. We have also observed that the underlying problems of representational drift
and recurrent state staleness are potentially exacerbated in the distributed setting (see Appendix),
highlighting the importance of robustness to these effects through an adequate training strategy of
the RNN.

Second, we found that the impact of RNN training goes beyond providing the agent with memory.
Instead, RNN training also serves a role not previously studied in RL, potentially by enabling better
representation learning, and thereby improves performance even on domains that are fully observ-
able and do not obviously require memory (cf. BREAKOUT results in the feed-forward ablation).

Finally, taking a broader view on our empirical results, we note that scaling up of RL agents through
parallelization and distributed training allows them to benefit from huge experience throughput and
achieve ever-increasing results over broad simulated task suites such as Atari-57 and DMLab-30.
Impressive as these results are in terms of raw performance, they come at the price of high sample
complexity, consuming billions of simulated time steps in hours or days of wall-clock time. One
widely open avenue for future work lies in improving the sample efficiency of these agents, to allow
applications to domains that do not easily allow fast simulation at similar scales. Another remaining
challenge, very apparent in our results on Atari-57, is exploration: Save for the hardest-exploration
games from Atari-57, R2D2 surpasses human-level performance on this task suite significantly,
essentially ‘solving’ many of the games therein.

9
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Figure 6: Left: Parameter lag experienced with distributed prioritized replay with (top) 256 and
(bottom) 64 actors on four DMLab levels: explore obstructed goals large (eogl), explore object
rewards many (eorm), lasertag three opponents small (lots), rooms watermaze (rw). Center: initial-
state and Right: final-state Q-value discrepancy for the same set of experiments.

APPENDIX

EFFECT OF DISTRIBUTED RL AGENT TRAINING

In this section, we investigate the effects of distributed training of an agent using a recurrent neural
network, where a large number of actors feed their experience into a replay buffer for a single learner.

On the one hand, the distributed setting typically presents a less severe problem of representational
drift than the single-actor case, such as the one studied in (Hausknecht & Stone, 2015). This is
because in relative terms, the large amount of generated experience is replayed less frequently (on
average, an experience sample is replayed less than once in the Ape-X agent, compared to eight
times in DQN), and so distributed agent training tends to give rise to a smaller degree of ‘parameter
lag’ (the mean age, in parameter updates, of the network parameters used to generate an experience,
at the time it is being replayed).

On the other hand, the distributed setting allows for easy scaling of computational resources accord-
ing to hardware or time constraints. An ideal distributed agent should therefore be robust to changes
in, e.g., the number of actors, without careful parameter re-tuning. As we have seen in the previous
section, RNN training from replay is sensitive to the issue of representational drift, the severity of
which can depend on exactly these parameters.

To investigate these effects, we train the R2D2 agent with a substantially smaller number of actors.
This has a direct (inversely proportional) effect on the parameter lag (see Figure 6(left)). Specifically,
in our experiments, as the number of actors is changed from 256 to 64, the mean parameter lag
goes from 1500 to approximately 5500 parameter updates, which in turn impacts the magnitude of
representation drift and recurrent state staleness, as measured by ∆Q in Section 3.

The right two columns in Figure 6 show an overall increase of the average ∆Q for the smaller
number of actors, both for first and last states of replayed sequences. This supports the above
intuitions and highlights the increased importance of an improved training strategy (compared to the
zero state strategy) in the distributed training setting, if a certain level of empirical agent performance
is to be maintained across ranges of extrinsic and potentially hardware dependent parameters.
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Figure 7: Ablation results with standard deviations shown by shading (3 seeds). ‘Clipped’ refers to
the agent variant using clipped rewards (instead of value function rescaling), ‘discount’ refers to the
use of a discount value of 0.99 (instead of 0.997).

R2D2
Life-Loss (reset)
Life-Loss (roll)

MsPacmanGravitarBreakout QBert SeaQuest

Figure 8: Ablation results for the use of life loss as episode termination on Atari, with standard
deviations shown by shading (3 seeds). ‘reset’ refers to the agent variant using life losses as full
episode terminations (preventing value function bootstrapping across life loss events, as well as
resetting the LSTM state), whereas ‘roll’ only prevents value function bootstrapping, but unrolls the
LSTM for the duration of a full episode (potentially spanning multiple life losses).

EXTENDED RESULTS

In this section we give additional experimental results supporting our empirical study in the main
text. Figure 7 gives a more in-depth view of the ablation results from Figure 4. We see that, with the
exception of the feed-forward ablation, there are always games in which the ablated choice performs
better. Our choice of architecture and configuration optimizes for overall performance and general
(cross-domain) applicability, but for individual games there are different configurations that would
yield improved performance.

Additionally, in Figure 8 we compare R2D2 with variants using the life loss signal as episode
termination. Both ablation variants interrupt value function bootstrapping past the life loss events,
but differ in that one (‘reset’) also resets the LSTM state at these events, whereas the other (‘roll’)
only resets the LSTM state at actual episode boundaries, like regular R2D2. Despite the fact that
the life loss heuristic is generally helpful to speed up learning in Atari, we did not use it in our main
R2D2 agent for the sake of generality of the algorithm.

13



Published as a conference paper at ICLR 2019

Atari-57 - Human-normalized Median

R2D2

Ape-X
R2D2, FF

Rainbow
Reactor

Figure 9: Comparing sample efficiency between state-of-the-art agents on Atari-57. We observe
a general trend of increasing final performance being negatively correlated with sample efficiency,
which holds for all four algorithms compared.

In Figure 9 we compare the sample efficiency of R2D2 with recent state-of-the-art agents on Atari-57
in terms of human-normalized median score. As expected, the more distributed agents have worse
sample efficiency early on, but also much improved long-term performance. This is an interesting
correlation on its own, but we add that R2D2 appears to achieve a qualitatively different performance
curve than any of the other algorithms.

Note that, while Ape-X has a larger number of actors than R2D2 (360 compared to 256), its learner
processes approximately 20 batches of size 512 per second, whereas R2D2 performs updates on
batches of 64×80 observations (batch size× sequence length), at a rate of approximately 5 per sec-
ond. This results in a reduced ‘replay ratio’ (effective number of times each experienced observation
is being replayed): On average, Ape-X replays each observation approximately 1.3 times, whereas
this number is only about 0.8 for R2D2, which explains the initial sample efficiency advantage of
Ape-X.

HYPER-PARAMETERS

R2D2 uses the same 3-layer convolutional network as DQN (Mnih et al., 2015), followed by an
LSTM with 512 hidden units, which feeds into the advantage and value heads of a dueling network
(Wang et al., 2016), each with a hidden layer of size 512. Additionally, the LSTM receives as input
the reward and one-hot action vector from the previous time step. On the four language tasks in the
DMLab suite, we are using the same additional language-LSTM with 64 hidden units as IMPALA
(Espeholt et al., 2018).

Number of actors 256
Actor parameter update interval 400 environment steps

Sequence length m 80 (+ prefix of l = 40 in burn-in experiments)
Replay buffer size 4× 106 observations (105 part-overlapping sequences)
Priority exponent 0.9

Importance sampling exponent 0.6
Discount γ 0.997

Minibatch size 64 (32 for R2D2+ on DMLab)
Optimizer Adam (Kingma & Ba, 2014)

Optimizer settings learning rate = 10−4, ε = 10−3

Target network update interval 2500 updates
Value function rescaling h(x) = sign(x)(

√
|x|+ 1− 1) + εx, ε = 10−3

Table 2: Hyper-parameters values used in R2D2. All missing parameters follow the ones in Ape-X
(Horgan et al., 2018).

As is usual for agent training on Atari since (Mnih et al., 2015), we cap all (training and evalua-
tion) episodes at 30 minutes (108, 000 environment frames). All reported scores are (undiscounted)
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episode returns. For the R2D2 agent we always report final scores (as opposed to some of the
comparison agents that use best score attained during training).
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FULL RESULTS

GAMES IMPALA(S) IMPALA(D) R2D2 R2D2+
rooms collect good objects test 10.0 10.0 9.8 9.9
rooms exploit deferred effects test 46.0 62.2 39.9 38.1
rooms select nonmatching object 11.0 39.0 2.3 63.6
rooms watermaze 48.4 47.0 45.9 49.0
rooms keys doors puzzle 43.8 54.6 52.0 46.2
language select described object 638.0 664.0 445.9 617.6
language select located object 534.8 731.4 555.4 772.8
language execute random task 515.2 465.4 363.1 497.4
language answer quantitative question 18.0 362.0 258.0 344.4
lasertag one opponent large 0.0 0.0 0.0 0.0
lasertag three opponents large 0.0 32.2 22.9 28.6
lasertag one opponent small 0.0 0.0 0.0 31.8
lasertag three opponents small 53.8 57.2 42.8 49.0
natlab fixed large map 57.0 63.4 48.9 60.6
natlab varying map regrowth 22.4 34.0 25.7 24.6
natlab varying map randomized 48.6 47.0 40.8 42.4
skymaze irreversible path hard 80.0 80.0 84.0 76.0
skymaze irreversible path varied 80.0 100.0 80.0 76.0
psychlab arbitrary visuomotor mapping 37.0 38.4 34.2 33.1
psychlab continuous recognition 30.2 28.6 29.4 30.0
psychlab sequential comparison 30.8 29.6 30.8 30.0
psychlab visual search 80.0 80.0 79.6 79.9
explore object locations small 104.0 100.4 82.9 83.7
explore object locations large 78.8 91.0 52.4 60.6
explore obstructed goals small 324.0 372.0 357.6 311.9
explore obstructed goals large 150.0 102.0 63.2 95.5
explore goal locations small 566.0 482.0 459.6 460.7
explore goal locations large 386.0 316.0 328.0 174.7
explore object rewards few 39.0 92.6 76.5 80.7
explore object rewards many 79.8 89.4 59.7 75.8

Table 3: Performance of R2D2 and R2D2+, averaged over 3 seeds, compared to our own single-
seed re-run of IMPALA (shallow/deep) with improved action-set and trained on the same amount
of data (10B environment frames). Compared to standard R2D2, the R2D2+ variant uses a shorter
target network update frequency (400 compared to 2500), as well as the substantially larger 15-layer
ResNet and the custom ‘optimistic asymmetric reward clipping’ from (Espeholt et al., 2018).
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GAMES HUMAN REACTOR IMPALA(S/D) APE-X R2D2
alien 7127.8 6482.1 1536.0/15962.1 40804.9 229496.9
amidar 1719.5 833.0 497.6/1554.8 8659.2 29321.4
assault 742.0 11013.5 12086.9/19148.5 24559.4 108197.0
asterix 8503.3 36238.5 29692.5/300732.0 313305.0 999153.3
asteroids 47388.7 2780.3 3508.1/108590.1 155495.1 357867.7
atlantis 29028.1 308257.5 773355.5/849967.5 944497.5 1620764.0
bank heist 753.1 988.7 1200.3/1223.2 1716.4 24235.9
battle zone 37187.5 61220.0 13015.0/20885.0 98895.0 751880.0
beam rider 16926.5 8566.5 8219.9/32463.5 63305.2 188257.4
berzerk 2630.4 1641.4 888.3/1852.7 57196.7 53318.7
bowling 160.7 75.4 35.7/59.9 17.6 219.5
boxing 12.1 99.4 96.3/100.0 100.0 98.5
breakout 30.5 518.4 640.4/787.3 800.9 837.7
centipede 12017.0 3402.8 5528.1/11049.8 12974.0 599140.3
chopper command 7387.8 37568.0 5012.0/28255.0 721851.0 986652.0
crazy climber 35829.4 194347.0 136211.5/136950.0 320426.0 366690.7
defender 18688.9 113127.8 58718.3/185203.0 411943.5 665792.0
demon attack 1971.0 100188.5 107264.7/132827.0 133086.4 140002.3
double dunk -16.4 11.4 -0.4/-0.3 12.8 23.7
enduro 860.5 2230.1 0.0/0.0 2177.4 2372.7
fishing derby -38.8 23.2 32.1/44.9 44.4 85.8
freeway 29.6 31.4 0.0/0.0 33.7 32.5
frostbite 4334.7 8042.1 269.6/317.8 9328.6 315456.4
gopher 2412.5 69135.1 1002.4/66782.3 120500.9 124776.3
gravitar 3351.4 1073.8 211.5/359.5 1598.5 15680.7
hero 30826.4 35542.2 33853.2/33730.6 31655.9 39537.1
ice hockey 0.9 3.4 -5.3/3.5 33.0 79.3
jamesbond 302.8 7869.3 440.0/601.5 21322.5 25354.0
kangaroo 3035.0 10484.5 47.0/1632.0 1416.0 14130.7
krull 2665.5 9930.9 9247.6/8147.4 11741.4 218448.1
kung fu master 22736.3 59799.5 42259.0/43375.5 97829.5 233413.3
montezuma revenge 4753.3 2643.5 0.0/0.0 2500.0 2061.3
ms pacman 6951.6 2724.3 6501.7/7342.3 11255.2 42281.7
name this game 8049.0 9907.1 6049.6/21537.2 25783.3 58182.7
phoenix 7242.6 40092.3 33068.2/210996.5 224491.1 864020.0
pitfall 6463.7 -3.5 -11.1/-1.7 -0.6 0.0
pong 14.6 20.7 20.4/21.0 20.9 21.0
private eye 69571.3 15177.1 92.4/98.5 49.8 5322.7
qbert 13455.0 22956.5 18901.3/351200.1 302391.3 408850.0
riverraid 17118.0 16608.3 17401.9/29608.0 63864.4 45632.1
road runner 7845.0 71168.0 37505.0/57121.0 222234.5 599246.7
robotank 11.9 68.5 2.3/13.0 73.8 100.4
seaquest 42054.7 8425.8 1716.9/1753.2 392952.3 999996.7
skiing -4336.9 -10753.4 -29975.0/-10180.4 -10789.9 -30021.7
solaris 12326.7 2165.2 2368.4/2365.0 2892.9 3787.2
space invaders 1668.7 2448.6 1726.3/43595.8 54681.0 43223.4
star gunner 10250.0 70038.0 69139.0/200625.0 434342.5 717344.0
surround 6.5 6.7 -8.1/7.6 7.1 9.9
tennis -8.3 23.3 -1.9/0.5 23.9 -0.1
time pilot 5229.1 19401.0 6617.5/48481.5 87085.0 445377.3
tutankham 167.6 272.6 267.8/292.1 272.6 395.3
up n down 11693.2 64354.3 273058.1/332546.8 401884.3 589226.9
venture 1187.5 1597.5 0.0/0.0 1773.5 1970.7
video pinball 17667.9 469365.8 228642.5/572898.3 546197.4 999383.2
wizard of wor 4756.5 13170.5 4203.0/9157.5 46204.0 144362.7
yars revenge 54576.9 102759.8 80530.1/84231.1 148594.8 995048.4
zaxxon 9173.3 25215.5 1148.5/32935.5 42285.5 224910.7

Table 4: Performance of R2D2 (averaged over 3 seeds) compared to Reactor, IMPALA (shallow and deep
expert variants), and Ape-X, with 30 random no-op starts. Ape-X uses best score attained during training,
whereas all other agents use final scores.
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R2D2
Ape-X
R2D2 Feed-Forward

Figure 10: Learning curves on 57 Atari games: R2D2 (3 seeds), Ape-X and R2D2-feed-forward (1
seed each).
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Human-Normalized Scores

R2D2
R2D2+

IMPALA (original)

IMPALA
IMPALA (Deep)

Figure 11: Per-level breakdown of DMLab-30 performance. Comparison between R2D2 and IM-
PALA trained for the same number of environment frames. The shallow-network and deep-network
versions are overlaid for each algorithm.
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