
Workshop track - ICLR 2017

ON HYPERPARAMETER OPTIMIZATION IN LEARNING
SYSTEMS

Luca Franceschi1,2, Michele Donini1, Paolo Frasconi3, Massimiliano Pontil1,2

(1) Istituto Italiano di Tecnologia, Genoa, 16163 Italy
(2) Dept of Computer Science, University College London, London, WC1E 6BT, UK
(3) Dept of Information Engineering, Università degli Studi di Firenze, Firenze, 50139, Italy

ABSTRACT

We study two procedures (reverse-mode and forward-mode) for computing the
gradient of the validation error with respect to the hyperparameters of any iterative
learning algorithm. These procedures mirror two ways of computing gradients
for recurrent neural networks and have different trade-offs in terms of running
time and space requirements. The reverse-mode procedure extends previous work
by Maclaurin et al. (2015) and offers the opportunity to insert constraints on the
hyperparameters in a natural way. The forward-mode procedure is suitable for
real-time hyperparameter updates, which may significantly speedup the overall
hyperparameter optimization process.

1 INTRODUCTION

We study the problem of selecting the hyperparameters of a learning algorithm by gradient-based
optimization (Bengio, 2000). We see the training procedure by stochastic gradient descent or its
variants (momentum, RMSProp, ADAM, etc.) as a dynamical system with a state st ∈ Rd that col-
lects weights and possibly accessory variables such as velocities and accumulated squared gradients.
The dynamic is defined by the system of equations

st = Φt(st−1, λ), t = 1, . . . , T (1)

where T is the number of iterations, s0 is a starting state, and Φt : (Rd × Rm) → Rd is a smooth
mapping that represents the operation performed by the t-th step of the optimization algorithm (i.e.
on mini-batch t). Finally, λ ∈ Rm is the vector of hyperparameters that we wish to tune. As a
simple example consider training a neural network by momentum, in which case st = (vt, wt) =
(µvt−1−η∇Jt(wt−1), µvt−1−η∇Jt(wt−1) +wt−1), where Jt is the objective associated with the
t-th mini-batch. In this example, λ = (µ, γ).

Note that the iterates s1, . . . , sT implicitly depend on the vector of hyperparameters λ. Our goal is
to optimize the hyperparameters according to a certain error function E evaluated at the last iterate
sT . Specifically, we wish to solve the problem

min
λ
fT (λ) (2)

where the function fT : Rm → R is defined at λ ∈ Rm as fT (λ) = E(sT (λ)).

We highlight the generality of the framework. The vector of hyperparameters λmay include compo-
nents associated with the training objective, and components associated with the iterative algorithm.
For example, the training objective may depend on hyperparameters used to design the loss function
as well as multiple regularization parameters. Yet other components of λ may be associated with
the space of functions used to fit the training data (e.g. number of layers and weights of a neural
network, parameters associated with the kernel function used within a kernel-based method, etc.).

2 FORWARD-MODE COMPUTATION

Our first approach to compute the hypergradient, displayed in the appendix as FORWARD-HO, uses
the chain rule for the derivative of composite functions (we regard the gradient of a scalar function

1



Workshop track - ICLR 2017

as a row vector) to obtain that

∇fT (λ) = ∇E(sT )
dsT
dλ

(3)

where dsT
dλ is the d×m matrix formed by the total derivative of the components of sT (regarded as

rows) with respect to the components of λ (regarded as columns).

The operators Φt depends on the hyperparameter λ both directly by its expression and indirectly
through the state st−1. Using again the chain rule we have, for every t ∈ {1, . . . , T}, that

dst
dλ

=
∂Φt(st−1, λ)

∂st−1

dst−1

dλ
+
∂Φt(st−1, λ)

∂λ
. (4)

For every t ∈ {1, . . . , T}, we define the matricesZt = dst
dλ ,At = ∂Φt(st−1,λ)

∂st−1
andBt = ∂Φt(st−1,λ)

∂λ .
Using these, we rewrite equation (4) as the recursion

Zt = AtZt−1 +Bt, t ∈ {1, . . . , T}. (5)

Combining equations (3) and (5) we obtain that

∇fT (λ) = ∇E(sT )ZT = ∇E(sT )(ATZT−1 +BT ) = · · · = ∇E(sT )

T∑
t=1

(At+1 · · ·AT )Bt. (6)

From the above derivation it is apparent that ∇fT (λ) can be computed by an iterative algorithm
which runs in parallel as the training algorithm. Furthermore, it is apparent that partial hypergradi-
ents

∇ft(λ) =
dE(st)

dλ
= ∇E(st)Zt (7)

are available at each time step t = 1, . . . , T of FORWARD-HO and not only at the end. This means
that we are allowed to update hyperparameters several times in a single optimization epoch, without
having to wait until time T . This approach is reminiscent of (Williams & Zipser, 1989, Eq. (2.10))
for real time recurrent learning and may be suitable in the case of a data stream (i.e. T =∞), where
the REVERSE-HO algorithm (see below) would be hardly applicable.

3 REVERSE-MODE COMPUTATION

The second approach to compute the hypergradient leads to an extension of the backward algorithm
presented in (Maclaurin et al., 2015), which turns out to be structurally identical to backpropagation
through time (Werbos, 1990). We start by reformulating problem (2) as the constrained optimization
problem

min
λ,s1,...,sT

E(sT ) s.t. st = Φt(st−1, λ), t ∈ {1, ..., T}. (8)

This formulation closely follows a classical Lagrangian formalism used to derive the backpropa-
gation algorithm (LeCun, 1988). Furthermore, the framework naturally allows us to incorporate
constraints on the hyperparameters. The Lagrangian of problem (8) is L(s, λ, α) = E(sT ) +∑T
t=1 αt(Φt(st−1, λ) − st), where, for each t ∈ {1, ..., T}, αt ∈ Rd is a row vector of Lagrange

multipliers associated with the t-th step of the dynamic.

Setting the partial derivatives of the Lagrangian w.r.t. st to zero gives αT = E(sT ) and
αt = E(sT )AT · · ·At+1 if t ∈ {1, ..., T − 1}. Furthermore a direct computation gives that
∂L
∂λ = ∇E(sT )

∑T
t=1 (At+1 · · ·AT )Bt, which coincides with the expression for the gradient of f

in equation (6). The pseudocode of the algorithm is reported in the appendix and denoted REVERSE-
HO.

4 EXPERIMENTS

We present two preliminary experiments which highlight the potential of the HO framework.

In the first experiment, we used the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). As features we
employed the pre-activation of the second last layer of Inception-V3 model trained on ImageNet1.

1http://download.tensorflow.org/models/image/imagenet/

2



Workshop track - ICLR 2017

Accuracy
STL 0.7064

NMTL 0.7160
HMTL 0.7284

HMTL-S 0.7301

Accuracy CPU Time
Baseline 0.4567 712
RT-HO 0.4616 412

Figure 1: Left: test accuracy on CIFAR-10 for Single Task Learning (STL), Naive MTL (NMTL) and our
approach without (HMTL) and with (HMTL-S) the L1 constraint on A. Center: relationship graph of CIFAR-
10 classes. Right: frame level phone state classification accuracy on the test set (Accuracy) and CPU time
in seconds for grid-search on ρ (Baseline), and real-time hyperparameter optimization with FORWARD-HO
(RT-HO). In RT-HO we update the hyperparameters every 20 steps of SGDM and we employ an early stopping
mechanism to prevent overfitting on the training set.

We extracted 50 examples as the training set, 50 examples as the validation set, and the remaining
49900 examples as the test set. We are interested in learning matrix W = [w1, . . . , wK ], where
each column is the model for a specific class and K is the number of classes. In order to leverage
information among the different classes we add a multi-task learning (MTL) regularizer (Evgeniou
et al., 2005) ΩA,ρ(W ) =

∑K
j,k=1Aj,k‖wj − wk‖22 + ρ

∑K
k=1 ‖wk‖2, where the symmetric matrix

A models the interactions between the classes/tasks. We compared this model to the Naive MTL
(NMTL) in which the tasks are equally related, that is Aj,k = a for every 1 ≤ i, j ≤ K. In
this case we have two hyperparameters (a, ρ ≥ 0). We used a regularized training error defined as
Etr(W ) =

∑
i∈Dtr

`(Wxi+ b, yi)+ΩA,ρ(W ) where `(·, ·) is the softmax regression loss. We wish
solve the following optimization problem min

{
Eval(WT , bT ) subject to ρ ≥ 0, A ≥ 0

}
, where

(wT , bT ) is the T -th iteration obtained by running ADAM on the training objective. The hyper-
iterations are optimized by projected ADAM on the set {(ρ,A) : ρ ≥ 0, A ≥ 0}. We compare
the following methods: Single Task Learning (STL) using a validation set to tune the optimal value
of ρ for each task; Naive MTL (NMTL) where the hyperparameters a and ρ are validated; our
hyperparameter optimization method in REVERSE-HO to tuneA and ρ (HMTL); as a way to remove
spurious relationships among the tasks we further imposed the constraint

∑K
j,k=1Aj,k ≤ R, where

R = 10−3. This last method is denoted HMTL-S. The accuracy of each method is presented in
Figure 1 (left). Figure 1 (Center) shows matrix A (obtained using HMTL-S) as an adjacency graph,
highlighting the discovered task relationships.

The aim of the second experiment is to assess the efficacy of the real-time FORWARD-HO algorithm.
We run experiments on a small subset of the TIMIT phonetic recognition dataset2 (Garofolo et al.,
1993). The primary target is to learn a mapping fP : R123 → {0, 1}183 from frame vectors of Mel-
filter banks to mono-phone states. The training set Dtr is augmented to include 300-dimensional
real vectors of context-dependent phonetic embeddings, which serve as targets for a secondary task
of learning a mapping fS : R123 → R300. It is assumed that fP and fS share an intermediate
representation, see (Badino, 2016) and references therein. We implemented fP and fS as two five-
layers feed-forward neural networks with partially shared parameters WP and WS . The networks
are trained to jointly minimize Etot(W

P ,WS) = EP (WP ) + ρES(WS), where the primary er-
ror EP is given by cross-entropy loss on the phone states y, the secondary error ES is given by
mean squared error on the embedding vectors and ρ ≥ 0 is a design hyperparameter. Since we
are ultimately interested in learning fP , we formulate the hyperparameter optimization problem as
min

{
Eval(W

P
T ) subject to ρ, η ≥ 0, 0 ≤ µ ≤ 1

}
, where Eval(W

P
T ) is the cross entropy loss com-

puted on a validation set after T iterations of real-time gradient descent with momentum (RT-HO),
and η and µ are respectively the learning rate and momentum factor of the learning dynamics. The
optimization of the hyperparameters is carried out as in the previous experiment with the excep-
tion that we use FORWARD-HO algorithm to compute online partial hypergradients. Preliminary
results reported in Figure 1 (Right) suggest that the simultaneous optimization of parameters and
hyperparameters (the latter optimized via real-time hypergradient descent on the validation error)
could bring to faster convergence and improved generalization performances. Current efforts aim to
experiment the method on larger and deeper networks trained on full TIMIT dataset.

2Roughly a twelfth of the full dataset. The test set employed is instead the standard one.

3



Workshop track - ICLR 2017

APPENDIX

We report the two algorithms presented in the main body of the paper.

Algorithm 1 FORWARD-HO

Input: λ current values of the hyper-parameters, s0 initial optimization state
Output: Gradient of validation error w.r.t. λ
Z0 = 0
for t = 1 to T do
st = Φ(st−1, λ)
Zt = AtZt−1 +Bt

end for
return ∇E(s)ZT

Algorithm 2 REVERSE-HO

Input: λ current values of the hyper-parameters, s0 initial optimization state
Output: Gradient of validation error w.r.t. λ
for t = 1 to T do
st = Φ(st−1, λ)

end for
αT = ∇E(sT )
g = 0
for t = T − 1 downto 1 do
αt = αt+1At+1

g = g + αtBt
end for
return g

Let g(d,m) and h(d,m) denote time and space required to evaluate Φ, respectively. By basic facts
from the algorithmic differentiation literature (Griewank & Walther, 2008) (see longer version of this
paper for details), the FORWARD-HO algorithm runs in timeO(Tmg(d,m)) and spaceO(h(d,m)),
whereas REVERSE-HO runs in time O(Tg(d,m)) and space O(Th(d,m)).

ACKNOWLEDGEMENTS

We wish to thank Leonardo Badino for useful comments and providing the TIMIT dataset.

REFERENCES

Leonardo Badino. Phonetic context embeddings for dnn-hmm phone recognition. In Proceedings
of Interspeech, pp. 405–409, 2016.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889–
1900, 2000.

Theodoros Evgeniou, Charles A Micchelli, and Massimiliano Pontil. Learning multiple tasks with
kernel methods. Journal of Machine Learning Research, 6(Apr):615–637, 2005.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathon G Fiscus, and David S Pallett. Darpa
timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1. NASA STI/Recon
technical report n, 93, 1993.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, Second Edition. Society for Industrial and Applied Mathematics,
second edition, 2008.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

4



Workshop track - ICLR 2017

Yann LeCun. A Theoretical Framework for Back-Propagation. In Geoffrey Hinton and Terrence
Sejnowski (eds.), Proc. of the 1988 Connectionist models summer school, pp. 21–28. Morgan
Kaufmann, 1988.

Dougal Maclaurin, David K Duvenaud, and Ryan P Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In ICML, pp. 2113–2122, 2015.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

5


	Introduction
	Forward-Mode Computation
	Reverse-Mode Computation
	Experiments

