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ABSTRACT

We present preliminary results on extending Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017a) to fast adaptation to new classification tasks in the
presence of unlabeled data. Using synthetic data, we show that MAML can adapt
to new tasks without any labeled examples (unsupervised adaptation) when the
new task has the same output space (classes) as the training tasks do. We further
extend MAML to the semi-supervised few-shot learning scenario, when the output
space of the new tasks can be different from the training tasks.

1 INTRODUCTION

We consider the problem of fast adaptation to new classification tasks in the presence of unlabeled
data. This problem is topical in many practical applications: As an example, consider a material
recognition system deployed in multiple factories. The recognition tasks at different sites often share
the output space, that is the same categories of materials need to be recognized. However, factories
may have slightly different lighting conditions or other factors affecting the recognition process, so
there is a need for fast adaptation of every recognition system. Oftentimes, the output space also
differs across factories but it is still desirable to transfer the knowledge from old recognition tasks
to the new ones. In many such situations, collecting unlabeled data is cheap while labeling the data
is laborious, therefore it is highly desirable to be able to adapt from a few labeled examples. We call
this problem semi-supervised few-shot learning and here we show how it can be addressed by the
recently introduced Model-Agnostic Meta-Learning (MAML, Finn et al., 2017a).

2 MAML ADAPTATION WITH THE USE OF UNLABELED DATA

Suppose there exists a set of related classification tasks in which each i-th task is described by data
D(i) = {(xj , yj)} with inputs xj and targets yj . In MAML, a common classifier y ≈ f(x,θ) is
adapted to task i by updating its parameters θ using one or more gradient descent steps:

θi = θ∗ −α
∑

(xj ,yj)∈D(i)
train

∇θL (f(xj ,θ), yj)

∣∣∣∣
θ=θ∗

, (1)

where L is the loss function computed on the training samples D(i)
train. The initial values θ∗ and the

vector of learning rates α are the parameters tuned during MAML training. Training happens by
going through a set of tasks, adapting the classifier to each task using (1) and updating the parameters
θ∗, α so as to optimize the performance of the adapted models f(x,θi) on the validation sets D(i)

val .
This optimization is performed using standard backpropagation, which involves a gradient through
a gradient since the computation of θi contains ∇θL.

Unsupervised adaptation. We first consider the case when the output space of the tasks stays
constant but the input distributions of tasks vary. In this case, the adaptation to new tasks may
be done in a purely unsupervised manner without the use of labeled examples from the new task.
We perform classification in two steps: 1) inputs x are transformed into features z using function
z = f(x,θ) with parameters θ; 2) predicted labels are computed using function ŷ = g(z,ω) with
parameters ω. The idea is that when a new task contains only unlabeled data, one can use MAML to
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Figure 1: Learning curves of MAML on the toy sine regression dataset from (Finn et al., 2017a) for
different learning rate couplings. The constant learning rate was reported by the original paper.

adapt only the feature extractor f and keeping the classifier g constant. The adaptation can be done
with a gradient-based based rule similar to (1):

θi = θ∗ −α
∑

xj∈D(i)
train

∇θC (f(xj ,θ))

∣∣∣∣
θ=θ∗

, (2)

where C is some kind of a cost function that measures the quality of the extracted features. Several
auxiliary cost functions using unlabeled data have been proposed in the literature to improve the
classification performance in the semi-supervised scenario (see, e.g., Grandvalet & Bengio, 2005;
Rasmus et al., 2015; Miyato et al., 2015; Laine & Aila, 2016; Tarvainen & Valpola, 2017). Instead
of specifying that extra cost, we propose to parametrize it with a neural network C(z,φ) with
parameters φ and learn it in the same meta-training procedure. Similar to the supervised case, the
parameters are tuned to optimize the performance on the validation sets:

min
θ∗,α,ω,φ

∑
i

∑
(xj ,yj)∈D(i)

val

L (g(f(xj ,θi),ω), yj) . (3)

Note that this learning algorithm is essentially equivalent to the two-head architecture proposed by
Finn et al. (2017b) for imitation learning.

Semi-supervised adaptation is relevant for problems when the output space varies across different
tasks. Since the output space of the classification task can change, we now need to adapt both the
feature extractor f and the classifier g. We again first use unlabeled data to adapt the feature extractor
using (2) with a meta-trained cost function C. And finally we use labeled data to adapt the classifier
parameters ω using an update rule similar to (1). The difference to the fully supervised case is
that the loss function is computed using the adapted features z instead of raw inputs x. Again, the
parameters are tuned to optimize the performance on the validation sets D(i)

val . The tuned parameters
are θ∗, α, φ, ω and αω which is the learning rate for adapting ω.

Importance of decoupling learning rates. Note that using different learning rates α and αω
was crucial to make this approach work. This could be attributed to the difficulty in balancing the
training signals provided by the labeled and unlabeled samples. In the method proposed here, the
unsupervised cost is forced to be developed because the feature extraction part of the network is
solely adapted using the unsupervised loss. We explored different learning rate schemes in MAML
and found layer-wise or parameter-wise learning rates to be an important factor in balancing the
signals. Fig. 1 illustrates that decoupling learning rates can significantly improve the performance
of adapted models, which supports the results reported by Li et al. (2017). Useful insights on the
role of the learning rates in MAML were recently provided by Anonymous (2018).

3 EXPERIMENTS WITH SYNTHETIC DATA

We tested the proposed algorithms on a synthetic dataset from (Boney & Ilin, 2017). The dataset
consists of a set of two-dimensional classification tasks with two classes, in which the optimal
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decision boundary is a sine wave (see Fig. 2). The amplitude A of the optimal decision boundary
varies across tasks within [0.1, 5.0] and the phase ψ varies within [0, 2π]. The first dimension of
the data samples is drawn uniformly from [−5, 5] and the second dimension is computed as x2 =
A sin(x1+ψ)+c, where c is a noise term with the Laplace distribution with the mean±2 (depending
on the class) and the scale parameter 0.5. We sampled 100 tasks for training and 1000 for testing.

Figure 2: Examples of adaptation in the sine dataset. The black dots correspond to samples of one
class and the white dots correspond to samples from the other class. The blue dots correspond to
unlabeled samples. The optimal decision boundary is shown with the dashed blue line. The red
line depicts the decision boundaries of the adapted model. Left: Example task. Middle: Example
of unsupervised adaptation to a test task from 100 unlabeled samples. Right: Example of semi-
supervised adaptation to a test task from 10 labeled samples and 100 unlabeled samples.

Examples of the decision boundaries produced by MAML on test tasks are shown in Fig. 2. Note
that even for a small number of labeled examples the adapted decision boundaries resemble the sine
wave, thus the knowledge is transferred between tasks. The classification accuracy of the models
adapted with MAML are shown in Fig. 3. We compare the MAML approach to semi-supervised
few-shot learning with Prototypical Networks (PN), as proposed in (Boney & Ilin, 2017). We use a
fully connected network with two hidden layers of size 100 with ReLU nonlinearity as the feature
extractor and the sum of squares of a two dimensional linear projection as the parametrization of
the unsupervised cost. One can see that in this experiment PN generally performs better in the fully
supervised setting, while MAML is much more efficient in making use of unlabeled data. In fact, its
performance was very close to the fully supervised case using true labels of the unlabeled samples.
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Figure 3: Classification errors of adapted models as functions of the number n of unlabeled samples.
Left: Unsupervised adaptation. The dotted lines depicts the accuracy of the adapted model using
the same number n of labeled samples. Right: Semi-supervised adaptation with 10 labeled plus
n unlabeled samples. The dashed and dotted lines depicts the error rates of the (fully supervised)
adapted model using 10 and n+ 10 labeled samples respectively.

4 DISCUSSION AND FUTURE WORK

In this work, we proposed an extension of MAML to the cases of unsupervised and semi-supervised
few-shot adaptation. Using a synthetic dataset, we show that MAML can be more efficient in using
unlabeled data compared to other techniques. We continue investigating whether the proposed ap-
proach is practical for larger datasets and how to combine the good properties of MAML and PN in
a single adaptation scheme.
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