
Workshop track - ICLR 2018

ONLINE VARIANCE-REDUCING OPTIMIZATION

Nicolas Le Roux
Google Brain
nlr@google.com

Reza Babanezhad
University of British Columbia
rezababa@cs.ubc.ca

Pierre-Antoine Manzagol
Google Brain
manzagop@google.com

ABSTRACT

We emphasize the importance of variance reduction in stochastic methods and
propose a probabilistic interpretation as a way to store information about past
gradients. The resulting algorithm is very similar to the momentum method, with
the difference that the weight over past gradients depends on the distance moved
in parameter space rather than the number of steps.

1 INTRODUCTION

We are interested in minimizing `(θ) = Ex[`(θ, x)], which we shall denote the true error. To that
extent, we have access to a stream of examples x1, . . . , xt, . . ., coming in sequential order. At any
time step t, we shall define the training error to be

¯̀
t(θ) =

1

t

∑
i

`(θ, xi) . (1)

Most optimization algorithms aim at accelerating the convergence speed of this minimization prob-
lem by improving its conditioning. This can be done by building a low-rank approximation of the
inverse Hessian, like in L-BFGS (Nocedal & Wright, 2006), by casting the Newton direction as
the solution of a quadratic problem approximately solved (Martens, 2010), by finding the steepest
direction in an appropriate Riemannian space (Amari, 1998) or approximation thereof (Martens &
Grosse, 2015), or by building online diagonal approximation of the Hessian (LeCun et al., 1998;
Duchi et al., 2011; Kingma & Ba, 2014).

Another line of research looked at ways to reduce the variance of stochastic updates in order to
boost convergence speeds. Indeed, the convergence rate of the original stochastic gradient algo-
rithm (Robbins & Monro, 1951) depends on that variance (see, e.g., Theorem 6.2 from Bubeck et al.
(2015)). In particular, a lot of work has been done in the finite training set setting to obtain stochastic
methods with linear convergence rate for strongly convex problems, e.g. SAG (Le Roux et al., 2012;
Schmidt et al., 2017), SDCA (Zhang et al., 2013; Shalev-Shwartz & Zhang, 2013), SVRG (Johnson
& Zhang, 2013), SAGA (Defazio et al., 2014) and MISO (Mairal, 2013).

Interestingly, there has been little work in extending this approach to the online setting, most of
it involving a growing batch strategy (Babanezhad et al., 2015; Hofmann et al., 2015), with the
exception of TONGA (Le Roux & Fitzgibbon, 2010) which built an online estimate of the covariance
matrix. However, the algorithm was too brittle to be of practical use.

Another class of algorithms aimed at robustifying stochastic gradient uses an average of past gradi-
ents to perform each update. This is for instance the case of momentum (Goh, 2017) which applies
the following update to θ:

θt = θt−1 − γt
t∑
i=1

αt−ig(θi, xi) . (2)

that is the update is a weighted combination of all past gradients where the weights are exponentially
decreasing. While this decreases the variance, it does so only by a constant amount, and thus the
variance of the updates does not converge to 0, requiring γt to decrease to 0 to ensure convergence.

Momentum has often been presented as a way to fight curvature (see, e.g., (Goh, 2017)). However, in
an online setting, while g(θt, xt) is an unbiased estimate of g(θt), the variance of this estimate can be

1



Workshop track - ICLR 2018

arbitrarily large and does not go down to 0. A potential strategy is to gather more samples to reduce
the variance of the update while keeping its unbiasedness, as proposed for instance by Friedlander
& Schmidt (2012) in the finite setting. We will now show how a specific instance of momentum can
indeed be seen as doing variance reduction.

2 HANDLING STOCHASTICITY

The variance of gradients at θ is C(θ) = Ex[‖g(θ, x) − g(θ)‖2]. While this bears resemblance
with the Fisher information matrix, the expectation is taken under the data distribution, not the
model distribution. It is sometimes called the empirical Fisher matrix (Martens, 2014) but contains
very different information. For instance, in the case of the quadratic function `(θ, xi) = ‖θ −
xi‖2/2, the Hessian and the Fisher information matrix are both equal to the identity matrix I while
the covariance C is equal to the covariance of the xi’s. Thus, one can easily be changed without
changing the others.

Now that we have shown that the covariance matrix need not be related to the Hessian nor to the
Fisher matrix, it remains to be seen how to use it to do variance reduction. In particular, we would
like to find an algorithm whose updates have a variance going to 0, which would make convergence
possible with a fixed stepsize, eliminating one of the main hassles of online methods.

Our approach will be centered around the reuse of old gradients. As these gradients have been
computed for other values than θt, the resulting update will be biased and one must trade off variance
for bias. This is the strategy used in SAG (Le Roux et al., 2012), where the variance of the updates
goes down to 0 despite the batch size being constant 1.

Early on in the optimization, θ will change quickly and old gradients will greatly increase the bias.
Further, the variance of the gradients tends to be smaller compared to the mean in the early iterations,
reducing the interest of batching examples. Close to convergence, however, a different situation
occurs. Not only is the variance much larger than the average gradient, θ moves much less and the
incurred bias of using old gradients is small.

Thus, an intuitive strategy would be to keep few gradients early on then to progressively increase
the effective batch size as optimization progresses. Since we would like the variance to decrease as
1/t, this means the effective batch size should grow linearly with t.

2.1 TRACKING THE TRUE GRADIENT

Every time we sample a function `(·, x) and compute its gradient in θ, we get more information
about the gradient of the average function ¯̀. The idea is to carry over this information from sample
to sample to get an increasingly accurate estimate of the true gradient.

Let us start with a non-informative prior: g(θ0) ∼ N (0,+∞). We then compute g(θ0, x1). Assum-
ing the gradients are distributed according to a Gaussian of constant variance C, we get

g(θ0)|g(θ0, x1) ∼ N (g(θ0, x1), C) . (3)
We then perform an update δ1 to get θ1 = θ0 + δ1. If we have an upper bound L on the Hessian of
`, we can approximate the new posterior by

g(θ1)|g(θ0, x1) ∼ N
(
g(θ0, x1) +

L+ µ

2
δ1, C +

(L− µ)2

4
‖δ1‖2I

)
. (4)

The posterior in Eq. (4) differs from the posterior in Eq. (3) in two ways:

• The mean has been shifted to account for the displacement δ1 in parameter space. Ideally,
the mean would be shifted by Hδ1 but H is unknown so an approximation based on the
upper and lower bounds is used instead. Shifting the mean is critical for convergence.

• The variance of the posterior increases by (L−µ)2
4 ‖δ1‖2 to account for the uncertainty in

the Hessian. We see that this increase in variance is driven both by the difference between
µ and L, which is directly related to the uncertainty around the true Hessian, and by the
length of the displacement ‖δ1‖ which compounds the uncertainty in the Hessian.

1SAGA (Defazio et al., 2014) is more careful and reduces the variance while keeping the updates unbiased.

2



Workshop track - ICLR 2018

We may then sample x2, compute g(θ1, x2) and update our posterior. Assuming µ = 0 to unclutter
notation, we get g(θ1)|{g(θ0, x1), g(θ1, x2)} ∼ N (µ1, C1) with

µ1 =

(
2C +

L2

4
‖δ1‖2I

)−1(
C

(
g(θ0, x1) +

L

2
δ1

)
+

(
C +

L2

4
‖δ1‖2I

)
g(θ1, x2)

)
(5)

C1 =

(
2C +

L2

4
‖δ1‖2I

)−1(
C2 +

L2

4
‖δ1‖2C

)
. (6)

Analyzing the mean and the covariance of that posterior in more detail, we observe that:

• When we do a large parameter update, ‖δ1‖ is very large and we get µ1 ≈ g(θ1, x2) and
C1 ≈ C. The posterior is centered around the new gradient, which makes sense since,
because of the large move in parameter space and uncertainty around the Hessian, the old
gradient does not provide any information anymore. This dynamic will be observed early
on in the optimization where large progress is made and our method will be equivalent to
pure stochastic gradient.
• With a small parameter update, ‖δ1‖ << 1 and µ1 ≈ 1

2 (g(θ0, x1) + g(θ1, x2)) and C1 ≈
C
2 . The posterior is the average of the two computed gradients since, due to the very small
parameter update, the old gradient has low bias but helps decrease the variance. We see
that the variance is halved compared to using just the last computed gradient. This is the
regime in which we will be as we get closer to a local optimum and the variance of our
posterior will converge to 0 at a rate 1/t.

Thus, this algorithm automatically transitions from pure stochastic gradient to gradient averaging
and it does so at a speed which depends on the covariance of the gradients and the size of the
move in parameter space. This is similar to acceleration which uses an increasing momentum of
the form 1− 3/t but where the increase depends on the specificity of the problem rather than being
predetermined.

3 EXPERIMENTS

We only have preliminary experiments on both a linear regression and a logistic regression prob-
lem. Fig. 1 shows that our methods seems to converge for a constant stepsize when both stochastic
gradient and momentum plateau. We see that the first results seem to indicate a convergence, even

Figure 1: Comparison of stochastic gradient, momentum and Bayes optimizer on a linear regression
(left) and a logistic regression (right) problems.

for a fixed stepsize. However, we assumed here knowledge of L and C. It is yet unclear how this
algorithm would perform when these quantities have to be estimated. Finally, a convergence proof
might help find appropriate values for the constant stepsize.

3



Workshop track - ICLR 2018

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, February 1998.

Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konec̆ný, and
Scott Sallinen. Stop wasting my gradients: Practical svrg. In Advances in Neural Information
Processing Systems, 2015.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends R© in Machine Learning, 8(3-4):231–357, 2015.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pp. 1646–1654, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams. Variance re-
duced stochastic gradient descent with neighbors. In Advances in Neural Information Processing
Systems, pp. 2305–2313, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pp. 315–323, 2013.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nicolas Le Roux and Andrew Fitzgibbon. A fast natural Newton method. In Proceedings of ICML
2010, 2010.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an expo-
nential convergence rate for finite training sets. In Advances in Neural Information Processing
Systems, pp. 2663–2671, 2012.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade. Springer, 1998.

Julien Mairal. Optimization with first-order surrogate functions. In Proceedings of The 30th Inter-
national Conference on Machine Learning, pp. 783–791, 2013.

James Martens. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742,
2010.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Confer-
ence on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2408–
2417. PMLR, 2015. URL http://proceedings.mlr.press/v37/martens15.html.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2).
In Soviet Mathematics Doklady, volume 27-2, pp. 372–376, 1983.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, second edition,
2006.

4

http://distill.pub/2017/momentum
http://proceedings.mlr.press/v37/martens15.html


Workshop track - ICLR 2018

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss. Journal of Machine Learning Research, 14(1):567–599, February 2013. ISSN 1532-4435.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number inde-
pendent access of full gradients. In Advances in Neural Information Processing Systems, pp.
980–988, 2013.

5


