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ABSTRACT

Bilinear models provide rich representations compared with linear models. They
have been applied in various visual tasks, such as object recognition, segmen-
tation, and visual question-answering, to get state-of-the-art performances tak-
ing advantage of the expanded representations. However, bilinear representations
tend to be high-dimensional, limiting the applicability to computationally com-
plex tasks. We propose low-rank bilinear pooling using Hadamard product for an
efficient attention mechanism of multimodal learning. We show that our model
outperforms compact bilinear pooling in visual question-answering tasks with the
state-of-the-art results on the VQA dataset, having a better parsimonious property.

1 INTRODUCTION

Bilinear models (Tenenbaum & Freeman, 2000) provide richer representations than linear models.
To exploit this advantage, fully-connected layers in neural networks can be replaced with bilinear
pooling. The outer product of two vectors (or Kroneker product for matrices) is involved in bilinear
pooling, as a result of this, all pairwise interactions among given features are considered. Recently, a
successful application of this technique is used for fine-grained visual recognition (Lin et al., 2015).

However, bilinear pooling produces a high-dimensional feature of quadratic expansion, which may
constrain a model structure and computational resources. For example, an outer product of two
feature vectors, both of which have 1K-dimensionality, produces a million-dimensional feature vec-
tor. Therefore, for classification problems, the choice of the number of target classes is severely
constrained, because the number of parameters for a standard linear classifier is determined by mul-
tiplication of the size of the high-dimensional feature vector and the number of target classes.

Compact bilinear pooling (Gao et al., 2016) reduces the quadratic expansion of dimensionality by
two orders of magnitude, retaining the performance of the full bilinear pooling. This approximation
uses sampling-based computation, Tensor Sketch Projection (Charikar et al., 2002; Pham & Pagh,
2013), which utilizes an useful property that Ψ(x⊗ y, h, s) = Ψ(x, h, s) ∗Ψ(y, h, s), which means
the projection of outer product of two vectors is the convolution of two projected vectors. Here, Ψ is
the proposed projection function, and, h and s are randomly sampled parameters by the algorithm.
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Nevertheless, compact bilinear pooling embraces two shortcomings. One comes from the sampling
approach. Compact bilinear pooling relies on a favorable property, E[〈Ψ(x, h, s),Ψ(y, h, s)〉] =
〈x, y〉, which provides a basis to use projected features instead of original features. Yet, calculating
the exact expectation is computationally intractable, so, the random parameters, h and s are fixed
during training and evaluation. This practical choice leads to the second. The projected dimension
of compact bilinear pooling should be large enough to minimize the bias from the fixed parame-
ters. Practical choices are 10K and 16K for 512 and 4096-dimensional inputs, respectively (Gao
et al., 2016; Fukui et al., 2016). Though, these compacted dimensions are reduced ones by two
orders of magnitude compared with full bilinear pooling, such high-dimensional features could be a
bottleneck for computationally complex models.

We propose low-rank bilinear pooling using Hadamard product (element-wise multiplication),
which is commonly used in various scientific computing frameworks as one of tensor operations.
The proposed method factors a three-dimensional weight tensor for bilinear pooling into three two-
dimensional weight matrices, which enforces the rank of the weight tensor to be low-rank. As a
result, two input feature vectors linearly projected by two weight matrices, respectively, are com-
puted by Hadamard product, then, followed by a linear projection using the third weight matrix. For
example, the projected vector z is represented by WT

z (WT
xx ◦WT

yy), where ◦ denotes Hadamard
product.

We also explore to add non-linearity using non-linear activation functions into the low-rank bilinear
pooling, and shortcut connections inspired by deep residual learning (He et al., 2016). Then, we
show that it becomes a simple baseline model (Antol et al., 2015) or one-learning block of Multi-
modal Residual Networks (Kim et al., 2016b) as a low-rank bilinear model, yet, this interpretation
has not be done.

Our contributions are as follows: First, we propose low-rank bilinear pooling to approximate full
bilinear pooling to substitute compact bilinear pooling. Second, Multimodal Low-rank Bilinear
Attention Networks (MLB) having an efficient attention mechanism using low-rank bilinear pooling
is proposed for visual question-answering tasks. MLB achieves a new state-of-the-art performance,
and has a better parsimonious property. Finally, ablation studies to explore alternative choices,
e.g. network depth, non-linear functions, and shortcut connections, are conducted.

2 LOW-RANK BILINEAR MODEL

Bilinear models use a quadratic expansion of linear transformation considering every pair of fea-
tures.

fi =

N∑
j=1

M∑
k=1

wijkxjyk + bi = xTWiy + bi (1)

where x and y are input vectors, Wi ∈ RN×M is a weight matrix for the output fi, and bi is a bias
for the output fi. Notice that the number of parameters is L× (N ×M + 1) including a bias vector
b, where L is the number of output features.

Pirsiavash et al. (2009) suggest a low-rank bilinear method to reduce the rank of the weight matrix
Wi to have less number of parameters for regularization. They rewrite the weight matrix as Wi =
UiV

T
i where Ui ∈ RN×d and Vi ∈ RM×d, which imposes a restriction on the rank of Wi to be

at most d ≤ min(N,M).

Based on this idea, fi can be rewritten as follows:

fi = xTWiy + bi = xTUiV
T
i y + bi = 1T (UT

i x ◦VT
i y) + bi (2)

where 1 ∈ Rd denotes a column vector of ones, and ◦ denotes Hadamard product. Still, we need
two third-order tensors, U and V, for a feature vector f , whose elements are {fi}. To reduce the
order of the weight tensors by one, we replace 1 with P ∈ Rd×c and bi with b ∈ Rc, then, redefine
as U ∈ RN×d and V ∈ RM×d to get a projected feature vector f ∈ Rc. Then, we get:

f = PT (UTx ◦VTy) + b (3)

where d and c are hyperparameters to decide the dimension of joint embeddings and the output
dimension of low-rank bilinear models, respectively.
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3 LOW-RANK BILINEAR POOLING

A low-rank bilinear model in Equation 3 can be implemented using two linear mappings without
biases for embedding two input vectors, Hadamard product to learn joint representations in a mul-
tiplicative way, and a linear mapping with a bias to project the joint representations into an output
vector for a given output dimension. Then, we use this structure as a pooling method for deep neural
networks. Now, we discuss possible variations of low-rank bilinear pooling based on this model
inspired by studies of neural networks.

3.1 FULL MODEL

In Equation 3, linear projections, U and V , can have their own bias vectors. As a result, linear
models for each input vectors, x and y, are integrated in an additive form, called as full model for
linear regression in statistics:

f = PT
(
(UTx + bx) ◦ (VTy + by)

)
+ b

= PT (UTx ◦VTy + U′Tx + V′Ty) + b′. (4)

Here, U′T = diag(by) ·UT , V′T = diag(bx) ·VT , and b′ = b + PT (bx ◦ by).

3.2 NONLINEAR ACTIVATION

Applying non-linear activation functions may help to increase representative capacity of model. The
first candidate is to apply non-linear activation functions right after linear mappings for input vectors.

f = PT
(
σ(UTx) ◦ σ(VTy)

)
+ b (5)

where σ denotes an arbitrary non-linear activation function, which maps any real values into a finite
interval, e.g. sigmoid or tanh. If two inputs come from different modalities, statistics of two inputs
may be quite different from each other, which may result an interference. Since the gradient with
respect to each input is directly dependent on the other input in Hadamard product of two inputs.

Additional applying an activation function after the Hadamard product is not appropriate, since ac-
tivation functions doubly appear in calculating gradients. However, applying the activation function
only after the Hadamard product would be alternative choice (We explore this option in Section 5)
as follows:

f = PTσ
(
UTx ◦VTy

)
+ b. (6)

Note that using the activation function in low-rank bilinear pooling can be found in an implementa-
tion of simple baseline for the VQA dataset (Antol et al., 2015) without an interpretation of low-rank
bilinear pooling. However, notably, Wu et al. (2016c) studied learning behavior of multiplicative in-
tegration in RNNs with discussions and empirical evidences.

3.3 SHORTCUT CONNECTION

When we apply two previous techniques, full model and non-linear activation, linear models of two
inputs are nested by the non-linear activation functions. To avoid this unfortunate situation, we add
shortcut connections as explored in residual learning (He et al., 2016).

f = PT
(
σ(UTx) ◦ σ(VTy)

)
+ hx(x) + hy(y) + b (7)

where hx and hy are shortcut mappings. For linear projection, the shortcut mappings are linear
mappings. Notice that this formulation is a generalized form of the one-block layered MRN (Kim
et al., 2016b). Though, the shortcut connections are not used in our proposed model, as explained
in Section 6.

4 MULTIMODAL LOW-RANK BILINEAR ATTENTION NETWORKS

In this section, we apply low-rank bilinear pooling to propose an efficient attention mechanism for
visual question-answering tasks, based on the interpretation of previous section. We assumed that
inputs are a question embedding vector q and a set of visual feature vectors F over S × S lattice
space.
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4.1 LOW-RANK BILINEAR POOLING IN ATTENTION MECHANISM

Attention mechanism uses an attention probability distribution α over S × S lattice space. Here,
using low-rank bilinear pooling, α is defined as

α = softmax
(
PTα
(
σ(UT

qq · 1T ) ◦ σ(VT
FF

T )
))

(8)

where α ∈ RG×S2

, Pα ∈ Rd×G, σ is a hyperbolic tangent function, Uq ∈ RN×d, q ∈ RN ,
1 ∈ RS2

, VF ∈ RM×d, and F ∈ RS2×M . If G > 1, multiple glimpses are explicitly expressed
as in Fukui et al. (2016), conceptually similar to Jaderberg et al. (2015). And, the softmax function
applies to each row vector of α. The bias terms are omitted for simplicity.

4.2 MULTIMODAL LOW-RANK BILINEAR ATTENTION NETWORKS

Attended visual feature v̂ is a linear combination of Fi with coefficients αg,i. Each attention prob-
ability distribution αg is for a glimpse g. For G > 1, v̂ is the concatenation of resulting vectors v̂g
as

v̂ =
Gn

g=1

S2∑
s=1

αg,sFs (9)

where
f

denotes concatenation of vectors. The posterior probability distribution is an output of a
softmax function, whose input is the result of another low-rank bilinear pooling of q and v̂ as

p(a|q,F; Θ) = softmax
(
PTo
(
σ(WT

qq) ◦ σ(VT
v̂ v̂)

))
(10)

â = arg max
a∈Ω

p(a|q,F; Θ) (11)

where â denotes a predicted answer, Ω is a set of candidate answers and Θ is an aggregation of entire
model parameters.

5 EXPERIMENTS

In this section, we conduct six experiments to select the proposed model, Multimodal Low-rank
Bilinear Attention Networks (MLB). Each experiment controls other factors except one factor to as-
sess the effect on accuracies. Based on MRN (Kim et al., 2016b), we start our assessments with an
initial option of G = 1 and shortcut connections of MRN, called as Multimodal Attention Residual
Networks (MARN). Notice that we use one embeddings for each visual feature for better perfor-
mance, based on our preliminary experiment (not shown). We attribute this choice to the attention
mechanism for visual features, which provides more capacity to learn visual features. We use the
same hyper-parameters of MRN (Kim et al., 2016b), without any explicit mention of this.

The VQA dataset (Antol et al., 2015) is used as a primary dataset, and, for data augmentation,
question-answering annotations of Visual Genome (Krishna et al., 2016) are used. Validation is
performed on the VQA test-dev split, and model comparison is based on the results of the VQA
test-standard split. For the comprehensive reviews of VQA tasks, please refer to Wu et al. (2016a)
and Kafle & Kanan (2016a). The details about preprocessing, question and vision embedding, and
hyperparameters used in our experiments are described in Appendix A. The source code for the
experiments is available in Github repository1.

Number of Learning Blocks Kim et al. (2016b) argue that three-block layered MRN shows the
best performance among one to four-block layered models, taking advantage of residual learning.
However, we speculate that an introduction of attention mechanism makes deep networks hard to
optimize. Therefore, we explore the number of learning blocks of MARN, which have an attention
mechanism using low-rank bilinear pooling.

Number of Glimpses Fukui et al. (2016) show that the attention mechanism of two glimpses was
an optimal choice. In a similar way, we assess one, two, and four-glimpse models.

1https://github.com/jnhwkim/MulLowBiVQA
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Table 1: The accuracies of our experimental model, Multimodal Attention Residual Networks
(MARN), with respect to the number of learning blocks (L#), the number of glimpse (G#), the po-
sition of activation functions (tanh), answer sampling, shortcut connections, and data augmentation
using Visual Genome dataset, for VQA test-dev split and Open-Ended task. Note that our proposed
model, Multimodal Low-rank Bilinear Attention Networks (MLB) have no shortcut connections,
compared with MARN. MODEL: model name, SIZE: number of parameters, ALL: overall accu-
racy in percentage, Y/N: yes/no, NUM: numbers, and ETC: others. Since Fukui et al. (2016) only
report the accuracy of the ensemble model on the test-standard, the test-dev results of their single
models are included in the last sector. Some figures have different precisions which are rounded. ∗
indicates the selected model for each experiment.

MODEL SIZE ALL Y/N NUM ETC

MRN-L3 65.0M 61.68 82.28 38.82 49.25
MARN-L3 65.5M 62.37 82.31 38.06 50.83
MARN-L2 56.3M 63.92 82.88 37.98 53.59

* MARN-L1 47.0M 63.79 82.73 37.92 53.46

MARN-L1-G1 47.0M 63.79 82.73 37.92 53.46
* MARN-L1-G2 57.7M 64.53 83.41 37.82 54.43

MARN-L1-G4 78.9M 64.61 83.72 37.86 54.33

No Tanh 57.7M 63.58 83.18 37.23 52.79
* Before-Product 57.7M 64.53 83.41 37.82 54.43

After-Product 57.7M 64.53 83.53 37.06 54.50

Mode Answer 57.7M 64.53 83.41 37.82 54.43
* Sampled Answer 57.7M 64.80 83.59 38.38 54.73

Shortcut 57.7M 64.80 83.59 38.38 54.73
* No Shortcut 51.9M 65.08 84.14 38.21 54.87

MLB 51.9M 65.08 84.14 38.21 54.87
MLB+VG 51.9M 65.84 83.87 37.87 56.76

MCB+Att (Fukui et al., 2016) 69.2M 64.2 82.2 37.7 54.8
MCB+Att+GloVe (Fukui et al., 2016) 70.5M 64.7 82.5 37.6 55.6

MCB+Att+Glove+VG (Fukui et al., 2016) 70.5M 65.4 82.3 37.2 57.4

Non-Linearity We assess three options applying non-linearity on low-rank bilinear pooling,
vanilla, before Hadamard product as in Equation 5, and after Hadamard product as in Equation 6.

Answer Sampling VQA (Antol et al., 2015) dataset has ten answers from unique persons for each
question, while Visual Genome (Krishna et al., 2016) dataset has a single answer for each question.
Since difficult or ambiguous questions may have divided answers, the probabilistic sampling from
the distribution of answers can be utilized to optimize for the multiple answers. An instance 2 can
be found in Fukui et al. (2016). We simplify the procedure as follows:

p(a1) =

{
|a1|/Σi|ai|, if |a1| ≥ 3

0, otherwise
(12)

p(a0) = 1− p(a1) (13)

where |ai| denotes the number of unique answer ai in a set of multiple answers, a0 denotes a mode,
which is the most frequent answer, and a1 denotes the secondly most frequent answer. We define
the divided answers as having at least three answers which are the secondly frequent one, for the
evaluation metric of VQA (Antol et al., 2015),

accuracy(ak) = min (|ak|/3, 1) . (14)

2https://github.com/akirafukui/vqa-mcb/blob/5fea8/train/multi_att_2_
glove/vqa_data_provider_layer.py#L130
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Table 2: The VQA test-standard results to compare with state-of-the-art. Notice that these results
are trained by provided VQA train and validation splits, without any data augmentation.

Open-Ended MC
MODEL ALL Y/N NUM ETC ALL

iBOWIMG (Zhou et al., 2015) 55.89 76.76 34.98 42.62 61.97
DPPnet (Noh et al., 2016) 57.36 80.28 36.92 42.24 62.69
Deeper LSTM+Normalized CNN (Antol et al., 2015) 58.16 80.56 36.53 43.73 63.09
SMem (Xu & Saenko, 2016) 58.24 80.80 37.53 43.48 -
Ask Your Neurons (Malinowski et al., 2016) 58.43 78.24 36.27 46.32 -
SAN (Yang et al., 2016) 58.85 79.11 36.41 46.42 -
D-NMN (Andreas et al., 2016) 59.44 80.98 37.48 45.81 -
ACK (Wu et al., 2016b) 59.44 81.07 37.12 45.83 -
FDA (Ilievski et al., 2016) 59.54 81.34 35.67 46.10 64.18
HYBRID (Kafle & Kanan, 2016b) 60.06 80.34 37.82 47.56 -
DMN+ (Xiong et al., 2016) 60.36 80.43 36.82 48.33 -
MRN (Kim et al., 2016b) 61.84 82.39 38.23 49.41 66.33
HieCoAtt (Lu et al., 2016) 62.06 79.95 38.22 51.95 66.07
RAU (Noh & Han, 2016) 63.2 81.7 38.2 52.8 67.3

MLB (ours) 65.07 84.02 37.90 54.77 68.89

The rate of the divided answers is approximately 16.40%, and only 0.23% of questions have more
than two divided answers in VQA dataset. We assume that it eases the difficulty of convergence
without severe degradation of performance.

Shortcut Connection The contribution of shortcut connections for residual learning is explored
based on the observation of the competitive performance of single-block layered model. Since the
usefulness of shortcut connections is linked to the network depth (He et al., 2016).

Data Augmentation The data augmentation with Visual Genome (Krishna et al., 2016) question
answer annotations is explored. Visual Genome (Krishna et al., 2016) originally provides 1.7 Million
visual question answer annotations. After aligning to VQA, the valid number of question-answering
pairs for training is 837,298, which is for distinct 99,280 images.

6 RESULTS

The six experiments are conducted sequentially. Each experiment determines experimental variables
one by one. Refer to Table 1, which has six sectors divided by mid-rules.

6.1 SIX EXPERIMENT RESULTS

Number of Learning Blocks Though, MRN (Kim et al., 2016b) has the three-block layered ar-
chitecture, MARN shows the best performance with two-block layered models (63.92%). For the
multiple glimpse models in the next experiment, we choose one-block layered model for its simplic-
ity to extend, and competitive performance (63.79%).

Number of Glimpses Compared with the results of Fukui et al. (2016), four-glimpse MARN
(64.61%) is better than other comparative models. However, for a parsimonious choice, two-glimpse
MARN (64.53%) is chosen for later experiments. We speculate that multiple glimpses are one of
key factors for the competitive performance of MCB (Fukui et al., 2016), based on a large margin in
accuracy, compared with one-glimpse MARN (63.79%).

Non-Linearity The results confirm that activation functions are useful to improve performances.
Surprisingly, there is no empirical difference between two options, before-Hadamard product and
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after-Hadamard product. This result may build a bridge to relate with studies on multiplicative
integration with recurrent neural networks (Wu et al., 2016c).

Answer Sampling Sampled answers (64.80%) result better performance than mode answers
(64.53%). It confirms that the distribution of answers from annotators can be used to improve the
performance. However, the number of multiple answers is usually limited due to the cost of data
collection.

Shortcut Connection Though, MRN (Kim et al., 2016b) effectively uses shortcut connections
to improve model performance, one-block layered MARN shows better performance without the
shortcut connection. In other words, the residual learning is not used in our proposed model, MLB.
It seems that there is a trade-off between introducing attention mechanism and residual learning. We
leave a careful study on this trade-off for future work.

Data Augmentation Data augmentation using Visual Genome (Krishna et al., 2016) question an-
swer annotations significantly improves the performance by 0.76% in accuracy for VQA test-dev
split. Especially, the accuracy of others (ETC)-type answers is notably improved from the data
augmentation.

6.2 COMPARISON WITH STATE-OF-THE-ART

The comparison with other single models on VQA test-standard is shown in Table 2. The overall
accuracy of our model is approximately 1.9% above the next best model (Noh & Han, 2016) on the
Open-Ended task of VQA. The major improvements are from yes-or-no (Y/N) and others (ETC)-
type answers. In Table 3, we also report the accuracy of our ensemble model to compare with other
ensemble models on VQA test-standard, which won 1st to 5th places in VQA Challenge 20163. We
beat the previous state-of-the-art with a margin of 0.42%.

Table 3: The VQA test-standard results for ensemble models to compare with state-of-the-art. For
unpublished entries, their team names are used instead of their model names. Some of their figures
are updated after the challenge.

Open-Ended MC
MODEL ALL Y/N NUM ETC ALL

RAU (Noh & Han, 2016) 64.12 83.33 38.02 53.37 67.34
MRN (Kim et al., 2016b) 63.18 83.16 39.14 51.33 67.54
DLAIT (not published) 64.83 83.23 40.80 54.32 68.30
Naver Labs (not published) 64.79 83.31 38.70 54.79 69.26
MCB (Fukui et al., 2016) 66.47 83.24 39.47 58.00 70.10

MLB (ours) 66.89 84.61 39.07 57.79 70.29
Human (Antol et al., 2015) 83.30 95.77 83.39 72.67 91.54

7 RELATED WORKS

MRN (Kim et al., 2016b) proposes multimodal residual learning with Hadamard product of low-rank
bilinear pooling. However, their utilization of low-rank bilinear pooling is limited to joint residual
mapping function for multimodal residual learning. Higher-order Boltzmann Machines (Memise-
vic & Hinton, 2007; 2010) use Hadamard product to capture the interactions of input, output, and
hidden representations for energy function. Wu et al. (2016c) propose the recurrent neural networks
using Hadamard product to integrate multiplicative interactions among hidden representations in the
model. For details of these related works, please refer to Appendix D.

3http://visualqa.org/challenge.html
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Yet, compact bilinear pooling or multimodal compact bilinear pooling (Gao et al., 2016; Fukui et al.,
2016) is worth to discuss and carefully compare with our method.

7.1 COMPACT BILINEAR POOLING

Compact bilinear pooling (Gao et al., 2016) approximates full bilinear pooling using a sampling-
based computation, Tensor Sketch Projection (Charikar et al., 2002; Pham & Pagh, 2013):

Ψ(x⊗ y, h, s) = Ψ(x, h, s) ∗Ψ(y, h, s) (15)

= FFT−1(FFT(Ψ(x, h, s) ◦ FFT(Ψ(y, h, s)) (16)
where ⊗ denotes outer product, ∗ denotes convolution, Ψ(v, h, s)i :=

∑
j:hj=i sj · vj , FFT denotes

Fast Fourier Transform, d denotes an output dimension, x, y, h, s ∈ Rn, x and y are inputs, and h
and s are random variables. hi is sampled from {1, ..., d}, and si is sampled from {−1, 1}, then,
both random variables are fixed for further usage. Even if the dimensions of x and y are different
from each other, it can be used for multimodal learning (Fukui et al., 2016).

Similarly to Equation 1, compact bilinear pooling can be described as follows:

fi = xTWiy (17)
whereWijk = sijkwijk if sijk is sampled from {−1, 1},wijk is sampled from {Pi1,Pi2, . . . ,Pid},
and the compact bilinear pooling is followed by a fully connected layer P ∈ R|Ω|×d. Then, this
method can be formulated as a hashing trick (Weinberger et al., 2009; Chen et al., 2015) to share
randomly chosen bilinear weights using d parameters for a output value, in a way that a single
parameter is shared by NM/d bilinear terms in expectation, with the variance of NM(d − 1)/d2

(See Appendix B).

In comparison with our method, their method approximates a three-dimensional weight tensor in
bilinear pooling with a two-dimensional matrix P, which is larger than the concatenation of three
two-dimensional matrices for low-rank bilinear pooling. The ratio of the number of parameters for
a single output to the total number of parameters for |Ω| outputs is d/d|Ω| = 1/|Ω| (Fukui et al.,
2016), vs. d(N +M + 1)/d(N +M + |Ω|) = (N +M + 1)/(N +M + |Ω|) ≈ 2/3 (ours), since
our method uses a three-way factorization. Hence, more parameters are allocated to each bilinear
approximation than compact bilinear pooling does, effectively managing overall parameters guided
by back-propagation algorithm.

MCB (Fukui et al., 2016), which uses compact bilinear pooling for multimodal tasks, needs to set
the dimension of output d to 16K, to reduce the bias induced by the fixed random variables h and s.
As a result, the majority of model parameters (16K × 3K = 48M) are concentrated on the last fully
connected layer, which makes a fan-out structure. So, the total number of parameters of MCB is
highly sensitive to the number of classes, which is approximately 69.2M for MCB+att, and 70.5M
for MCB+att+GloVe. Yet, the total number of parameters of our proposed model (MLB) is 51.9M,
which is more robust to the number of classes having d = 1.2K, which has a similar role in model
architecture.

8 CONCLUSIONS

We suggest a low-rank bilinear pooling method to replace compact bilinear pooling, which has
a fan-out structure, and needs complex computations. Low-rank bilinear pooling has a flexible
structure using linear mapping and Hadamard product, and a better parsimonious property, compared
with compact bilinear pooling. We achieve new state-of-the-art results on the VQA dataset using a
similar architecture of Fukui et al. (2016), replacing compact bilinear pooling with low-rank bilinear
pooling. We believe our method could be applicable to other bilinear learning tasks.
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Appendix

A EXPERIMENT DETAILS

A.1 PREPROCESSING

We follow the preprocessing procedure of Kim et al. (2016b). Here, we remark some details of it, and changes.

A.1.1 QUESTION EMBEDDING

The 90.45% of questions for the 2K-most frequent answers are used. The vocabulary size of questions is
15,031. GRU (Cho et al., 2014) is used for question embedding. Based on earlier studies (Noh et al., 2016;
Kim et al., 2016b), a word embedding matrix and a GRU are initialized with Skip-thought Vector pre-trained
model (Kiros et al., 2015). As a result, question vectors have 2,400 dimensions.

For efficient computation of variable-length questions, Kim et al. (2016a) is used for the GRU. Moreover, for
regularization, Bayesian Dropout (Gal, 2015) which is implemented in Léonard et al. (2015) is applied while
training.

A.2 VISION EMBEDDING

ResNet-152 networks (He et al., 2016) are used for feature extraction. The dimensionality of an input image is
3× 448× 448. The outputs of the last convolution layer is used, which have 2, 048× 14× 14 dimensions.

A.3 HYPERPARAMETERS

The hyperparameters used in MLB of Table 2 are described in Table 4. The batch size is 100, and the number
of iterations is fixed to 250K. For data augmented models, a simplified early stopping is used, starting from
250K to 350K-iteration for every 25K iterations (250K, 275K, 300K, 325K, and 350K; at most five points) to
avoid exhaustive submissions to VQA test-dev evaluation server. RMSProp (Tieleman & Hinton, 2012) is used
for optimization.

Though, the size of joint embedding size d is borrowed from Kim et al. (2016b), a grid search on d confirms
this choice in our model as shown in Table 5.

Table 4: Hyperparameters used in MLB (single model in Table 2).

SYMBOL VALUE DESCRIPTION

S 14 attention lattice size
N 2,400 question embedding size
M 2,048 channel size of extracted visual features
d 1,200 joint embedding size
G 2 number of glimpses
|Ω| 2,000 number of candidate answers
η 3e-4 learning rate
λ 0.99997592083 learning rate decay factor at every iteration
p 0.5 dropout rate
θ ±10 gradient clipping threshold

A.4 MODEL SCHEMA

Figure 1 shows a schematic diagram of MLB, where ◦ denotes Hadamard product, and Σ denotes a linear
combination of visual feature vectors using coefficients, which is the output of softmax function. If G > 1,
the softmax function is applied to each row vectors of an output matrix (Equation 8), and we concatenate the
resulting vectors of the G linear combinations (Equation 9).

A.5 ENSEMBLE OF SEVEN MODELS

The test-dev results for individual models consisting of our ensemble model is presented in Table 6.
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Table 5: The effect of joint embedding size d.

Open-Ended
d SIZE ALL Y/N NUM ETC

800 45.0M 64.89 84.08 38.15 54.55
1000 48.4M 65.06 84.18 38.01 54.85
1200 51.9M 65.08 84.14 38.21 54.87
1400 55.4M 64.94 84.13 38.00 54.64
1600 58.8M 65.02 84.15 37.79 54.85

A

Tanh
Conv

Tanh
Linear

Replicate

Q V

Softmax
Conv

Tanh
Linear

Tanh
LinearLinear

Softmax

Figure 1: A schematic diagram of MLB. Replicate module copies an question embedding vector to
match with S2 visual feature vectors. Conv modules indicate 1× 1 convolution to transform a given
channel space, which is computationally equivalent to linear projection for channels.

Table 6: The individual models used in our ensemble model in Table 3.
Open-Ended

MODEL GLIMPSE ALL Y/N NUM ETC

MLB 2 64.89 84.13 37.85 54.57
MLB 2 65.08 84.14 38.21 54.87
MLB 4 65.01 84.09 37.66 54.88
MLB-VG 2 65.76 83.64 37.57 56.86
MLB-VG 2 65.84 83.87 37.87 56.76
MLB-VG 3 66.05 83.88 38.13 57.13
MLB-VG 4 66.09 83.59 38.32 57.42
Ensemble - 66.77 84.54 39.21 57.81
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B UNDERSTANDING OF MULTIMODAL COMPACT BILINEAR POOLING

In this section, the algorithm of multimodal compact bilinear pooling (MCB) (Gao et al., 2016; Fukui et al.,
2016) is described as a kind of hashing tick (Chen et al., 2015).

x ∈ Rnx and y ∈ Rny are the given inputs, Φ(x,y) ∈ Rd is the output. Random variables hx ∈ Nnx and
hy ∈ Nny are uniformly sampled from {1, . . . , d}, and sx ∈ Znx and sy ∈ Zny are uniformly sampled from
{−1, 1}. Then, Count Sketch projection function Ψ (Charikar et al., 2002) projects x and y to intermediate
representations Ψ(x,hx, sx) ∈ Rd and Ψ(y,hy, sy) ∈ Rd, which is defined as:

Ψ(v,h, s)i :=
∑

j:hj=i

sj · vj (18)

Notice that both h and s remain as constants after initialization (Fukui et al., 2016).

The probability of hxj = i and hyj = i for the given j is 1/d2. Hence, the expected number of bilinear terms
in Ψ(x,hx, sx)iΨ(y,hy, sy)i is (nxny)/d2. Since, the output Φ(x,y) is a result of circular convolution of
Ψ(x,hx, sx) and Ψ(y,hy, sy), the expected number of bilinear terms in Φ(x,y)i is (nxny)/d. Likewise, the
probability of that a bilinear term is allocated in Φ(x,y)i is 1/d. The probability distribution of the number
of bilinear terms in Φ(x,y)i follows a multinomial distribution, whose mean is (nxny)/d and variance is
(nxny)(d− 1)/d2.

Linear projection after the multimodal compact bilinear pooling provides weights on the bilinear terms, in a
way that a shared weight is assigned to Φ(x,y)i, which has (nxny)/d bilinear terms in expectation, though
each bilinear term can have a different sign induced by both sx and sy .

HashedNets (Chen et al., 2015) propose a method to compress neural networks using a low-cost hashing func-
tion (Weinberger et al., 2009), which is the same function of Ψ(v,h, s). They randomly group a portion of
connections in neural networks to share a single weight. We speculate that multimodal compact bilinear pool-
ing uses the hashing tick to reduce the number of full bilinear weights with the rate of d/(nxny). However,
this approximation is limited to two-way interaction, compared with three-way factorization in our method.

C REPLACEMENT OF LOW-RANK BILINEAR POOLING

For the explicit comparison with compact bilinear pooling, we explicitly substitute compact bilinear pooling
for low-rank bilinear pooling to control everything else, which means that the rest of the model architecture is
exactly the same.

According to Fukui et al. (2016), we use MCB followed by Signed Square Root, L2-Normalization, Dropout
(p=0.1), and linear projection from 16,000-dimension to the target dimension. Also, Dropout (p=0.3) for a
question embedding vector. Note that an overall architecture for multimodal learning of both is the same.
Experimental details are referenced from the implementation 4 of Fukui et al. (2016).

For test-dev split, our version of MCB gets 61.48% for overall accuracy (yes/no: 82.48%, number: 37.06%,
and other: 49.07%) vs. 65.08% (ours, MLB in Table 1). Additionally, if the nonlinearity in getting attention
distributions is increased as the original MCB does using ReLU, we get 62.11% for overall accuracy (yes/no:
82.55%, number: 37.18%, and other: 50.30%), which is still the below of our performance 5.

We do not see it as a decisive evidence of the better performance of MLB, but as a reference (the comparison
of test-dev results may be also unfair.), since an optimal architecture and hyperparameters may be required for
each method.

4https://github.com/akirafukui/vqa-mcb
5Our version of MCB definition can be found in https://github.com/jnhwkim/MulLowBiVQA/

blob/master/netdef/MCB.lua
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D RELATED WORKS

D.1 MULTIMODAL RESIDUAL NETWORKS

MRN (Kim et al., 2016b) is an implicit attentional model using multimodal residual learning with Hadamard
product which does not have any explicit attention mechanism.

F (k)(q,v) = σ(W(k)
q q) ◦ σ(W

(k)
2 σ(W

(k)
1 v)) (19)

HL(q,v) = Wq′q +

L∑
l=1

WF(l)F (l)(Hl−1,v) (20)

where W∗ are parameter matrices, L is the number of learning blocks, H0 = q, Wq′ = ΠL
l=1W

(l)

q′ , and

WF(l) = ΠL
m=l+1W

(m)

q′ . Notice that these equations can be generalized by Equation 7.

However, an explicit attention mechanism allows the use of lower-level visual features than fully-connected
layers, and, more importantly, spatially selective learning. Recent state-of-the-art methods use a variant of an
explicit attention mechanism in their models (Lu et al., 2016; Noh & Han, 2016; Fukui et al., 2016). Note
that shortcut connections of MRN are not used in the proposed Multimodal Low-rank Bilinear (MLB) model.
Since, it does not have any performance gain due to not stacking multiple layers in MLB. We leave the study of
residual learning for MLB for future work, which may leverage the excellency of bilinear models as suggested
in Wu et al. (2016a).

D.2 HIGHER-ORDER BOLTZMANN MACHINES

A similar model can be found in a study of Higher-Order Boltzmann Machines (Memisevic & Hinton, 2007;
2010). They suggest a factoring method for the three-way energy function to capture correlations among input,
output, and hidden representations.

−E(y,h;x) =
∑
f

(∑
i

xiw
x
if

)(∑
j

yjw
y
jf

)(∑
k

hkw
h
kf

)
+
∑
k

wh
khk +

∑
j

wy
j yj

=
(
xTWx ◦ yTWy ◦ hTWh)

1+ hTwh + yTwy (21)

Setting aside of bias terms, the I × J ×K parameter tensor of unfactored Higher-Order Boltzmann Machines
is replaced with three matrices, Wx ∈ RI×F , Wy ∈ RJ×F , and Wh ∈ RK×F .

D.3 MULTIPLICATIVE INTEGRATION WITH RECURRENT NEURAL NETWORKS

Most of recurrent neural networks, including vanilla RNNs, Long Short Term Memory networks (Hochreiter
& Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014), share a common expression as follows:

φ(Wx + Uh + b) (22)

where φ is a non-linear function, W ∈ Rd×n, x ∈ Rn, U ∈ Rd×m, h ∈ Rm, and b ∈ Rd is a bias vector.
Note that, usually, x is an input state vector and h is an hidden state vector in recurrent neural networks.

Wu et al. (2016c) propose a new design to replace the additive expression with a multiplicative expression using
Hadamard product as

φ(Wx ◦Uh + b). (23)

Moreover, a general formulation of this multiplicative integration can be described as

φ(ααα ◦Wx ◦Uh + Wx ◦ βββ1 + Uh ◦ βββ2 + b) (24)

which is reminiscent of full model in Section 3.1.
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