
Workshop track - ICLR 2017

EFFICIENT SPARSE-WINOGRAD
CONVOLUTIONAL NEURAL NETWORKS

Xingyu Liu, Song Han, Huizi Mao & William J. Dally
Stanford University
{xyl, songhan, huizi, dally}@stanford.edu

ABSTRACT

Convolutional Neural Networks (CNNs) are compute intensive which limits their
application on mobile devices. Their energy is dominated by the number of mul-
tiplies needed to perform the convolutions. Winograd’s minimal filtering algo-
rithm (Lavin (2015)) and network pruning (Han et al. (2015)) reduce the operation
count. Unfortunately, these two methods cannot be combined — because applying
the Winograd transform fills in the sparsity in both the weights and the activations.
We propose two modifications to Winograd-based CNNs to enable these methods
to exploit sparsity. First, we prune the weights in the ”Winograd domain” (after
the transform) to exploit static weight sparsity. Second, we move the ReLU op-
eration into the ”Winograd domain” to improve the sparsity of the transformed
activations. On CIFAR-10, our method reduces the number of multiplications in
the VGG-nagadomi model by 10.2× with no loss of accuracy.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) are compute-limited. Their energy is dominated by
the number of multiplies needed to perform the convolutions. Winograd’s minimal filtering algo-
rithm (Lavin (2015))(Winograd (1980)) reduces the number of multiplies required by 2.25× to 4×,
depending on the output patch size m. Pruning the model and exploiting the dynamic sparsity of
activations due to ReLU non-linearity also reduces the required computation. (Han et al. (2015)) and
(Han et al. (2016)) have shown that for typical CNNs, weights can be pruned to 30 − 50% density
and after ReLU non-linearity is applied, only 30− 50% of activations are non-zero. Thus exploiting
sparsity of both weights and activations reduces the number of multiplies by 4− 11×.

Unfortunately, the Winograd transformation fills in the zeros in both the weights and the activations
(Figure 1a) — eliminating the gain from exploiting sparsity. Thus, on a pruned network, Winograd’s
algorithm actually increases the number of multiplies. The loss of sparsity more than offsets the
reduced operation count from operating in the transform domain.

In this paper, we introduce two modifications to the original Winograd-based convolution algorithm
to eliminate this problem. First, we prune the weights after (rather than before) they are transformed
(Figure 1b). Thus the weights are sparse when the element-wise multiply is performed — reducing
operation count. Second, we move the ReLU operation after the transform (Figure 1c) to also make
the activations sparse at the point where the multiplies are performed. Together, these two transforms
enable the gains of Winograd’s algorithm and of exploiting sparsity to be combined. On the VGG-
nagadomi network with m = 2, this combined approach gives a 10.2× reduction in operation count.

2 PRUNING WINOGRAD-TRANSFORMED WEIGHTS

Conventional pruning (Han et al. (2015)) zeros weights in the ”spatial domain”, before the Wino-
grad transform. Transforming the sparse kernel fills in the zeros resulting in a dense kernel in the
”transform domain” (Figure 1a). We enable a Winograd transform to be used with sparse weights
by pruning the weights in the transform domain (Figure 1b). We eliminate the spatial-domain kernel
entirely. Our method operates in three phases: dense training, pruning, and retraining.

During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the

1

Workshop track - ICLR 2017

Winograd

domain

Winograd

domain

Winograd

domain

𝐶𝑇 ⋅ () ⋅ 𝐶 𝐺𝑇 ⋅ () ⋅ 𝐺

𝐴𝑇 ⋅ () ⋅ 𝐴

ReLU

Activation

Layer 𝑖
Kernel

Layer 𝑖

ReLU-ed

Transformed

Activation

Layer 𝑖

Transformed

Kernel

Layer 𝑖

Activation

Layer 𝑖 + 1

Eltwise

Product

𝐶𝑇 ⋅ () ⋅ 𝐶

ReLU-ed

Transformed

Activation

Layer 𝑖

Eltwise

Product

Transformed

Kernel

Layer 𝑖

𝐶𝑇 ⋅ () ⋅ 𝐶

ReLU

Activation

Layer 𝑖

Transformed

ReLU-ed

Activation

Layer 𝑖
Eltwise

Product

(a) (c)

Eltwise

Muliply
Eltwise

Muliply

Eltwise

Muliply

Channel wise

Summation

Prune Prune

Transformed

Kernel

Layer 𝑖

𝐴𝑇 ⋅ () ⋅ 𝐴

Activation

Layer 𝑖 + 1

Channel wise

Summation

𝐴𝑇 ⋅ () ⋅ 𝐴

Activation

Layer 𝑖 + 1

Channel wise

Summation

(b)

ReLU

Activation

Layer 𝑖

Prune

Train

Train Train
Transformed

Activation

Layer 𝑖

Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4 × 4 transformed kernel restores sparsity to the weights. (c) Mo-
ving the ReLU layer after Winograd transformation also restores sparsity to the activations.

inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hin-
ton (2009)). We tested pruning on three architectures (Figure 1 (a)(b)(c)) by pruning weights and

2

Workshop track - ICLR 2017

Te
st

 A
cc

u
ra

cy

Weight Density

(%)
92.2

92.4

92.6

92.8

93

93.2

93.4

20 25 30 35 40 45 50 55 60 65 70

Spatial
Pruning

Winograd
ReLU +
Pruning

Figure 2: Test accuracy vs density for the three architectures of Figure 1 on VGG-nagadomi.

re-training until accuracy converges. We varied the pruning rate R from 20% to 70%. The first
convolution layer is not included in pruning but is included in re-training.

Figure 2 shows accuracy as a function of density for the three architectures of Figure 1. The network
of Figure 1c (which moves pruning and ReLU to the transform domain) can be pruned to 40%
density without significant (> 0.1%) loss of accuracy. The conventional network of Figure 1a can
only be pruned to 60% density before accuracy falls.

A
ct

iv
at

io
n

 D
e

n
si

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

conv1 conv2 conv3 conv4 conv5 conv6 conv7 Overall

spatial activations transformed activations

Figure 3: Activation density of convolution layers of VGG-nagadomi. Whiskers show one standard
deviation above and below the mean.

Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 × 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6× to
5.0×107. Using the Winograd transformation (Figure 1a) requires 1.1×108 multiplies, a reduction
of 2.2× compared to the original network, but an increase of 2.1× compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3×107 multiplies. It combines the
2.2× savings from Winograd with the 4.6× savings from sparsity to give a net reduction of 10.2×
compared to the original network.

5 CONCLUSION

We have shown that we can combine the ≈ 5× computation savings of sparse weights and activa-
tions with the 2−4× savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2× reduction in
computation for a 2× 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).

3

Workshop track - ICLR 2017

REFERENCES

Martı́n Abadi et al. Tensorflow: A system for large-scale machine learning. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pp.
265–283, Berkeley, CA, USA, 2016. USENIX Association. ISBN 978-1-931971-33-1. URL
http://dl.acm.org/citation.cfm?id=3026877.3026899.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. In NIPS, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Andrew Lavin. Fast algorithms for convolutional neural networks. CoRR, abs/1509.09308, 2015.
URL http://arxiv.org/abs/1509.09308.

Nagadomi. Code for kaggle-cifar10 competition. 5th place. https://github.com/
nagadomi/kaggle-cifar10-torch7, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam, 1980.

Yuxin Wu. Neural network toolbox on tensorflow. https://github.com/ppwwyyxx/
tensorpack, 2016.

4

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://arxiv.org/abs/1509.09308
https://github.com/nagadomi/kaggle-cifar10-torch7
https://github.com/nagadomi/kaggle-cifar10-torch7
http://arxiv.org/abs/1409.1556
https://github.com/ppwwyyxx/tensorpack
https://github.com/ppwwyyxx/tensorpack

	Introduction
	Pruning Winograd-transformed Weights
	Moving ReLU to the Winograd Domain
	Results
	Conclusion

