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Abstract

Deep models have recently emerged as promis-
ing tools to solve partial differential equations
(PDEs), known as neural PDE solvers. While neu-
ral solvers trained from either simulation data or
physics-informed loss can solve PDEs reasonably
well, they are mainly restricted to a few instances
of PDEs, e.g. a certain equation with a limited set
of coefficients. This limits their generalization to
diverse PDEs, preventing them from being practi-
cal surrogate models of numerical solvers. In this
paper, we present Unisolver, a novel Transformer
model trained on diverse data and conditioned on
diverse PDEs, aiming towards a universal neu-
ral PDE solver capable of solving a wide scope
of PDEs. Instead of purely scaling up data and
parameters, Unisolver stems from the theoretical
analysis of the PDE-solving process. Inspired by
the mathematical structure of PDEs that a PDE
solution is fundamentally governed by a series of
PDE components such as equation symbols and
boundary conditions, we define a complete set
of PDE components and flexibly embed them as
domain-wise and point-wise deep conditions for
Transformer PDE solvers. Integrating physical
insights with recent Transformer advances, Uni-
solver achieves consistent state-of-the-art on three
challenging large-scale benchmarks, showing im-
pressive performance and generalizability. Code
is available at https://github.com/thuml/Unisolver.

1. Introduction

Partial differential equations (PDEs) are essential for nu-
merous scientific and engineering problems (Evans, 2022;
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Arnol’d, 2013), such as meteorology, electromagnetism and
thermodynamics (Wang et al., 2023). Since it is usually
hard to obtain an analytic solution for a PDE, numerical
methods are widely explored (Ames, 2014). However, these
numerical methods often require huge computation costs to
generate a precise solution for each PDE. Recently, deep
learning models have facilitated significant advancements
across a wide range of domains (Devlin et al., 2019; Liu
et al., 2021; Jumper et al., 2021) and have been applied to
solving PDEgs, i.e. neural PDE solvers (Karniadakis et al.,
2021). Owing to their excellent capability to approximate
nonlinear mappings, deep learning models can learn to fit
pre-collected data (Li et al., 2021a) or physics-informed loss
function (Raissi et al., 2019) and generalize in a flash to new
samples, providing an efficient approach to solving PDEs.

As shown in Figure 1, previous neural solvers can be broadly
categorized into two paradigms: physics-informed neural
networks (PINNs) (Raissi et al., 2019) and neural operators
(Li et al., 2021a). The former trains deep models using a
formalized PDE loss function, while the latter solely relies
on pre-collected data. However, for PINNs, while formu-
lating the PDE equations as objective functions ensures
relatively accurate solutions, they struggle to generalize to
new scenarios, necessitating retraining for each new task.
Neural operators, on the other hand, directly learn from data
and generalize better to diverse initial states and PDEs than
PINNSs. Nevertheless, purely based on training data may be
insufficient to guide PDE solving. For example, in the case
of a fluid governed by renowned Navier-Stokes equations,
the typical task of neural operators is to predict future states
based on past observations (Li et al., 2021a), while different
viscosity coefficients and forcing terms will lead to distinct
solutions even when the initial states stay the same. Thus,
due to the omission of PDE information, current neural oper-
ators are mainly trained and tested on a limited set of PDEs.
Notably, as neural solvers are expected to be efficient surro-
gate models of classical numerical solvers, generalization
to various PDEs is essential for a practical neural solver.

To tackle the generalization deficiency, several works have
been proposed by incorporating the PDE information into
deep models or training models with large-scale datasets.
For example, message-passing neural PDE solver (Brand-
stetter et al., 2022) concatenates PDE coefficients with the
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Figure 1. Neural PDE solvers typically consist of two paradigms: physics informed and data driven. Unisolver combines data-driven
methods with physical insights from PDE components in a conditional modeling framework, boosting generalizability and scalability.

inputs. PDEformer (Ye et al., 2024) formalizes the PDE as
a computation graph and employs the graph Transformer
(Ying et al., 2021) to aggregate PDE information. Although
these methods explore the potential of training models with
both data and PDE information, they do not consider a
complete set of PDE information, limiting their generaliz-
ability in some aspects. As for the other branches, such
as DPOT (Hao et al., 2024), they purely scale up train-
ing sets with diverse PDEs and expect the generalizability
emerges from large data and parameters. Although models
can implicitly extract PDE information from observations,
the extraction process is inherently complex and resembles
the challenges associated with solving inverse problems
(Karniadakis et al., 2021). Therefore, these models often
end up fitting an insufficient or vague representation of the
underlying observation distribution, which may ultimately
hamper their generalizability to broader PDE solving.

Going beyond prior methods, as shown in Figure 1, this pa-
per introduces Unisolver—a PDE-conditional Transformer
progressing towards a Universal Neural PDE solver. Uni-
solver takes advantages from both data-driven and physics-
informed paradigms and empowers Transformer with fa-
vorable generalizability by introducing complete physics
information as conditions. Instead of simply scaling up data
and parameters, we are motivated by the theoretical analysis
of PDE solving and propose a complete set of PDE compo-
nents. Drawing inspiration from the mathematical structure
of PDEs, we classify PDE components into domain-wise
and point-wise categories according to their effect on the
final solution and aggregate them as two types of deep PDE
conditions. Afterward, to capture the distinct influence of
different condition types on input representations, we sep-
arate the hidden space into two subspaces and integrate
these deep PDE conditions into hidden representations in
a decoupled way. We conduct extensive experiments on
our own generated dataset and two large-scale benchmarks
with various PDE components, where Unisolver achieves
consistent state-of-the-art with sharp relative gains. Overall,
our contributions are summarized as follows:

* We introduce Unisolver as a conditional Transformer
architecture utilizing the embedded PDE information
completely, marking the first demonstration of the po-
tential of the canonical Transformer as a scalable back-
bone for solving multitudinous PDEs universally.

* Motivated by the mathematical structure of PDEs, we
define the concept of complete PDE components, clas-
sify them into domain-wise and point-wise categories,
and derive a decoupled conditioning mechanism for
introducing physics information into PDE solving.

» Unisolver achieves consistent state-of-the-art perfor-
mances across three challenging large-scale bench-
marks with impressive relative gains and presents fa-
vorable generalizability and scalability.

2. Related Work
2.1. Neural PDE Solvers

Previous neural PDE solvers can be roughly categorized
into two paradigms (Wu et al., 2024). The first is physics-
informed neural networks (PINNs) (Raissi et al., 2019),
which optimize deep models by formalizing PDEs as objec-
tive functions. During training, model outputs and gradients
gradually satisfy the targeted PDE, thereby instantiating
the solution as a deep model. However, PINNs are usually
hard to generalize to unseen PDEs, limiting their broader
applications (Wang et al., 2023). Another booming direc-
tion is neural operators, which learn from extensive data to
approximate functional dependence between input and out-
put Banach spaces (Lu et al., 2021; Kovachki et al., 2023).
Among various neural operators, FNO (Li et al., 2021a) and
its variants (Li et al., 2023a; Rahman et al., 2023; Wen et al.,
2022) are popular and well-established. FNO effectively
approximates the kernel integral operator in the frequency
domain. Recently, given the impressive progress achieved
by Transformers (Vaswani et al., 2017), they have also been
applied to solve PDEs. Existing methods treat inputs as
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Figure 2. Overview of universal neural PDE solving, taking the 2D mixed PDEs in Sec 4.3 as an example. Our model is jointly trained
on diverse PDEs with varied initial conditions and governing PDE components, aiming for direct generalization to unseen PDEs in

downstream tasks. The

sequences of tokens and adopt the attention mechanism to
approximate integrals. GNOT (Hao et al., 2023) treats each
mesh point as a token and utilizes the linear Transformer to
address complexity issues. FactFormer (Li et al., 2023b) ax-
ially factorizes the attention block to boost efficiency. Tran-
solver (Wu et al., 2024) learns intrinsic physical states as
tokens behind input meshes, introducing a physics-attention
mechanism. Despite the success of neural operators, they
are only tested on the dataset with limited PDEs. Their
effectiveness for various PDEs has not been fully explored.

2.2. Generalizable PDE Solvers

In addition to model architectures, the generalizability of
neural solvers has also been explored. The research mainly
lies in the following two directions.

Incorporating PDE information To guide the PDE-
solving process, PDE information has been explored in
many deep models. For example, PINO (Li et al., 2021b) im-
poses explicit equation constraints at a higher resolution to
aid neural operator learning. CAPE (Takamoto et al., 2023)
directly embeds PDE coefficients to adapt neural solvers
to unseen equation coefficients. PROSE (Liu et al., 2023)
and PITT (Lorsung et al., 2024) tokenize PDEs and embed
mathematical expressions, informing the transformer of the
underlying physics. PDEformer (Ye et al., 2024) represents
symbolic equations as graphs and numeric components as
nodes to optimize interactions between them. However, all
of these methods, while incorporating equation informa-
tion, do not leverage the mathematical structure of PDEs
for complete and categorized embedding or integrating the
prior information of equation symbols within the context of
natural language. In contrast, Unisolver leverages the capa-
bilities of large language models (LLMs) (Touvron et al.,
2023) to semantically embed the equation symbolic infor-
mation and categorize the complete equation components
based on mathematical insights for better PDE solving.

Large-scale training As a vital cornerstone of deep learn-
ing (Brown et al., 2020; He et al., 2022), recent research
has also started to explore the effectiveness of large-scale

” in gray is a valid boundary type despite not included in the example dataset.

training in solving PDEs. Subramanian et al. examine the
scaling capabilities and transfer learning behaviors of FNO
on three time-independent PDE families. MPP (McCabe
et al., 2023) proposes an auto-regressive strategy to train on
a broad fluid mechanics-oriented benchmark. DPOT (Hao
et al., 2024) enhances MPP with a denoising method and
trains a Fourier Transformer on massive PDE data com-
prised of 12 datasets. PDEformer (Ye et al., 2024) focuses
on a 1D time-dependent PDE family and pre-trains a graph
transformer on 3M samples under various equation con-
ditions. ICON (Yang et al., 2023) trains a single neural
operator capable of performing in-context learning across a
wide range of differential equations. However, most existing
methods fall short of effectively and completely integrating
PDE information, which Unisolver will address well.

3. Unisolver

To tackle the incapability in generalization behind neural
PDE solvers, we dive into the PDE-solving process and
present Unisolver to model intricate interactions between ini-
tial observations and complete equation components, lead-
ing to a novel PDE-conditional Transformer model.

Problem setup To achieve ideal generalizability, we fo-
cus on the task of universal neural PDE solving shown in
Figure 2. Let D C R< be a bounded continuous set and
M = {z1,...,2,} an n-point discretization of D record-
ing coordinates of each point. For each observation pair,
assume we have initial condition observations X as input
and target quantities Y as output on the mesh M, with
governing PDE components Cppg, (e.g. PDE symbols, coef-
ficients) that may vary for each observation. The universal
neural PDE solving task is to approximate the input-PDE-
output map G: (X, M, Cppg) — Y across a diverse train-
ing dataset and generalize in a flash to unseen PDEs.

3.1. Complete PDE Components

To enable complete modeling of the PDE, we attempt to
incorporate the complete PDE components, i.e. all the under-
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Figure 3. Overview of Unisolver. We universally embed all PDE components, such as domain geometries, equation symbols and boundary
types into deep conditions and employ a conditional Transformer to aggregate deep conditions in the decoupled subspace.

lying components that affect solutions, into neural solvers.

A motivating example Here, we clarify the concept in
the context of deep learning by considering the classical vi-
brating string equation with fixed endpoints as a motivating
example, which can be solved explicitly, as shown in (Evans,
2022). The analytical solution is provided in Appendix F.

Ott — a2 Oy = f(z,t), (z,t) € (0,L) x (0, T), (la)
w(0,8) = u(L,t) =0, e (0,T], (1b)
u(z,0) = ¢(x), dwu(z,0) = ¢(z), =€ [0,L] (10

From the analytical solution of the motivating example, we
pinpoint that the PDE is solved through complex interactions
between a series of equation components, as detailed in
Table 1. These components are referred to as the complete
PDE components and exhibit two key shared characteristics.
Specifically, the coefficient a exerts the same influence over
the entire domain, while the impact of the force f is imposed
point-wisely. This distinction inspires us to classify these
components into two categories, domain-wise and point-
wise, which better capture the intricate interactions.

Table 1. Categorization of complete PDE components.

Groups | Components | Examples
Input |  Initial condition | Eq.(lc)
Equation symbols Eq. (1a)
Equation coefficient a
Boundary condition type Robin
External force f(z,t)
Point-wise components Domain geometry [0,L] x [0,T]

Boundary value function Eq. (1b)

Moreover, we explain the classification of the other compo-
nents shown in Table 1. The equation formulation is defined

as a domain-wise component due to its consistency across
all locations. Domain geometry is categorized as a point-
wise component since it is usually recorded as a binary
mask and each point’s inclusion is determined individually.
Boundary conditions are more complicated due to their di-
verse forms, e.g. periodic and Robin boundary conditions.
As aresult, we use two components to represent boundary
conditions precisely: the boundary condition type, treated as
a domain-wise component, and the boundary value function,
considered as a point-wise component.

3.2. Universal Components Embedding

As described in Section 3.1, PDE solutions are obtained by
intricate interactions between initial conditions and com-
plete equation components which can be grouped into two
categories. In previous works (Brandstetter et al., 2022;
Takamoto et al., 2023), these equation components are
coarsely and incompletely included as conditions to modu-
late the input observations. In this paper, we will elaborate
on how Unisolver finely and completely embeds all consid-
ered PDE components (Table 1) into deep PDE conditions
based on our insights from the mathematical analysis.

Equation formulation Since the mathematical symbols
convey rich mathematical information, we utilize a Large
Language Model (LLM) for symbolic embedding. Specifi-
cally, we adopt the LLaMA-3 8B model ' to embed the equa-
tion formulation. We attempt to leverage its understanding
of prior mathematical information, which was learned from
pre-training on 15 TB of language tokens, as well as its flex-
ible encoding of unstructured PDE information. Technically,
the input to the LLM is the LaTeX code of the equation. For
example, the Eq. (1a) is prompted as

Prompt: "u_{tt} - a2 u_{xx} = f(x,t)"

1https ://ai.meta.com/blog/meta—-1lama—-3/
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Then we take the output of the last Transformer block of the
LLM and average the representations along the sequence
dimension, resulting in a 4096-dimensional embedding for
each PDE. In the LLM embedding stage, we use mathemat-
ical symbols of the remaining equation components (e.g.,
coefficients and force terms) instead of their actual values
in the prompt. For instance, we use the symbol “a” in the
prompt rather than its concrete value to make the LLM focus
on the key physics meaning of the PDEs. The embedding of
concrete values for the other components is detailed in the
next paragraph. After the LLM embedding stage, the hidden
representations of PDE symbols are encoded by an MLP to
align channel dimensions and obtain deep conditions.

Other components As shown in Table 1, other compo-
nents can be categorized as domain-wise and point-wise
based on their effect on the final solution. Correspondingly,
we adopt different embedding methods for these two types.
For domain-wise components, including coefficients repre-
sented as real-valued vectors and boundary types akin to
class labels, we embed them using two linear layers with an
intermediate SiLU activation function (Elfwing et al., 2018).
For point-wise components like external force, binary ge-
ometry mask, and boundary value functions are essentially
physical fields observed on mesh M. We apply the same
patchify embedding method used for input observations,
transforming them into deep representation sequences.

Deep condition consolidation As shown in Figure 3, after
universal components embedding, deep conditions within
the same category are added together to consolidate their
impact. This strategy prevents excessive separation of deep
PDE conditions that could weaken the model’s expressive
capabilities, and thus will enhance representation learning
for diverse PDE solving via joint training.

3.3. PDE-Conditional Transformer

We propose a conditional Transformer to adaptively fuse
deep PDE conditions which are embedded from the com-
plete equation components, into hidden representations of
inputs within decoupled subspaces.

Subspace decoupling We evenly split the hidden repre-
sentations of the inputs along the channel dimension, with
one half influenced by domain-wise deep conditions and
the other half by point-wise deep conditions. In multi-head
attention (Vaswani et al., 2017), our proposed subspace de-
coupling is equivalent to assigning some heads to learn the
impact of domain-wise conditions while others focusing on
point-wise conditions. This leads to improved representa-
tion learning for both categories, and minimized interference
between deep PDE conditions from two categories.

Deep condition aggregation We use MLPs to individu-
ally project domain-wise and point-wise conditions into cor-

responding subspaces. After projection, domain-wise condi-
tions are repeated along the sequence dimension to match
the token sequence length and ensure consistent physical
guiding throughout the sequence. The transformed condi-
tions convey both domain-wise and point-wise information
and are integrated adaptively by aggregation functions.

As shown in Figure 3, we aggregate conditions either before
or after the attention and feedforward modules within Trans-
former. Inspired by recent conditional Transformers like
DiT (Peebles & Xie, 2023) and other conditional normaliza-
tion approaches (Park et al., 2019; Perez et al., 2018), we
take the aggregation paradigm to finely capture the intricate
correlations between hidden inputs of initial observations
and deep equation conditions. Specifically, we scale and
shift the hidden representations of inputs based on the equa-
tion conditions. After passing through the Transformer
modules, we use the equation conditions to softly select
whether this information should be retained.

Overall design Summarizing the above designs, we pro-
pose the Unisolver (Figure 3). Given input X, it is projected
to embeddings X" using a patchify layer (Dosovitskiy et al.,
2020). The complete PDE equation components Cppg are
embedded into deep conditions Cyomain and Cpin; following
Section 3.2. Suppose there are N layers, the n-th layer of
Unisolver can be formalized as:

I. = Concat (MLP* (Ceomain)-repeat, MLP, (Cp(,im))7
X1 = Tgteor © SA (Lcate © LN(X™ 1) 4 Lyigt) + X1,

I. = Concat (m*(Cdomain)repeat,m*(cpmm))7
X" = Lggeer © FF (Licae © LN(X" 1) + L) + X" 71,

@

where n € {1,..., N}, x € {scale, shift, select}, and X"
is the output of the n-th layer. Meanwhile, SA denotes self-
attention, LN denotes layer normalization, and FF denotes
feedforward layers in the Transformer model (Vaswani et al.,
2017). Since the PDE components have a crucial impact on
the range of the output, we scale and shift XV based on the
deep equation conditions, and then linearly project X* to
obtain the final output as predictions of Y.

4. Experiments

We conduct extensive experiments to evaluate Unisolver on
three challenging large-scale benchmarks, covering a wide
range of PDE components and generalization scenarios.

Benchmarks As summarized in Table 2, three experi-
mental large-scale benchmarks cover varied dimensions,
resolutions and PDE components. The HeterNS is an ex-
tension of the NS dataset from FNO (2021a), incorporating
multiple viscosity coefficients and external forces to en-
hance diversity. The 1D time-dependent PDEs, introduced
by PDEformer (2024), is a large-scale dataset containing
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three million structured 1D PDE samples and evaluate the
zero-shot generalization performance on PDEBench (2022).
The 2D mixed PDEs, collected by DPOT (2024), include
12 diverse datasets from four well-established benchmarks.
More details can be found in Appendix G.

Table 2. Summary of benchmarks. #GPU hours are calculated
by averaging the training time of all models on one A100 GPU.
Detailed compute resources can be found in Appendix 1.7. Besides,
V' indicates the PDE component will change among different
samples, while X refers to unchanged ones.

Benchmarks \ HeterNS 1D time-dependent PDEs 2D mixed PDEs

#Dim 2D+Time 1D+Time 2D+Time
#Resolution | (64,64,10) (256,100) (128,128,10)
#Samples 15k 3M 74.1k
#GPU hours ~60h ~3000h ~800h
Symbols X v v
Coefficient v v v
Force v v v
Geometry X X v
Boundary X v v
Baselines We compare Unisolver with six advanced base-

lines on the HeterNS to demonstrate its generalizability
under varied PDE components: the well-established FNO
(2021a), PINO (2021b) and ViT (2020) and current state-
of-the-art methods FactFormer (2023b), ICON (2023) and
MPP (2023). We augment these baselines by providing
sufficient physics information to ensure a fair comparison,
either by concatenating inputs with varied PDE compo-
nents, providing prompting trajectories (ICON), or applying
physics-informed loss (PINO).

Furthermore, we compare Unisolver with two generalizable
solvers—PDEformer (2024) and DPOT (2024) on zero-shot
generalization performance. We refrain from including ad-
ditional baselines on these two benchmarks due to the sub-
stantial computational cost of using million-scale samples.

Implementations All methods in the HeterNS benchmark
are trained for 300 epochs using relative L2 loss and the
ADAM optimizer (Kingma & Ba, 2015) with an initial
learning rate of 0.0005 and a cosine annealing learning rate
scheduler (Loshchilov & Hutter, 2016). The batch size is
set to 60. For the 1D time-dependent PDEs and 2D mixed
PDEs, we follow the training strategies from the original
papers of PDEformer (2024) and DPOT (2024) to ensure
a fair comparison. Relative L2 is used as the evaluation
metric. See Appendix H for full implementation details and
hyper-parameter configurations of each model.

4.1. Heterogeneous 2D Navier Stokes Equation: HeterNS

Setups We introduce HeterNS, an extension of the widely
used 2D NS dataset (Li et al., 2021a), to assess how mod-
els handle diverse PDE components, particularly viscosity
coefficients and force terms. It comprises five viscosity

coefficients v and three force terms differentiated by fre-
quency w, resulting in 15 combinations of PDE components
and 15,000 training samples. As depicted in Figure 4, we
evaluate the model performance on in-distribution test with
only unseen initial conditions and zero-shot generalization
involving both unseen initial conditions and variations in
viscosity coefficients or force terms.

=20 =0

E -'

Unseen IC (Indistribution test) Unseen IC & Viscosity (zero-shot)

BT

Unseen IC & Force (zero-sot) Unseen IC & Viscosity & Force (zero-shot)

Figure 4. Visualization of evaluation scenarios on the HeterNS.

Table 3. Performance comparison on HeterNS. Note that the re-
ported In-dist and Zero-shot results are averaged over multiple
sub-configurations with different viscosity coefficients and force
terms. Full results can be found in Appendix D.

Viscosity | Force

Method ‘ #Params ‘
| | In-dist Zero-shot | In-dist Zero-shot

FNO 47M 10.0210 0.0574 [0.0975 0.4316
PINO 47M 10.0364 0.0679 [0.1544 0.7155
ViT 4.8M [0.0156 0.0514 [0.0593 0.3158
FactFormer| 5.1M [0.0201 0.1162 [0.0654 0.3272
ICON 45M [0.0216 0.0611 [0.0788 0.7621
MPP 49M [0.0347 0.0840 [0.0997 0.3435
Unisolver | 4.1M [0.0098 0.0374 |0.0428 0.1053
Promotion / 372% 272% |277% 66.7%
Results As shown in Table 3, Unisolver achieves the best

performance in both in-distribution test and zero-shot gen-
eralization settings. It is worth noting that external force
generalization is a highly difficult task, as the force term
fundamentally determines the fluid evolution patterns. Still,
Unisolver surpasses other methods in this challenging task,
with significantly greater promotions in zero-shot general-
ization settings (average 66.7 %) than in-distribution test
settings (average 27.7 %), demonstrating the effectiveness
of our design in capturing generalizable physics relations
between external force and model inputs. Even though
we explicitly concatenate the varied PDE components with
the model inputs, most advanced neural operators perform
poorly on HeterNS. We also include experiments in Ap-
pendix 1.1, where both viscosity and force are unseen. Uni-
solver still achieves considerable improvement (average
41.3%) on this challenging double unseen setting.
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Table 4. Comparison (relative L2) of in-distribution test and zero-shot generalization on 1D time-dependent PDEs. Viscosity v and

advection velocity /3 are dominated components of target PDEs.

1D Time-dep ‘ Tasks ‘ In-distribution ‘ Zero-shot Burgers Zero-shot Advection
endent PDEs | params ™| Test | v=o0.1 v =0.01 v = 0.001 B=0.1
PDEformer 22M 0.0225 0.00744 0.0144 0.0393 0.0178
Unisolver 19M 0.0108 0.00513 0.00995 0.0299 0.0138
Promotion / 52.0% 31.0% 30.9% 23.9% 22.5%

Table 5. Performance comparison (relative L2 (x 1072)) across 12 in-distribution test sets. We use a “source-PDE” format to denote
different tasks (e.g. FNO-NS). The second row lists the primary PDE components for each dataset. See Appendix G.3 for details.

D Tasks| FNO-NS-v | PDEBench-CNS-(M,() PDEBench | PDEArena | CEDBench-NS | Average
Mixed PDES | pyramy | 1e-5 Te-4 le-3|(1,0.1) (1,0.01) (0.1,0.1) (0.1,0.01) DR SWE| NS NSForce| Geometry | ErTor
DPOT 30M |553 442 131] 153 337 1.19 1.87 379 0.66 991 316 0.70 5.50
Unisolver 33M 417 3.36 0.61| 123 289 1.01 159 439 045 (687 274 0.54 4.54
Promotion (%) / 246 240 534| 196 142 15.1 15.0 [ 31.8[307 133 229 17.5
4.2. 1D Time-Dependent PDEs 4.3. 2D Mixed PDEs

Setups This benchmark contains three million high-
quality 1D time-dependent PDE samples with varying equa-
tion formulations, coefficients, force terms and boundary
conditions. We perform joint training on this extensive
dataset, where the input for the training task includes all
relevant PDE components, and the output records full space-
time fields. After training, the model is evaluated across
multiple test settings as depicted in Figure 5, including in-
distribution test as well as zero-shot generalization on Burg-
ers and Advection equations from PDEBench (Takamoto
et al., 2022), which is another unseen dataset.

] l
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PDEBench-Burgers (zero-shot) PDEBench-Advection (zero-shot)

T

Figure 5. Showcases of various evaluation scenarios on 1D PDEs.

Results The results in Table 4 presents that Unisolver
achieves significantly better in-distribution test performance
compared to PDEformer. This indicates that our architec-
tural design of incorporating complete PDE components into
a Transformer model is more effective than the computa-
tional graph utilized by PDEformer in representing intricate
physical relations between inputs and solutions. Addition-
ally, Unisolver achieves better performance in four zero-shot
generalization scenarios, with an average improvement of
27.1% over PDEformer, even with fewer parameters.

Setups This benchmark involves 12 datasets from four
prominent benchmarks, covering a wide range of PDEs.
After joint training on these diverse datasets, we perform
in-distribution tests on each dataset as shown in Figure 6.
Notably, the in-distribution test set also involves challenging
variations in the PDE components. Moreover, unlike the
balanced data in HeterNS, these datasets exhibit significant
imbalances across different PDE components. To mitigate
this issue, we adopt the balanced data sampling method from
DPOT (Hao et al., 2024); however, it still poses considerable
challenges in managing such diverse PDE samples.

3 =

Varying Geometry

Al

Varying Boundary Condition

Varying Coefficients

Figure 6. Showcases of in-distribution test sets on 2D mixed PDEs.

Results As shown in Table 5, Unisolver outperforms
DPOT (Hao et al., 2024) in 11 of 12 in-distribution test sets
with an remarkable average promotion of 17.5% (5.50—
4.54), except for the small Diffusion-Reaction (DR) dataset
whose relative L2 tends to be saturated (less than 5%), veri-
fying the effectiveness of our design. Unisolver shows con-
sistently superior performance in several PDE component-
dominated tasks, including coefficient generalization in
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Table 6. Ablation results on the LLM embeddings and the Condition Modeling. Variants of the former include without LLM embeddings
(w/o LLM) and replacing by orthogonal random vectors (Random Vector), and variants of the latter include without subspace decoupling
(w/o Subspace) and directly concatenating components (Concat). “Unchanged” means no changes to the default design.

Relative L2 Zero-shot Generalization
T — LLM Condition In-distribution -
1D Time-dep Embeddings Modeling Test Burgers Burgers Burgers Advection
endent PDEs v=0.1 v =0.01 v = 0.001 B8=0.1
w/o LLM Unchanged 0.0295 0.0189 0.0692 0.1432 0.0637
Unisolver Random Vector Unchanged 0.0290 0.0185 0.0675 0.1471 0.0632
Ablations Unchanged w/o Subspace 0.0287 0.0187 0.0675 0.1478 0.0625
Unchanged Concat 0.0317 0.0236 0.0802 0.1586 0.0732
*final Unchanged Unchanged 0.0277 0.0176 0.0659 0.1350 0.0603
I FNO (incomplete) FNO (complete) Unisolver (incomplete) Unisolver (complete)
N o o o
q_>3 0.100 0.04 zz: 0.008 0003
_‘6 0.075 0.03 oots zzzj 0002
gl o = T el - R}
" w=1 w=2 w=3 " w=1 w=2 w=3 " w=1 w=2 w=3 " w=1 w=2 w=3 " w=1 w=2 w=3

(a) HeterNSv = 1e-5 (b) HeterNSv = 5e-5

(c) HeterNSv = Te-4

(d) HeterNSv = 5e-4 (e) HeterNSv = 1e-3

Figure 7. Capability of Unisolver to handle partial-observed data simulated on the HeterNS.

FNO (2021a), force generalization in PDEArena (2023),
and geometry generalization in CFDBench (2023), high-
lighting its ability to capture generalizable representations
from complete PDE components.

4.4. Model Analysis

Ablation Studies We investigate the effect of LLM em-
beddings and condition modeling modules on 50,000 sam-
ples from the 1D time-dependent PDEs benchmark. The
results are summarized in Table 6.

Firstly, in the LLM ablations, without LLM embedding,
performance is the worst among all cases, even worse than
replacing by orthogonal random vectors. LLaMA-3 brings
a 5.76% averaged promotion compared to models without
LLM embedding, indicating its essential role in learning
PDEs. Notably, since the LLM only encodes one of six
components, the equation symbols, a promotion of around
5% 1is a significant margin. Moreover, we compare the
Unisolver’s performance across different language models
in Figure 8, including LLaMA-3, LLaMA-2 and T5. The
results are comparable, indicating each model possesses
sufficient ability to encode prior mathematical information.

Secondly, in condition modeling ablations, removing sub-
space decoupling introduces interference between different
groups of PDE conditions, significantly impairing perfor-
mance in zero-shot generalization settings, with an average
drop of 5.45% . Moreover, direct concatenation of PDE com-
ponents severely hinders relation learning (21.0% average

drop), which indicates the benefits of our design.

Incomplete component scenario In real-world applica-
tions, we may lack complete PDE components. To demon-
strate Unisolver’s capability to handle such situations, we
randomly replace each PDE component with learnable to-
kens at a 30% probability in the HeterNS benchmark to
simulate partially observed real-world data, resulting in 49%
of samples with complete components. During inference,
we can flexibly choose whether to provide PDE components
as inputs. The results in Figure 7 shows Unisolver’s perfor-
mance under two scenarios: incomplete means no compo-
nents available, while complete means full components. The
results demonstrate that even with incomplete components,
Unisolver surpasses FNO (2021a) in most cases, especially
in complex cases with lower viscosity coefficients. More-
over, complete PDE information further boosts the model’s
performance (average 21.6 %), supporting our motivation
that complete information is essential for PDE solving.

Visualization of learned PDE embeddings Firstly, fo-
cusing on the effect of LLMs in Unisolver, we compared
various LLMs and found comparable performances among
them in Figure 8(a). Going further, we analyze the PDE
embeddings in Figure 8(b-c), where principal component
analysis (PCA) (Jolliffe & Cadima, 2016) is applied to intu-
itively visualize the LLM embeddings of equation symbols
and deep PDE conditions learned by Unisolver for 1D time-
dependent PDEs. In Figure 8(b), we observe that PDEs with
similar complexity are encoded into similar embeddings,
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Figure 8. (a) Comparison of utilizing different language models to encode equation symbols. (b) PCA visualization of LLM embeddings.
The considered PDE family contains six coefficients, such as co1, coz2, cos, as well as source and viscosity terms. Different colors represent
the number of non-zero coefficients, intuitively indicating the complexity of PDEs. A zero coefficient results in the removal of a term
from the equation, impacting the representations embedded by the LLM. (c) PCA visualization of learned deep PDE conditions, Lject in
Eq. (2). We vary only one coefficient at a time and keep the others fixed at zero, forming the shown parabolic-like trajectories.
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Figure 9. Error map comparison on HeterNS, where all cases share the same initial condition but differ in viscosity (v) and force (w)
(shown in the first row by pairs (v, w)). The left panel shows in-distribution tests, while the right shows zero-shot generalization.

highlighting that LLM can indeed effectively capture prior
mathematical knowledge. In Figure 8(c), the trajectories of
deep conditions resemble parabolas with varying degrees
of curvature, indicating that the learned deep conditions
successfully capture the variations of PDE components.

Scalability Scalability is crucial for building a universal
neural PDE solver. Figure 10 illustrates our exploration of
Unisolver’s scalability, where we progressively increase the
training data by 60 times and the model parameters by 21
times. Unisolver exactly displays the scaling law, achiev-
ing better performance with increased data and parameters,
posing the potential for a universal neural PDE solver.

0.0608 In-distribution test

== BurgersV = 0.01

In-distribution test | 0.0608
=o=BurgersV = 0.01

0.0407 0.0407

0.0273
0.0273

Relative L2

0.0183

0.0183
0.0123

50k 100k 200k 3M 3M oM 9M 63M

(a) Data Scalability (Samples) (b) Model Scalability (Parameters)

Figure 10. Data scalability (60x) and model scalability (21x) on
1D PDEs. Relative L2 results are plotted on a log-log scale.

Case Study To provide a clear comparison, we provide
showcases on the HeterNS in Figure 9. All presented tra-
jectories are generated from the same initial condition but
exhibit distinct final fields, underscoring the determining
role of PDE components. Further, it can be observed that
Unisolver significantly outperforms FNO under more com-
plex conditions, such as smaller viscosity v and larger force
coefficient w, particularly in zero-shot generalization set-
tings. More showcases can be found in Appendix E.

5. Conclusion

To break the generalization bottleneck, this paper presents
Unisolver as a PDE-conditional Transformer, which stems
from the theoretical analysis of the PDE-solving process.
Concretely, Unisolver identifies and systematically encodes
a complete set of PDE components into domain-wise and
point-wise deep conditions separately and specifically. By
integrating these conditions with Transformers through a
decoupled mechanism, Unisolver can handle universal PDE
components and achieve consistent state-of-the-art results
across three challenging, large-scale benchmarks. Exten-
sive analyses are provided to demonstrate the effectiveness,
generalizability and scalability of our model.



Unisolver: PDE-Conditional Transformers Towards Universal Neural PDE Solvers

Acknowledgement

This work was supported by the National Natural Science
Foundation of China (U2342217 and 62021002), the BNRist
Innovation Fund (BNR2024RC01010), and the National
Engineering Research Center for Big Data Software.

Impact Statement

This paper presents Unisolver towards universal neural PDE
solving. By conditioning Transformers with PDE informa-
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A. More Ablations

To further verify the role of LLM embeddings in encoding PDE information, we conduct three more additional ablation
experiments. In the first experiment, the LLM only encodes the number of non-zero terms in the 1D PDE. In the second
experiment, the LLM encodes the “wrong” PDE information. Specifically, we replace “*” with “/” and adjust polynomial
orders to their reciprocals. For example, the original latex code u; + co1 * u + co2 * u? + s(x) + (c11 *u+cq3 * u3)m =0is
transformed into w; + co1 /u + coa/u/? + s(z) 4 (c11/u+ c13/u'/3), = 0. In the third experiment, we manually construct
a one-hot vector for each PDE term and combine them to represent a full PDE. Then the combined one-hot vector is directly
used by Unisolver without being encoded by an LLM. The results of these three ablation studies are shown in Table 7.

Table 7. More ablations about LLM embeddings. We include three more ablations to further demonstrate the rationale for using LLM
embeddings. Relative L2 loss is reported.

ndetuion Dupe  Bupe  Dwps Al
Number of non-zero terms encoded by LLM | 0.0285 0.0180 0.0665 0.1391 0.0618
“Wrong” expression encoded by LLM | 0.0289 0.0181 0.0672 0.1361 0.0619
Manually constructed representation ‘ 0.0282 0.0184 0.0675 0.1386 0.0679
Ours | 0.0277 0.0176 0.0659 0.1350 0.0603

The results indicate that the model indeed obtains additional information beyond merely the count of non-zero terms from
the LLM embeddings. Moreover, embedding “wrong” mathematical information generally leads to a decline in performance,
highlighting the importance of accurately embedding the PDE information. While we cannot definitely claim that the LLM
“understands” mathematical knowledge, we can confirm that the use of LLM enables us to encode useful mathematical
information into deep representations. Besides, we observe that the LLM embedding case consistently outperforms the
manually constructed representation case in both in-distribution tests and four zero-shot generalization settings, showing a
4.23% average improvement. Although the manually constructed representation aims to preserve the mathematical structure
of the PDE as much as possible, the handcrafted features struggle to perfectly capture the mathematical structure provided
by LLMs visualized in Figure 8, leading to a decrease in performance.

B. Fine-tuning Performance

Zero-shot generalization serves as a valuable metric, but in scenarios where datasets differ substantially from the training
set, the model’s zero-shot performance may be limited. In such instances, fine-tuning performance is critical, since it
reflects the model’s ability to learn fundamentally generalizable representations through large-scale training. We present
Unisolver’s fine-tuning performance on 1D time-dependent and 2D mixed PDEs in Figures 11-12, with 100 epochs for 1D
time-dependent PDEs and 200 epochs for 2D mixed PDEs, both amounting to 20% of the total training epochs from scratch,
demonstrating fast adaptation.

For 1D time-dependent PDEs, as shown in Figure 11, fine-

tuning 100 epochs on the Burgers and Advection equations from oo e 1000
PDEBench (Takamoto et al., 2022) significantly enhances Uni- 003 Unisaver (F7-100)
solver’s performance, reducing error by 61% compared to zero- 0020
shot results and achieving a 59.3% improvement over PDEformer
(Ye et al., 2024) under the same fine-tuning conditions. These
results prove the condition modeling in Unisolver is more effective 015

than the computational graph proposed by PDEformer, especially I

0.025

0.020

Relative L2

0.010
for fast adaptation. For 2D mixed PDEs, as shown in Figure 12, vons I
after 200 epochs of fine-tuning for each dataset, Unisolver reduces s J
error by more than 12% compared to zero-shot generalization Burgersv =0.1  Burgersv =0.01 Burgersv=0.001 Advection §= 0.1
performance and outperforms DPOT (Hao et al., 2024) under the Figure 11. Fine-tuning performance on 1D PDEs. “FT-100”
same fine-tuning conditions by 14%, showcasing its ability to  means fine-tuning on each dataset for 100 epochs.

extract generalizable knowledge from diverse training datasets.
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Figure 12. Performance comparison (relative L2) on 2D mixed PDEs after 200 epochs of fine-tuning.

C. More Experiments about Generalizability

We conduct two additional experiments to evaluate the generalization capability of Unisolver: first, we verify the benefits
of joint training on different types of PDEs rather than training on them independently; second, we evaluate Unisolver’s
capability to generalize to new types of PDEs.

C.1. The Benefit of Joint Training

We design a new experiment to evaluate the benefit of joint training on the 1D time-dependent PDE benchmark. As stated in
Appendix G, the general equation formulations used in this benchmark include two polynomials, fy and fi, both with a
maximum order of 3. We construct three distinct sub-datasets, each with 10,000 samples, to test the impact of joint training.
The polynomials in each dataset are fixed to orders of 1, 2, and 3, respectively, ensuring that the PDEs contained in these
three datasets do not overlap. For instance, in the dataset with polynomials of order 3, only cy3 and c;3 are non-zero terms,
while cg1, cg2, c11 and c¢12 are fixed to zero. We conduct both joint training and independent training for 500 epochs on
these 3 subdatasets. The results are shown in the Table 8.

Table 8. The benefit of joint training. We consider three distinct subset, where the polynomials are fixed to orders of 1, 2 and 3, respectively.
The performance (relative L2) of the joint training model is compared against the same model trained on each subset independently.

Polynomial order | 1 2 3
Independent Training | 0.0792 0.1161 0.1236
Joint Training 0.0555 0.0738 0.0695
Promotion 29.9% 36.5% 43.7%

C.2. Equations Generalization via Finetuning

We design a equation generalization scenario based on the 1D PDEs benchmark. As stated in Appendix G, the general
equation formulations used in this benchmark include two polynomials, fy and f;, both with a maximum order of 3. We
pretrain Unisolver on 50,000 samples of PDEs with polynomial orders of up to 2, and fine-tune it for 200 epochs on PDEs
with polynomial orders of 3. The fine-tuned model is compared against the same model trained from scratch for 500 epochs,
with relative L2 error reported in Table 9. Results indicate that Unisolver pretrained on equations of polynomial order up to
2 can be efficiently fine-tuned to handle equations of polynomial order 3. Unisolver demonstrates strong generalization
capabilities to unseen PDEs, significantly reducing the need for large training datasets when addressing new equations.

Table 9. Generalization to unseen equations. Unisolver is initially trained on equations with a polynomial order of up to 2, and subsequently
fine-tuned for 200 epochs on equations with a polynomial order of 3. The performance (relative L2) of the fine-tuned model is compared
against the same model trained from scratch for 500 epochs.

Finetuning Examples | 5000 10000 20000
Unisolver-from-scratch-500 \ 0.3308 0.1913 0.1327
Unisolver-fine-tune-200 0.1624 0.1036 0.0891
Promotion 50.9% 45.8% 32.9%

D. Full Results for the HeterNS Benchmark

The results in Table 3 are averaged over several sub-configurations containing various viscosity coefficients or external
forces. Here we provide the detailed results for each sub-configuration in Tables 10 and 11. Unisolver achieves the best
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performance in 10 of 11 tasks, covering both in-distribution test and zero-shot generalization settings. It is worth noting that
external force generalization is a highly difficult task, as the force term fundamentally determines the fluid evolution patterns.
Specifically, all compared neural operators fail to solve the case of w = 0.5 in Table 11 with the relative error exceeding 0.5,
while Unisolver achieves a relative error of 0.098 on this task, further highlighting the generalizability of Unisolver.

Table 10. Relative L2 performance on HeterNS with different viscosity and fixed force frequency coefficient w = 2. For clarity, the best
result is in bold and the second best is underlined. Promtotion refers to the relative improvement over the second-best method.

Viscosity ‘ In-distribution Test ‘ Zero-shot Generalization
HeterNS

‘ Params v=1le5 wv=5-5 v=led v=54 v=le3 ‘ v=8-6 wv=3e5 wv=8-5 v=3e4 v=84 v=23
FNO 4.7 0.0669  0.0225 0.0114 0.0031 0.0011 | 0.0702 0.0373 0.0141 0.0088 0.0084  0.2057
PINO 4. M 0.1012  0.0443 0.0263  0.0073  0.0031 | 0.1014 0.0646 0.0299 0.0142 0.0081 0.1894
ViT 4.8M 0.0432  0.0206 0.0098 0.0031 0.0015 | 0.0458 0.0353 0.0119 0.0100 0.0174 0.1878
Factformer 5.1IM 0.0571  0.0259 0.0148 0.0018  0.0010 | 0.0489 0.0642 0.0167 0.1808 0.0639  0.3224
ICON 4.5M 0.0585 0.0267 0.0144 0.0054  0.0029 | 0.0606 0.0387 0.0169 0.0246 0.0110 0.2149
MPP 4.9M 0.0775 0.0496 0.0321  0.0098  0.0043 | 0.0796 0.0648 0.0376 0.0387 0.0236  0.2595
Unisolver 4.1M 0.0321  0.0094 0.0051  0.0015  0.0008 | 0.0336 0.0178 0.0064 0.0066 0.0096 0.1504
Promotion / 257%  544%  48.0%  16.7%  20.0% | 26.6% 49.6%  462%  25.0% / 19.9%

Table 11. Comparison (relative L2) on HeterNS with varied force and fixed viscosity v = 1075,

Force \ In-distribution Test \ Zero-shot Generalization
HeterNS

‘Params ‘ w=1 w=2 w=3 ‘ w=0.5 w=15 w=25 w=3.5
FNO 4.7M 0.0640 0.0661 0.1623 1.1100 0.1742 0.1449 0.2974
PINO 4. TM 0.0914 0.1012 0.2707 1.0570 0.5010 0.4660 0.8380
ViT 4.8M 0.0348 0.0432 0.1000 0.7900 0.1412 0.1240 0.2080
Factformer 5.1M 0.0409 0.0570 0.0982 0.8591 0.1207 0.1243 0.2047
ICON 4.5M 0.0435 0.0585 0.1345 1.1950 0.5295 0.5009 0.8231
MPP 4.9M 0.0596 0.0775 0.1620 0.5532 0.2224 0.2180 0.3803
Unisolver 4. 1M 0.0244 0.0321 0.0720 0.0980 0.0770 0.0720 0.1740
Promotion / 29.9% 25.7% 26.7% 82.3% 36.2% 41.9% 15.0%

E. More Showcases

We provide additional showcases here to supplement the numerical results in main text. First, we visualize the in-distribution
test and zero-shot generalization cases on HeterNS in Figure 13 and Figure 14 respectively. Next, we present visualizations
for 1D time-dependent PDEs in Figure 15. Finally, we illustrate the 12 diverse datasets from 2D mixed PDEs in Figure 16.
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Figure 13. Error maps (absolute difference between model predictions and ground truth) for in-distribution tests with fop three baselines
on HeterNS. See Table 10 and 11 for numerical comparison (relative L2). All data has the same initial condition and differs in viscosity ()
and force (w) (shown in the first row by the pairs (v, w)). Unisolver achieved the best visual performance among the compared baselines.
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Figure 14. Error maps for zero-shot generalization settings with top three baselines on the HeterNS dataset with the same initial conditions
and differs in viscosity (v) and force (w) (shown in the first row by the pairs (v, w)). See Table 10 and 11 for numerical comparison.

Pretrain Burgers Advection
Periodic 0.1 0.01 0.001

s —
=Vt
=S

PDEformer  Ground

Unisolver

— =N\

Unisolver ~ PDEformer  Ground
Error

. — = N\ \
— 3 = ~ \ A\ N

Figure 15. Error maps on the in-distribution test and zero-shot generalization (Burgers and Advection equation from PDEBench (Takamoto
et al., 2022)) settings in 1D time-dependent PDEs. See Table 4 for numerical comparison. We visualize two cases: periodic boundary
conditions and Robin boundary conditions in in-distribution tests. The number in the Burgers columns is the diffusion coefficient v while
the number in the Advection column is the advection speed 3.
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Figure 16. Unisolver predictions and error maps on 2D mixed PDEs. See Table 5 for numerical results. Both predictions and error maps
are provided. As shown in the CFDBench-NS columns, Unisolver presents an impressive ability to handle different geometry conditions.
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F. Analytical Solution for the String Vibration Equation

The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

z+at zta(t— 'r)
u(x,t)z%((l)(x—i— t)+ ®(x — t))—|—21 / df—i—f/ dT/ )df7 3)

—t —(fT)

(:uumll y

Force

where ®(x), ¥(x) and F(z,t) are odd, periodic functions with period 2L defined on the upper half plane, extended from
¢(x), ¥(x) and f(z,t). The boundary conditions will be explicit by extending the equation to the upper half plane and
solving it by operator splitting and characteristic lines.

Detailed proof can be found in (Evans, 2022) or other relevant books.

G. Benchmarks

We provide a detailed description of the three large-scale benchmarks in our experiments here: a challenging, self-generated
heterogeneous 2D Navier-Stokes Equations dataset (HeterNS) and two large-scale benchmarks, one proposed by PDEformer
(Ye et al., 2024), and the other collected by DPOT (Hao et al., 2024). These benchmarks cover a wide range of PDEs and
diverse generalization scenarios, which can test the generalizability of PDE solvers well.

G.1. HeterNS

Similar to FNO (Li et al., 2021a), we consider the 2D Navier-Stokes equation in vorticity formulation for the viscous,
incompressible fluid on a unit torus. We consider both in-distribution test and zero-shot generalization settings on HeterNS.
See Figure 13 and 14 for a visual representation.

opw(z,t) +u(z,t) - Vw(z,t) = vAw(x,t) + f(x), =€ (0,1)% t € (0,T). (4a)
V- u(x,t) =0, € (0,1)% ¢t €[0,T]. (4b)
w(x,0) = wo(z), z € (0,1)% (4c)

Trainset The problem involves two key PDE components: the viscosity coefficient and the force term. We experiment with
viscosity coefficients v € [8x 1075, 2x1073] and force terms in the form f(x) = 0.1(sin(wm(z1+z2))+cos(wm(z1+22))).
Specifically, our training set consists of v € {1 x 10755 x 107°,1 x 107%,5 x 107%,1 x 103} and w € {1, 2,3},
resulting in 15 unique combinations of PDE components. For each combination, we generate 1000 samples, yielding a total
of 15,000 training samples. The dataset can be accessed at the following anonymous link.>

In-distribution test set For testing, we first evaluate the in-distribution test sets, each containing 200 samples. In this
setting, only the initial conditions differ from the training dataset, while all other PDE components remain the same.

Zero-shot generalization set Zero-shot generalization settings present much greater challenges, as both the initial
conditions and the viscosity coefficient or force terms may be entirely unseen during training. We assess the model’s
zero-shot performance on 200 samples, offering a more rigorous test of its ability to learn generalizable representations.

G.2. 1D Time-dependent PDEs

This benchmark is proposed by PDEformer (Ye et al., 2024). It contains 3 million high-quality 1D time-dependent PDEs
with various equation components for training and then evaluates the model performance using in distribution test sets and
zero-shot generalization performance on Burgers and Advection equation from PDEBench (Takamoto et al., 2022), which is
another distinct benchmark. See Figure 15 for a visual representation.

2https ://drive.google.com/drive/folders/1te5IyQHTznu_Kw7v3zDHg0i_KCHysPKw?usp=share_link
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Train set The training dataset is generated by the following PDE family:

Ou+ fo(u) + s(x) + 0. (f1(u) — k(x)0,u) =0, (z,t) € [-1,1] x [0,1]. (52)

U(O,l‘) :g(m), T e [7171}' (5b)
where f;(u) = c;u + ciou? + cizu’,i = 0, 1. Each coefficient c;, is set to zero with a probability of 0.5, and otherwise
uniformly sampled from the interval [—3, 3]. The variables x(z) and s(z) can be zero, constant or physical fields, which are
all randomly sampled from pre-defined distributions, as detailed in PDEformer’s original paper (Ye et al., 2024). The initial
condition g(x) is randomly generated within the family of trigonometric functions, a super-position of sinusoidal waves
as, ug(xz) =Y Kimky iy i sin(k;x + ¢;), where k; = 2mn; /L, are wave numbers and n; € N are selected randomly in
[1, nmax], which is same as the zero-shot generalization tasks from PDEBench (Takamoto et al., 2022).

The dataset includes both periodic and non-periodic boundary conditions, with 1.5 million samples each. For the non-
periodic cases, the boundary condition type at each endpoint are randomly selected from three pre-defined types: Dirichlet,
Neumann, and Robin. The Dirichlet conditions specify the solution value at the boundary, while the Neumann conditions
set the derivative value at the boundary, and the Robin conditions are a linear combination of the Dirichlet conditions and
Neumann conditions. Therefore, Dirichlet and Neumann boundary conditions are regarded as corner cases of the Robin
conditions.

We now provide a summary from the perspective of the complete PDE components. The domain-wise components of
the training dataset include equation symbolic expression, i.e. Eq. (5), boundary condition types, and coefficients in two
polynomials f; while the point-wise components include the physical fields s(x) and k(z), which are considered as force
terms and boundary value functions. The input observations are the initial conditions, discretized spatially at a resolution of
256. The output is the final solution u(zx, t), discretized spatially at 256 and temporally at 100.

Symbolic variations Additionally, there is one important aspect to consider regarding the symbolic variations of equation
symbols. A zero coefficient in the two polynomials f; results in the removal of a term from the equation. If the physical
fields k(z) or s(z) are zero, the corresponding term is removed from the prompt. When x(z) is constant, it is replaced
by « to more accurately reflect the constant value, and the same applies to s(x). These symbolic variations directly affect
the equation formulations further embedded by the LLM, resulting in 26 x 3 x 3 = 576 types of LLM embeddings,
corresponding to 576 distinct equation types.

In-distribution test set We generate 10,000 samples strictly following the configurations of the training dataset to ensure
that all PDE components are within the same distribution. However, being in the same distribution does not mean that they
have been seen before. Given to the multitudinous PDE family, all PDE components, besides the equation symbols, can still
exhibit significant variations, making in-distribution tests is also a highly challenging task.

Zero-shot generalization set We employ the following two 1D PDE datasets from PDEBench (Takamoto et al., 2022) as
zero-shot generalization tasks. All zero-shot generalization tasks follow periodic boundary conditions and the same initial
condition family as the training dataset. The resolution of these samples is 1024 x 201. For each dataset, we use 1000 test
samples. We downsample the spatial resolution of these datasets to 256 and maintain the temporal resolution unchanged.
The zero-shot PDEs consist of the Burgers equation and the Advection equation.

(1) Burgers equation Burgers equation, as the fundamental equation in fluid mechanics, models the non-linear behavior
and diffusion process of fluid dynamics as:

Byult, ) + 0x (u(t, 2)* /2) = v/m0pu(t,z), = € (0,1),t € (0,2]. (6a)

u(0,2) = ug(z), z € (0,1). (6b)

where v is the diffusion coefficient. In our zero-shot generalization settings, the Burgers equation dataset consists of three
subsets, distinguished by the diffusion coefficient: v = 0.1, 0.01, 0.001. The diffusion coefficient represents the intensity of

fluid variation, with smaller values corresponding to more complex fluid dynamics.
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(2) Advection equation The advection equation models pure advection behavior without non-linearity, which can be
formalized as:

Opu(t, ) + BOzu(x,t) =0, x € (0,1),¢t € (0,2]. (7a)
u(0,z) = up(z), x € (0,1), (7b)

where the constant advection speed 3 and equation symbols are considered domain-wise components in this dataset. In our
zero-shot generalization settings, we use an advection speed of 3 = 0.1. It is worth noting that the advection equation has
an analytic solution, given by u(t, x) = ug(z — Bt).

Fine-tuning We also provide fine-tuning results on 1D time-dependent PDEs in Appendix B. Compared to zero-shot
generalization, we fine-tune the model using an additional 9,000 samples while testing on the same 1,000 samples.

Domain alignment Notably, the spatiotemporal domain of the equations in PDEBench is [0, 1] x [0, 2], whereas the
training dataset uses the domain[—1, 1] x [0, 1]. To directly infer from the model trained on 1D time-dependent PDEs,
we need to align the spatiotemporal domains through spatial-temporal coordinate transformations, which will result in
corresponding changes to the PDE components. Technically, the zero-shot PDEs after the coordinate transformation are
given by:

* Burgers equation: dyu + 0, (2u?) — Sfam/z/u =0, wheret' =

* Advection equation: Oy u + Oy (4fu) =0, wheret’ =

G.3. 2D Mixed PDEs

This benchmark is collected by DPOT (Hao et al., 2024), which consists of the following 12 diverse subsets from 4
benchmarks. We only conduct in-distribution tests in the 2D mixed PDEs. Notably, the in- distribution test set also involves
challenging variations in the PDE components. See Figure 16 for a visual representations.

FNO-v (Li et al., 2021a) This well-established benchmark considers the 2D Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form on the unit torus. The task is to estimate the vorticity field of the future ten timesteps
on a regular 64 x 64 grid based on the initial ten timesteps observations of the vorticity field. The only varying PDE
component in this dataset is the viscosity coefficient, which takes values from the set {1 x 107°,1 x 10741 x 1073}. We
use 1,000 instances for the viscosity value 1 x 1075, 9,800 instances for 1 x 10~%, and 1,000 instances for 1 x 1073 to
pre-train or fine-tune our model. The remaining 200 instances are used for testing its performance. In in-distribution tests,
the initial conditions vary across samples.

PDEBench (Takamoto et al., 2022) The following three subsets are derived from PDEBench (Takamoto et al., 2022),
encompassing three distinct equations: the compressible Navier-Stokes equation (CNS), the diffusion-reaction equation
(DR), and the shallow-water equation (SWE). All datasets considered in PDEBench adhere to periodic boundary conditions.
The spatial resolution of this benchmark is 128 x 128.

(1) The compressible Navier-Stokes equation models compressible fluid dynamics, including phenomena such as shock
wave formation and propagation. In this dataset, two dominant domain-wise components are considered: the Mach number
(M) and shear viscosity (¢). The dataset includes four combinations of these components, represented as coefficient pairs
(M, ¢): (1,0.1),(1,0.01),(0.1,0.1), (0.1,0.01). Each combination provides 9,000 instances for training and 200 for testing.
The task involves predicting the next 11 timesteps of multiple physical fields—vorticity, pressure, and density—given the
initial 10 timesteps of observations. In in-distribution tests, the initial conditions vary across samples.

(2) The shallow-water equation, derived from the general Navier-Stokes equations, models free-surface flow problems like
coastal tides, storm surges, and shallow lake flows. This equation is formalized as,

1 1
9, (hu) + V - <2hu2 + 29rh2> = —g,hVb. (8b)
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where h describes the water depth, b describes a spatially varying bathymetry, g, describes the gravitational acceleration, and
V - (hu) can be interpreted as the directional momentum. A key characteristic of this dataset is its long prediction horizon.
The task of interest is to predict the future 91 timesteps of water depth based on the first 10 timesteps of observations. In
in-distribution tests, the initial conditions vary across samples.

(3) The 2D Diffusion-Reaction Equation involves two non-linearly coupled variables, namely the activator u = (¢, x, y)
and the inhibitor v = v(¢, x, y). It is primarily applicable for modeling biological pattern formation, such as the development
of animal coat patterns, skin pigmentation and cellular organization. This equation is formalized as,

Ou = DyO0rpu + Dy Oyyu + Ry, (9a)
010 = Dy0sev + DyOyyv + R, (9b)

where D, = 1 x 1073 and D, = 5 x 10~ are the diffusion coefficient for the activator and inhibitor, respectively, and
R, = R,(u,v) and R, = R,(u,v) are the corresponding reaction functions for the activator and inhibitor, which are
defined by the Fitzhugh-Nagumo equation as,

Ru(u,v) =u—u® -k —v, (10a)
Ry(u,v) =u—wv, (10b)

where k = 5 x 1073, The initial condition is generated as standard normal random noise u(0,x,y) ~ N(0,1.0) for
x € (—1,1) andy € (—1,1). The dataset is temporarily discretized into N; = 101. A key characteristic of this dataset is its
long prediction horizon. The task of interest is to predict the future 91 timesteps of v and v given the initial 10 timesteps of
observations. In in-distribution tests, the initial conditions vary across samples.

PDEArena (Gupta & Brandstetter, 2023) This well-established benchmark considers the velocity function formulation
of the incompressible Navier-Stokes equations, which is widely used in real-world applications, such as fluid flow in pipes,
aerodynamic simulations, and weather prediction models. This equation is formalized as,

v =—v-Vo+uViv—-Vp+ f, (11a)
V-v=0. (11b)

where v - Vo represents convection, meaning the rate of change of v along its own direction, 1V?v is the viscosity, i.e. the
diffusion or net movement of v, Vp corresponds to the internal pressure, and f represents the external buoyancy force. The
inclusion of the incompressibility constraint V - 4 = 0 ensures mass conservation within the equations.

The spatial resolution of PDEArena is 128 x 128. This benchmark includes two subsets: one with a fixed external force and
another with a varied external force. In the fixed-force subset, the initial conditions vary across samples and the task is to
predict the next 4 timesteps of velocity based on the initial 10 timesteps of observations, with 3,100 samples used for training
and 200 samples for testing. In contrast, the more complex varied-force subset, where the initial conditions and force terms
vary across samples, requires predicting 46 future timesteps, with 6,500 samples for training and 650 samples for testing.

CFDBench (Luo et al., 2023) We consider three important and representative fluid dynamics problems that provide a
comprehensive evaluation of a method’s ability to generalize to unseen PDE components. These problems are: (1) flow in a
lid-driven cavity, (2) flow through a circular tube, and (3) flow around a cylinder. The equation is formalized as follows:

o(pu) + V- (pu?) = =Vp+ V- u(Vu + VuT), (12a)
V- (pu) = 0. (12b)

where p is the constant density, y is the dynamic viscosity, u = (u,v)? is the velocity field, and p is the pressure.

In in-distribution test settings, flows are generated for each problem with different PDE components, which are a combination
of three types: (1) boundary conditions, (2) fluid physical coefficients such as density and viscosity, and (3) the geometry of
the field. The boundary conditions refer to the inlet velocity or movement velocity, depending on the specific case. Each type
of PDE component corresponds to a distinct subset. In each subset, the corresponding PDE components are varied while
other parameters remain constant. We mix the three subsets following DPOT’s configuration (Hao et al., 2024), resulting in
9,000 training samples and 1,000 testing samples. The initial resolution is 64 x 64, which is then interpolated to 128 x 128.
The task is to predict the next 10 timesteps of velocity given the first 10 timesteps of observations.
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Fine-tuning We also provide fine-tuning results on 2D mixed PDEs in Appendix B. Given the significant diversity across
the 12 subsets, we fine-tune the model using a specific training subset to allow it to focus on the target subset and achieve
improved performance.

H. Implementation Details

In this section, we provide a detailed description of the implementation, covering three key aspects: metrics, implementations
for each benchmark and LLM embeddding details.

H.1. Loss and Metrics

Relative L2 for physics fields We can calculate the relative L2 distance between ground truth « and model prediction @ as
follows:

_ |u — |2

Relative L2 of (u, @) = Tl (13)
Uil 2

where ||u — |2 is the L?-distance between the predicted solution @ and the ground-truth solution u, and ||ul| 72 is the
L2-norm of the ground-truth solution. Relative L2 is used as both training loss and evaluation metric.

Relative Promotion Given the error of our model ¢y, and the error of the second best model €gecond-best model, WE can
calculate the relative promotion as follows:

. . €ours
Relative Promotion =1 — ——>% (14)
€second-best model

Relative promotion is widely used in the comparison and analytical experiments across the three large-scale benchmarks to
measure the improvement of the Unisolver relative to the base models.

Relative Drop Given the error of our model €., and the error of the ablation model €,pation model, W€ can calculate the
relative drop to quantify the extent of performance degradation in the ablation experiments as follows:

Relative Drop = —2dadon . (15)

€ours

Relative drop is only used in the ablation experiments in Section 4.4 to quantify the performance loss caused by removing or
replacing a specific module.

H.2. Implementations for Each Benchmark

HeterNS As outlined in Section 4, all the baseline models are trained under the same training strategy. We train the model
using one-step predictions and test the model in an autoregressive manner. Specifically, all the models are trained for 300
epochs using the relative L2 loss and the ADAM optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005,
along with a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016). The batch size is set to 60. After the
training process, we use the checkpoint from the last epoch to evaluate the model performance.

We also provide the detailed model architecture hyperparameters in Table 12. We configure each model to align their model
parameter numbers to ensure a fair comparison. Note that for MPP (2023), We utilize the parameter configuration of the tiny
version containing approximately five million trainable parameters, which is comparable to Unisolver and other baselines.

The varying PDE components in this benchmark include the viscosity coefficient and external force. This physics information
is provided to each baseline in an explicit or implicit way to ensure a fair comparison. For FNO (2021a), ViT (2020),
FactFormer (2023b), and MPP (2023), we explicitly concatenate the viscosity coefficient and the external force to the model
input along the channel dimension to ensure a fair comparison. As the viscosity coefficient is essentially a scalar, we repeat
it along the spatial dimensions and then perform the channel-concatenating process. ICON (2023) is a special baseline
which takes prompting trajectories as additional inputs to implicitly extract the physics information. Consequently, instead
of providing the PDE components, we augment the input to ICON with five additional prompting trajectories with the same
viscosity and external force as the target trajectory. Note that ICON also needs additional prompting trajectories when
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Table 12. Model hyperparameters of Unisolver and all baselines on the HeterNS benchmark.

Hyperparameter Value Description

FNO

modes 12 The truncation number of Fourier modes

channels 64 The number of channels in the hidden layers

depth 4 The number of Fourier Layers in the neural network
PINO

modes 12 The truncation number of Fourier modes

channels 64 The number of channels in the hidden layers

depth 4 The number of Fourier Layers in the neural network

ViT

Attention dim 256 The hidden dimension of the transformer attention layer
MLP dim 256 The hidden dimension of the transformer FFN layer
patch_size 4 The height and width of the ViT patches

n_head 8 The number of attention heads

dim_head 32 The hidden dimension of each attention heads

depth 12 The number of Transformer Blocks in the neural network
FactFormer

dim 128 hidden dimension of the transformer

n_head 12 The number of attention heads

dim_head 64 hidden dimension of each attention heads

depth 8 The number of Transformer Blocks in the neural network
ICON

Attention dim 256 The hidden dimension of the transformer attention layer
MLP dim 256 The hidden dimension of the transformer FFN layer
patch_size 4 The height and width of the ViT patches

n_head 8 The number of attention heads

dim_head 32 The hidden dimension of each attention heads

depth 12 The number of Transformer Blocks in the neural network
prompting numbers 5 number of prompting trajectories

MPP

Embed dim 192 Dimension of internal representation

n_head 3 The number of attention heads

depth 8 The number of Transformer Blocks in the neural network
patch_size 8 The height and width of the ViT patches

Unisolver

Attention dim 256 The hidden dimension of the transformer attention layer
MLP dim 256 The hidden dimension of the transformer FFN layer
patch_size 4 The height and width of the Unisolver patches

n_head 8 The number of attention heads

dim_head 32 The hidden dimension of each attention heads

depth 8 The number of Transformer Blocks in the neural network

conducting evaluation. For PINO (2021b), we follow the experiment setting in the original paper and train the model with
physics-informed loss as a soft regularization. The proportion of physics-informed loss with regard to data loss is set to 0.1.

1D Time-dependent PDEs We compare Unisolver with PDEformer-L in the 1D time-dependent PDEs benchmark,
evaluating their in-distribution test and zero-shot generalization performance. We also report the model performance after
fine-tuning in Appendix B. The pre-training and fine-tuing configurations for Unisolver and the fine-tuing configurations for
PDEformer are listed in Table 13.
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Following PDEformer’s training strategies, we train the model to predict the solution at specific spatial-temporal coordinates
through an INR. After the pre-training process, we use the checkpoint from the last epoch to evaluate the model performance
for the in-distribution test and zero-shot generalization test in Section 4.2. For fine-tuning tasks, we utilize the fine-tuning
script provided in the original repository of PDEformer and set the finetuning epochs to 100 for a fair comparison.

The model we use to compare with PDEformer-L contains 19M trainable parameters, which is comparable to the 22M
parameters of PDEformer-L. The model scalability experiments in Section 4.4 also show model configurations with different
number of trainable parameters. We progressively increase the Unisolver parameter from 3M to 63M, resulting in 4 different
model configurations. We present the detailed configurations of these models in Table 14. Note that in this benchmark, we
utilize an adapted version PolyINR (Singh et al., 2023) to decode the encoder output from the Transformer backbone.

Table 13. Pre-training and finetuning configurations on the 1D time-dependent PDE benchmark.

Parameter Value Description

Unisolver Training

batch_size 1024 Total batchsize used in one iteration
learning_rate 6e-4 The initial learning rate for the optimizer
epochs 500 The total number of training epochs
loss_type Relative-12 Use relative L2-Norm for pretraining
optimizer Adam The optimization algorithm

Ir_scheduler Cosine Annealing The learning rate scheduler

Unisolver Finetuning

batch_size 256 Total batchsize used in one iteration
learning_rate le-5 The initial learning rate for the optimizer
epochs 100 The total number of training epochs
loss_type Relative-12 Use relative L2-Norm for finetuning
optimizer Adam The optimization algorithm

Ir_scheduler Cosine Annealing The learning rate scheduler

PDEformer Finetuning

batch_size 80 Total batchsize used in one iteration
learning_rate 5e-6 The initial learning rate for the optimizer
epochs 100 The total number of training epochs
loss_type Relative-12 Use relative L2-Norm for finetuning
optimizer Adam The optimization algorithm

Ir_scheduler Cosine Annealing The learning rate scheduler
warmup_epochs 10 Epochs to linearly increase the learning rate

Table 14. Model configurations of Unisolver with different sizes.

Parameter Count Attention dim MLP dim Layers (Backbone) Heads Layers (INR)

3M 256 256 6 4 4
10M 384 384 8 8 8
19M 512 512 8 8 8
63M 768 768 12 12 12

2D Mixed PDEs We compare Unisolver with DPOT-S with comparable model parameters in the 2D mixed PDEs
benchmark. The training hyperparameter and model configurations are presented in Table 15. Similar to the HeterNS
benchmark, We train the model using one-step predictions and test the model in an autoregressive manner.

This benchmark includes multiple diverse PDEs, each including its unique PDE components as illustrated in Appendix G.
For example, the viscosity coefficient is the varying PDE components in the FNO-~ benchmark, while the shallow-water
equation does not include this PDE component. Therefore, we must notice Unisolver whether a PDE component exists in a
certain benchmark. To do so, Specifically, we introduce a binary masking channel to represent the existence of a certain
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PDE component. For example, when a PDE component exists in a benchmark, we concatenate an “1” with this component,
indicating that this component is a valid one. When this PDE component does not exist in a benchmark, we concatenate an
“0” with it, indicating that this is an invalid one. While the LLM embedding can provide some indication of this information,
it does not serve as the input to the encoders of other components. This binary mask, however, aids the encoders’ learning
and further clarifies the information without introducing significant computational overhead.

Table 15. Training configurations on the 2D mixed PDE benchmark.

Parameter Value Description

Unisolver Training Configurations

batch_size 320 Total batchsize used in one iteration

learning_rate le-3 The initial learning rate for the optimizer

epochs 1000 The total number of training epochs

loss_type Relative-12 Use relative L2-Norm for pretraining

optimizer AdamW The optimization algorithm

Ir_scheduler OneCycle The learning rate scheduler

warmup_epochs 200 Epochs to linearly increase the learning rate

Unisolver Model Configurations

Attention dim 768 The hidden dimension of the transformer attention layer
MLP dim 768 The hidden dimension of the transformer FFN layer
patch_size 8 The height and width of the ViT patches

n_head 8 The number of attention heads

dim_head 96 The hidden dimension of each attention heads

depth 6 The number of Transformer Blocks in the neural network

H.3. Details of the LLM embeddings

Here we give a detailed description of the prompts we use to encode the equation symbols. We will also discuss the impact
of expressing the same PDE using different notations or mathematically equivalent transformations.

Note that the pre-training dataset of PDEformer (Ye et al., 2024) contains the PDE family following the formulation:

atu + fO(u) + S(CL‘) + ax(fl(u) - ﬁ(w)aﬁtu) = O> ($7t) € [_17 1] X [07 1] (16)

where f;(u) = ciju + ciou® + ci3u3, ¢ = 0, 1. Each ¢;; can be zero or non-zero. The source term s(z) and the viscosity
term x(x) can be zero, a non-zero constant or a non-uniform function. As stated in Section 3.2, we use the LaTeX code of
the equation as a prompt, and the output from the last Transformer block of the LLM serves as the symbol embedding of the
equation. Table 16 gives some concrete samples of the LaTex code we use. There are 576 different equation symbols in total
in the PDEformer benchmark.

Note that a differential equation may have multiple equivalent representations, and different people may express the same
equation differently. A potential solution is to design targeted prompts and employ advanced prompting techniques, such
as chain of thought, to standardize these variations into a unified form, which is clearly within the capabilities of modern
LLMs. This standardized form can then be used to enhance the learning of the solver.

I. Additional Analyses
I.1. Unseen Viscosity and Unseen External Force on HeterNS

In addition to Tables 10 and 11, we further assess Unisolver’s generalization on HeterNS compared to other baselines under
more challenging conditions, where both the viscosity coefficient and external force are unseen. Specifically, we generate
nine different component pairs (v, w), each with 200 testing samples. Notably, one case features w = 6 , which significantly
exceeds the maximum value of w = 3 used during training, making it particularly difficult. The full results are presented
in Table 17. Unisolver consistently outperforms all baselines, especially in the most challenging case with w = 6, with a
relative promotion of 37.1%.
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Table 16. Sample LaTeX codes for different equations used in the PDEformer benchmark.

LaTeX Code of Differential Equations Problem Description

ut + (c{12} » u"2).x =0 Inviscid Burgers Equation
ut + (c{12} » u"2 + kappa * ux).x = 0 Viscid Burgers Equation

ut + (c{11} * w)yx =0 Advection Equation

ut + (c{11} » u + kappa * ux).x = 0 Advection-Diffusion Equation
ut + c{01} x u + (kappa * ux)-x = 0 Reaction-Diffusion Equation

ut + c{01} » u + c{02} * u"2 + (c{12} = Fisher-KPP Equation
u"2 + kappa * ux).x =0

ut + c{01} » u + c{02} x u"2 + c{03} = More General 1D Equations
u"3 + s(x) + (c{11} * u + c{12} x u"2 +
c{13} » u"3 + kappa(x) * ux).x = 0

Table 17. Performance comparison (relative L.2) on zero-shot generalization settings with unseen viscosity (~) and unseen force (w). The
pairs in the first row are in the form of (v, w). For clarity, the best result is in bold and the second-best is underlined.

L2RE ‘ (2e-5,0.7)  (2e-5,1.7)  (2e-5,2.7)  (2e-5,3.7) (2e-5,47)  (4e-5,0.8)  (4e-5,1.4)  (4e-5,23)  (4e-5,6)
FNO 0.1862 0.0640 0.1176 0.2404 0.4226 0.0873 0.1516 0.0655 1.3102
PINO 0.7002 0.2887 0.4776 0.8991 0.9187 0.3793 0.5596 0.3349 0.9634
ViT 0.1961 0.0690 0.1075 0.2057 0.2226 0.0488 0.1305 0.0772 0.2276
FactFormer 0.2070 0.0720 0.0891 0.1594 0.1868 0.0892 0.1456 0.0618 0.2465
ICON 0.4729 0.3693 0.5202 0.8719 0.7891 0.2212 0.5112 0.3652 0.9058
MPP 0.4532 0.4029 0.5155 0.8421 0.8484 0.2961 0.4084 0.4801 1.0240
Unisolver 0.0781 0.0378 0.0471 0.1421 0.1364 0.0399 0.0433 0.0374 0.1431
Promotion 58.06% 40.94% 47.71% 10.85% 26.98% 18.24% 66.82% 39.48% 37.13%

L.2. More Ablation Studies on PDE Components and Conditional Modeling

In addition to the ablation experiments presented in Table 6, we further conduct ablations on HeterNS to assess whether the
proposed PDE information set is essential and whether the condition modeling is effective for the solver’s learning. This is
demonstrated by removing specific components and replacing Unisolver’s condition modeling with direct concatenation of
PDE information.

As shown in Tables 18 and 19, removing the information leads to a significant drop in performance compared to vanilla
Unisolver, and concatenating the information directly also results in a huge decline. It is worth noting that the absence of
external force information or its improper use (e.g. via direct concatenation) significantly degrades performance even in
zero-shot viscosity generalization tasks, and vice versa, further highlighting the importance of including complete PDE
components.

Table 18. Ablations with different viscosity coefficient v and fixed force w = 2 on the HeterNS on removing some PDE components (W/o0),
and replacing domain-wise or point-wise conditions from our design to directly concat (Concat).

Viscosity ‘ In-distribution Test ‘ Zero-shot Generalization
HeterNS

‘ Params v=1leS5 v =5e-5 v=le4 v =>5e-4 v=1e3 ‘ v =8e-6 v =3e-5 v =8e-5 v =3e-4 v =8e-4
W/o viscosity 4.1M 0.0388 0.0127 0.0084 0.0031 0.0015 0.0410 0.0367 0.0099 0.0068 0.0119
W/o force 4.1M 0.0353  0.0123  0.0074  0.0027  0.0017 | 0.0378 0.0198  0.0086  0.0096  0.0124
Concat viscosity 4.1M 0.0343 0.0107 0.0058 0.0017 0.0011 0.0359 0.0192 0.0071 0.0278 0.0243
Concat force 4.1M 0.0331 0.0103 0.0061 0.0018 0.0010 0.0357 0.0191 0.0071 0.0104 0.0101
Unisolver 4. 1M 0.0321 0.0094 0.0051 0.0015 0.0008 0.0336 0.0178 0.0064 0.0066 0.0096

24



Unisolver: PDE-Conditional Transformers Towards Universal Neural PDE Solvers

Table 19. Ablations with different force w and fixed viscosity v = 10~° on the HeterNS on removing some PDE components (W/0), and
replacing domain-wise or point-wise conditions from our design to directly concat (Concat).

Force \ In-distribution Test \ Zero-shot Generalization
HeterNS

| Params~| w=1 w=2 w=3 | w=05 w=15 w=25 w=35

W/o viscosity 4.1M 0.0310 0.0388 0.0926 0.261 0.250 0.258 0.424

W/o force 4. 1M 0.0267 0.0353 0.0804 0.553 0.618 0.657 0.913
Concat viscosity 4.1M 0.0265 0.0343 0.0786 0.1267 0.2057 0.2771 0.2689
Concat force 4.1M 0.0259 0.0331 0.0764 0.5386 0.3392 0.2841 0.2753
Unisolver ‘ 4.1M ‘ 0.0244 0.0321 0.0720 0.0980 0.0770 0.0720 0.1740

L.3. Long Trajectory Prediction

We extend the temporal evolution steps of HeterNS to 30 steps, corresponding to 30 seconds of complex fluid dynamics,
and report the zero-shot performance comparison between Unisolver and the baselines in the Table 20. We present the
performance on the subdataset with a viscosity coefficient of v = 1 x 107° and a force coefficient of w = 2. This is a
particularly challenging task, as these models have never seen such long trajectories in the training data (at most 20 seconds).
Despite this, Unisolver still achieves the best performance compared with the top three baselines.

Table 20. Zero-shot performance comparison (relative L2) with top three baselines

\ Unisolver FNO ViT FactFormer
Relative L2 \ 0.1956 0.3105 0.2527 0.2962

L.4. Full Scalability

As a supplement to Figure 10 in the main text, we also conduct experiments on different zero-shot generalization tasks from
(Takamoto et al., 2022) and record the concrete data in Table 21 for clarity.

Table 21. Scalability results on in-distribution test sets and zero-shot generalization tasks, as depicted in Figure 10.

L2RE \ Data Scalability (Samples) \ Model Scalability (Parameters)
Scale \ 50k 100k 200k 3M \ 3M 10M 19M 63M
In-distribution test \ 0.0232 0.0202 0.0170 0.0106 \ 0.0342 0.0226 0.0202 0.0156

Zero-shot Burgers v = 0.1 0.0161 0.0116  0.0081 0.0051 0.0143 0.0134  0.0116  0.0091
Zero-shot Burgers v = 0.01 0.0649  0.0412  0.0260  0.0144 0.0552  0.0421 0.0412  0.0351
Zero-shot Burgers v = 0.001 0.1399  0.1003 0.0689  0.0299 0.1188 0.0976  0.1003 0.0889

L.5. Efficiency Analysis

We provide the inference time and memory consumption for each model to predict a single frame on the HeterNS, along
with the calculation time and memory consumption of the numerical solver, which is a pseudo-spectral solver adopted by
FNO (Li et al., 2021a) used to generate the HeterNS dataset, to calculate the next frame, as summarized in the Table 22. The
results are measured on an A100 GPU with a batch size of 1. Unisolver demonstrates comparable inference speed to FNO,
while consuming less memory. Besides, all neural PDE solvers are approximately 1,000 times faster than the numerical
solver, highlighting their potential as efficient surrogate models.

1.6. Standard Deviations

We repeat the experiments three times on the HeterNS benchmark and provide standard deviations here. As shown in Table
23-24, Unisolver surpasses the previous state-of-the-art models with high confidence. Note that we compare Unisolver
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Table 22. Efficiency Analysis. The inference (calculation) time and memory consumption for each model and numerical solver to predict a
single frame on the HeterNS dataset.

\ FNO PINO ViT FactFormer ICON MPP Unisolver Numerical Solver
Average Inference | 5015 o042 00045 0.0103 0.0057  0.0120 0.0054 7.26
(Calculation) Time / s
Average Memory
Usage / MB ‘ 730 730 558 758 784 1200 554 524

with the second-best model, which is a strong baseline as it is not achieved by a single model. The results demonstrate that
Unisolver significantly outperforms baseline models, with the second-best result falling more than three standard deviations
behind, except in the case of viscosity v = 8e — 4.

Table 23. Standard Deviations on the HeterNS benchmark with different viscosity coefficients and fixed force frequency coefficient w = 2.

Viscosity v

v =8e-6 v =3e-5 v =8e-5 v =23e-4 v =8e-4

Second-best model

‘ In-distribution Test ‘ Zero-shot Generalization
‘ v=1le5 v =>5e-5 v=le4 v =15e-4 v=1le3 ‘
| 00432 00206 00098 00018  0.0010 |

0.0458 0.0353 0.0119 0.0088 0.0081

Unisolver 0.0321 0.0094 0.0051 0.0015 0.0008 0.0336 0.0178 0.0064 0.0066 0.0096
Standard Deviation +0.0005 +0.0003 +0.0001 +0.0001 +0.00006 +0.0008 +0.0002 +0.0004 +0.0007 +0.00007
Confidence Level 99% 99% 99% 99% 99% 99% 99% 99% 99% /

Table 24. Standard Deviations on the HeterNS benchmark with different force (w) and fixed viscosity coefficient v = 2.

In-distribution Test Zero-shot Generalization

Force w ‘ ‘
‘ w=1 w=2 w=3 ‘ w=05 w=15 w=25 w=3.5
Second-best Model ‘ 0.0348 0.0432 0.0982 ‘ 0.5532 0.1207 0.1240 0.2047
Unisolver 0.0244 0.0321 0.0720 0.0980 0.0770 0.0720 0.1740
Standard Deviation + 0.0003 4 0.0002 4+ 0.0003 + 0.0015 + 0.0048 + 0.0051 + 0.0021
Confidence Level 99% 99% 99% 99% 99% 99% 99%

L.7. Detailed Compute Resources

Our models were trained on servers with 32 NVIDIA A100 GPUs, each with 40GB memory. Here we present the compute
resources in terms of GPU hours, where one GPU hour represents the time spent training on a single A100 GPU for one
hour. This metric reflecting the resources required to reproduce the experimental results are shown in Table 25.

Table 25. Computational costs in GPU hours, measured on NVIDIA A100 GPUs (40 GB memory).

Benchmarks ‘ HeterNS ‘ 1D Time-dependent PDEs ‘ 2D Mixed PDEs
Models | FNO FactFormer ViT PINO ICON MPP  Unisolver | Unisolver |  Unisolver
#GPU hours ‘ 12 100 24 12 24 30 24 ‘ 3000 ‘ 800

J. Full Trajectory Visualizations

To better understand the temporal evolution of the benchmark, we visualize the full trajectory of the ground truth and
Unisolver predictions on HeterNS and 2D mixed PDEs in Figure 17 and 18.
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Figure 17. Visualization of the full trajectories in the 2D mixed PDEs, with the names of the subsets displayed on the right. Ground truth
and Unisolver predictions are presented, visually highlighting the complexity and diversity of the 2D mixed PDEs.
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K. Limitations and Future Work

This paper presents Unisolver to solve PDEs under universal PDE components, which achieves impressive performance
supported by extensive analyses and visualizations. However, our method is currently limited to grid data due to the
patchifying process during the embedding of point-wise components. Actually, this limitation is shared in all the generalizable
PDE solvers, such as MPP (McCabe et al., 2023), Poseidon (Herde et al., 2024), PDEformer (Ye et al., 2024) and DPOT (Hao
et al., 2024). One fundamental reason is the lack of suitable and large-scale irregular-mesh PDE datasets, which will require
extremely high computation costs for generation and massive resources for collection. Since our primary focus in this paper
is on the study of model architecture design and generalization capabilities, we would like to leave the irregular-mesh PDE
dataset as a future work. Also, the capability to handle irregular meshes of Unisolver can be achieved by replacing the
canonical Transformer with the latest geometry-general PDE solver: Transolver (Wu et al., 2024).
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Figure 18. Visualization of the full trajectories in the HeterNS, where all trajectories share the same initial condition but differ in viscosity
(v) and force (w) (shown beside each case by the pairs (v, w)). 28



