
Published as a conference paper at ICLR 2017

LEARNING TO SUPEROPTIMIZE PROGRAMS

Rudy Bunel1, Alban Desmaison1, M. Pawan Kumar1,2 & Philip H.S. Torr1
1Department of Engineering Science - University of Oxford
2Alan Turing Institute
Oxford, UK
{rudy,alban,pawan}@robots.ox.ac.uk, philip.torr@eng.ox.ac.uk

Pushmeet Kohli
Microsoft Research
Redmond, WA 98052, USA
pkohli@microsoft.com

ABSTRACT

Code super-optimization is the task of transforming any given program to a more
efficient version while preserving its input-output behaviour. In some sense, it
is similar to the paraphrase problem from natural language processing where the
intention is to change the syntax of an utterance without changing its semantics.
Code-optimization has been the subject of years of research that has resulted in
the development of rule-based transformation strategies that are used by compil-
ers. More recently, however, a class of stochastic search based methods have
been shown to outperform these strategies. This approach involves repeated sam-
pling of modifications to the program from a proposal distribution, which are ac-
cepted or rejected based on whether they preserve correctness and the improve-
ment they achieve. These methods, however, neither learn from past behaviour
nor do they try to leverage the semantics of the program under consideration. Mo-
tivated by this observation, we present a novel learning based approach for code
super-optimization. Intuitively, our method works by learning the proposal dis-
tribution using unbiased estimators of the gradient of the expected improvement.
Experiments on benchmarks comprising of automatically generated as well as ex-
isting (“Hacker’s Delight”) programs show that the proposed method is able to
significantly outperform state of the art approaches for code super-optimization.

1 INTRODUCTION

Considering the importance of computing to human society, it is not surprising that a very large
body of research has gone into the study of the syntax and semantics of programs and programming
languages. Code super-optimization is an extremely important problem in this context. Given a pro-
gram or a snippet of source-code, super-optimization is the task of transforming it to a version that
has the same input-output behaviour but can be executed on a target compute architecture more effi-
ciently. Superoptimization provides a natural benchmark for evaluating representations of programs.
As a task, it requires the decoupling of the semantics of the program from its superfluous properties,
the exact implementation. In some sense, it is the natural analogue of the paraphrase problem in
natural language processing where we want to change syntax without changing semantics.

Decades of research has been done on the problem of code optimization resulting in the development
of sophisticated rule-based transformation strategies that are used in compilers to allow them to
perform code optimization. While modern compilers implement a large set of rewrite rules and are
able to achieve impressive speed-ups, they fail to offer any guarantee of optimality, thus leaving
room for further improvement. An alternative approach is to search over the space of all possible
programs that are equivalent to the compiler output, and select the one that is the most efficient. If
the search is carried out in a brute-force manner, we are guaranteed to achieve super-optimization.
However, this approach quickly becomes computationally infeasible as the number of instructions
and the length of the program grows.

1

Published as a conference paper at ICLR 2017

In order to efficiently perform super-optimization, recent approaches have started to use a stochas-
tic search procedure, inspired by Markov Chain Monte Carlo (MCMC) sampling (Schkufza et al.,
2013). Briefly, the search starts at an initial program, such as the compiler output. It iteratively sug-
gests modifications to the program, where the probability of a modification is encoded in a proposal
distribution. The modification is either accepted or rejected with a probability that is dependent on
the improvement achieved. Under certain conditions on the proposal distribution, the above proce-
dure can be shown, in the limit, to sample from a distribution over programs, where the probability
of a program is related to its quality. In other words, the more efficient a program, the more times it
is encountered, thereby enabling super-optimization. Using this approach, high-quality implemen-
tations of real programs such as the Montgomery multiplication kernel from the OpenSSL library
were discovered. These implementations outperformed the output of the gcc compiler and even
expert-handwritten assembly code.

One of the main factors that governs the efficiency of the above stochastic search is the choice of
the proposal distribution. Surprisingly, the state of the art method, Stoke (Schkufza et al., 2013),
employs a proposal distribution that is neither learnt from past behaviour nor does it depend on the
syntax or semantics of the program under consideration. We argue that this choice fails to fully
exploit the power of stochastic search. For example, consider the case where we are interested in
performing bitwise operations, as indicated by the compiler output. In this case, it is more likely
that the optimal program will contain bitshifts than floating point opcodes. Yet, Stoke will assign an
equal probability of use to both types of opcodes.

In order to alleviate the aforementioned deficiency of Stoke, we build a reinforcement learning
framework to estimate the proposal distribution for optimizing the source code under consideration.
The score of the distribution is measured as the expected quality of the program obtained via stochas-
tic search. Using training data, which consists of a set of input programs, the parameters are learnt
via the REINFORCE algorithm (Williams, 1992). We demonstrate the efficacy of our approach on
two datasets. The first is composed of programs from “Hacker’s Delight” (Warren, 2002). Due to the
limited diversity of the training samples, we show that it is possible to learn a prior distribution (un-
conditioned on the input program) that outperforms the state of the art. The second dataset contains
automatically generated programs that introduce diversity in the training samples. We show that, in
this more challenging setting, we can learn a conditional distribution given the initial program that
significantly outperforms Stoke.

2 RELATED WORKS

Super-optimization The earliest approaches for super-optimization relied on brute-force search.
By sequentially enumerating all programs in increasing length orders (Granlund & Kenner, 1992;
Massalin, 1987), the shortest program meeting the specification is guaranteed to be found. As ex-
pected, this approach scales poorly to longer programs or to large instruction sets. The longest
reported synthesized program was 12 instructions long, on a restricted instruction set (Massalin,
1987).

Trading off completeness for efficiency, stochastic methods (Schkufza et al., 2013) reduced the
number of programs to test by guiding the exploration of the space, using the observed quality of
programs encountered as hints. In order to improve the size of solvable instances, Phothilimthana
et al. (2016) combined stochastic optimizers with smart enumerative solvers. However, the reliance
of stochastic methods on a generic unspecific exploratory policy made the optimization blind to the
problem at hand. We propose to tackle this problem by learning the proposal distribution.

Neural Computing Similar work was done in the restricted case of finding efficient implemen-
tation of computation of value of degree k polynomials (Zaremba et al., 2014). Programs were
generated from a grammar, using a learnt policy to prioritise exploration. This particular approach
of guided search looks promising to us, and is in spirit similar to our proposal, although applied on
a very restricted case.

Another approach to guide the exploration of the space of programs was to make use of the gradients
of differentiable relaxation of programs. Bunel et al. (2016) attempted this by simulating program
execution using Recurrent Neural Networks. However, this provided no guarantee that the network
parameters were going to correspond to real programs. Additionally, this method only had the

2

Published as a conference paper at ICLR 2017

possibility of performing local, greedy moves, limiting the scope of possible transformations. On
the contrary, our proposed approach operates directly on actual programs and is capable of accepting
short-term detrimental moves.

Learning to optimize Outside of program optimization, applying learning algorithms to improve
optimization procedures, either in terms of results achieved or runtime, is a well studied subject.
Doppa et al. (2014) proposed imitation learning based methods to deal with structured output spaces,
in a “Learning to search” framework. While this is similar in spirit to stochastic search, our setting
differs in the crucial aspect of having a valid cost function instead of searching for one.

More relevant is the recent literature on learning to optimize. Li & Malik (2016) and Andrychowicz
et al. (2016) learn how to improve on first-order gradient descent algorithms, making use of neural
networks. Our work is similar, as we aim to improve the optimization process. However, as opposed
to the gradient descent that they learn on a continuous unconstrained space, our initial algorithm is
an MCMC sampler on a discrete domain.

Similarly, training a proposal distribution parameterized by a Neural Network was also proposed
by Paige & Wood (2016) to accelerate inference in graphical models. Similar approaches were
successfully employed in computer vision problems where data driven proposals allowed to make
inference feasible (Jampani et al., 2015; Kulkarni et al., 2015; Zhu et al., 2000). Other approaches
to speeding up MCMC inference include the work of Salimans et al. (2015), combining it with
Variational inference.

3 LEARNING STOCHASTIC SUPER-OPTIMIZATION

3.1 STOCHASTIC SEARCH AS A PROGRAM OPTIMIZATION PROCEDURE

Stoke (Schkufza et al., 2013) performs black-box optimization of a cost function on the space of
programs, represented as a series of instructions. Each instruction is composed of an opcode, speci-
fying what to execute, and some operands, specifying the corresponding registers. Each given input
program T defines a cost function. For a candidate programR called rewrite, the goal is to optimize
the following cost function:

cost (R, T) = ωe × eq(R, T) + ωp × perf(R) (1)

The term eq(R; T) measures how well the outputs of the rewrite match the outputs of the reference
program. This can be obtained either exactly by running a symbolic validator or approximately by
running test cases. The term perf(R) is a measure of the efficiency of the program. In this paper,
we consider runtime to be the measure of this efficiency. It can be approximated by the sum of the
latency of all the instructions in the program. Alternatively, runtime of the program on some test
cases can be used.

To find the optimum of this cost function, Stoke runs an MCMC sampler using the Metropo-
lis (Metropolis et al., 1953) algorithm. This allows us to sample from the probability distribution
induced by the cost function:

p(R; T) = 1

Z
exp(−cost (R, T))). (2)

The sampling is done by proposing random moves from a different proposal distribution:

R′ ∼ q(· |R). (3)

The cost of the new modified program is evaluated and an acceptance criterion is computed. This
acceptance criterion

α(R, T) = min

(
1,
p(R′; T)
p(R; T)

)
, (4)

is then used as the parameter of a Bernoulli distribution from which an accept/reject decision is
sampled. If the move is accepted, the state of the optimizer is updated to R′. Otherwise, it remains
inR.

While the above procedure is only guaranteed to sample from the distribution p(· ; T) in the limit
if the proposal distribution q is symmetric (q(R′|R) = q(R|R′) for all R,R′), it still allows us

3

Published as a conference paper at ICLR 2017

to perform efficient hill-climbing for non-symmetric proposal distributions. Moves leading to an
improvement are always going to be accepted, while detrimental moves can still be accepted in
order to avoid getting stuck in local minima.

3.2 LEARNING TO SEARCH

We now describe our approach to improve stochastic search by learning the proposal distribution.
We begin our description by defining the learning objective (section 3.2.1), followed by a parameter-
ization of the proposal distribution (section 3.2.2), and finally the reinforcement learning framework
to estimate the parameters of the proposal distribution (section 3.2.3).

3.2.1 OBJECTIVE FUNCTION

Our goal is to optimize the cost function defined in equation (1). Given a fixed computational
budget of T iterations to perform program super-optimization, we want to make moves that lead us
to the lowest possible cost. As different programs have different runtimes and therefore different
associated costs, we need to perform normalization. As normalized loss function, we use the ratio
between the best rewrite found and the cost of the initial unoptimized program R0. Formally, the
loss for a set of rewrites {Rt}t=0..T is defined as follows:

r({Rt}t=0..T) =

(
mint=0..T cost (Rt, T)

cost (R0, T)

)
. (5)

Recall that our goal is to learn a proposal distribution. Given that our optimization procedure is
stochastic, we will need to consider the expected cost as our loss. This expected loss is a function of
the parameters θ of our parametric proposal distribution qθ:

L(θ) = E{Rt}∼qθ [r({Rt}t=0..T)] . (6)

3.2.2 PARAMETERIZATION OF THE MOVE PROPOSAL DISTRIBUTION

The proposal distribution (3) originally used in Stoke (Schkufza et al., 2013) takes the form of
a hierarchical model. The type of the move is initially sampled from a probability distribution.
Additional samples are drawn to specify, for example, the affected location in the programs ,the new
operands or opcode to use. Which of these probability distribution get sampled depends on the type
of move that was first sampled. The detailed structure of the proposal probability distribution can be
found in Appendix B.

Stoke uses uniform distributions for each of the elementary probability distributions the model sam-
ples from. This corresponds to a specific instantiation of the general stochastic search paradigm.
In this work, we propose to learn those probability distributions so as to maximize the probability
of reaching the best programs. The rest of the optimization scheme remains similar to the one of
Schkufza et al. (2013).

Our chosen parameterization of q is to keep the hierarchical structure of the original work
of Schkufza et al. (2013), as detailed in Appendix B, and parameterize all the elementary proba-
bility distributions (over the positions in the programs, the instructions to propose or the arguments)
independently. The set θ of parameters for qθ will thus contain a set of parameters for each ele-
mentary probability distributions. A fixed proposal distribution is kept through the optimization of a
given program, so the proposal distribution needs to be evaluated only once, at the beginning of the
optimization and not at every iteration of MCMC.

The stochastic computation graph corresponding to a run of the Metropolis algorithm is given in
Figure 1. We have assumed the operation of evaluating the cost of a program to be a deterministic
function, as we will not model the randomness of measuring performance.

3.2.3 LEARNING THE PROPOSAL DISTRIBUTION

In order to learn the proposal distribution, we will use stochastic gradient descent on our loss func-
tion (6). We obtain the first order derivatives with regards to our proposal distribution parame-
ters using the REINFORCE (Williams, 1992) estimator, also known as the likelihood ratio estima-
tor (Glynn, 1990) or the score function estimator (Fu, 2006). This estimator relies on a rewriting of

4

Published as a conference paper at ICLR 2017

the gradient of the expectation. For an expectation with regards to a probability distribution x ∼ fθ,
the REINFORCE estimator is:

∇θ
∑
x

f(x; θ)r(x) =
∑
x

r(x)∇θf(x; θ) =
∑
x

f(x; θ)r(x)∇θ log(f(x; θ)), (7)

and provides an unbiased estimate of the gradient.

Feature of original program

Proposal Distribution

Neural Network (a) BackPropagation

Move

Categorical Sample (b) REINFORCE

Program
Candidate Rewrite

Candidate score

(c)

Score

Acceptance criterion

(d) (d)

New rewrite

Bernoulli (e)

(g)

Cost

(f)

Figure 1: Stochastic computation graph of the Metropolis algorithm used for program super-
optimization. Round nodes are stochastic nodes and square ones are deterministic. Red arrows
corresponds to computation done in the forward pass that needs to be learned while green arrows
correspond to the backward pass. Full arrows represent deterministic computation and dashed ar-
rows represent stochastic ones. The different steps of the forward pass are:
(a) Based on features of the reference program, the proposal distribution q is computed.
(b) A random move is sampled from the proposal distribution.
(c) The score of the proposed rewrite is experimentally measured.
(d) The acceptance criterion (4) for the move is computed.
(e) The move is accepted with a probability equal to the acceptance criterion.
(f) The cost is observed, corresponding to the best program obtained during the search.
(g) Moves b to f are repeated T times.

A helpful way to derive the gradients is to consider the execution traces of the search procedure
under the formalism of stochastic computation graphs (Schulman et al., 2015). We introduce one
“cost node” in the computation graphs at the end of each iteration of the sampler. The associated
cost corresponds to the normalized difference between the best rewrite so far and the current rewrite
after this step:

ct = min

(
0,

(
cost (Rt, T)−mini=0..t−1 cost (Ri, T)

cost (R0, T)

))
. (8)

5

Published as a conference paper at ICLR 2017

The sum of all the cost nodes corresponds to the sum of all the improvements made when a new
lowest cost was achieved. It can be shown that up to a constant term, this is equivalent to our
objective function (5). As opposed to considering only a final cost node at the end of the T iterations,
this has the advantage that moves which were not responsible for the improvements would not get
assigned any credit.

For each round of MCMC, the gradient with regards to the proposal distribution is computed using
the REINFORCE estimator which is equal to

∇̂θ,iL(θ) = (∇θ log qθ(Ri|Ri−1))
∑
t>i

ct. (9)

As our proposal distribution remains fixed for the duration of a program optimization, these gradients
needs to be summed over all the iterations to obtain the total contribution to the proposal distribution.
Once this gradient is estimated, it becomes possible to run standard back-propagation with regards
to the features on which the proposal distribution is based on, so as to learn the appropriate feature
representation.

4 EXPERIMENTS

4.1 SETUP

Implementation Our system is built on top of the Stoke super-optimizer from Schkufza et al.
(2013). We instrumented the implementation of the Metropolis algorithm to allow sampling from
parameterized proposal distributions instead of the uniform distributions previously used. Because
the proposal distribution is only evaluated once per program optimisation, the impact on the opti-
mization throughput is low, as indicated in Table 3.

Our implementation also keeps track of the traces through the stochastic graph. Using the traces
generated during the optimization, we can compute the estimator of our gradients, implemented
using the Torch framework (Collobert et al., 2011).

Datasets We validate the feasibility of our learning approach on two experiments. The first is
based on the Hacker’s delight (Warren, 2002) corpus, a collection of twenty five bit-manipulation
programs, used as benchmark in program synthesis (Gulwani et al., 2011; Jha et al., 2010; Schkufza
et al., 2013). Those are short programs, all performing similar types of tasks. Some examples
include identifying whether an integer is a power of two from its binary representation, counting the
number of bits turned on in a register or computing the maximum of two integers. An exhaustive
description of the tasks is given in Appendix C. Our second corpus of programs is automatically
generated and is more diverse.

Models The models we are learning are a set of simple elementary probabilities for the categorical
distribution over the instructions and over the type of moves to perform. We learn the parameters
of each separate distribution jointly, using a Softmax transformation to enforce that they are proper
probability distributions. For the types of move where opcodes are chosen from a specific subset,
the probabilities of each instruction are appropriately renormalized. We learn two different type of
models and compare them with the baseline of uniform proposal distributions equivalent to Stoke.

Our first model, henceforth denoted the bias, is not conditioned on any property of the programs to
optimize. By learning this simple proposal distribution, it is only possible to capture a bias in the
dataset. This can be understood as an optimal proposal distribution that Stoke should default to.

The second model is a Multi Layer Perceptron (MLP), conditioned on the input program to optimize.
For each input program, we generate a Bag-of-Words representation based on the opcodes of the
program. This is embedded through a three hidden layer MLP with ReLU activation unit. The
proposal distribution over the instructions and over the type of moves are each the result of passing
the outputs of this embedding through a linear transformation, followed by a SoftMax.

The optimization is performed by stochastic gradient descent, using the Adam (Kingma & Ba, 2015)
optimizer. For each estimate of the gradient, we draw 100 samples for our estimator. The values
of the hyperparameters used are given in Appendix A. The number of parameters of each model is
given in Table 1.

6

Published as a conference paper at ICLR 2017

Model # of parameters
Uniform 0

Bias 2912

MLP 1.4× 106

Table 1: Size of the different
models compared.
Uniform corresponds to Stoke
Schkufza et al. (2013).

Model Training Test

Uniform 57.01% 53.71%
Bias 36.45 % 31.82 %
MLP 35.96 % 31.51 %

Table 2: Final average relative score on the Hacker’s Delight
benchmark. While all models improve with regards to the ini-
tial proposal distribution based on uniform sampling, the model
conditioning on program features reach better performances.

4.2 EXISTING PROGRAMS

In order to have a larger corpus than the twenty-five programs initially present in “Hacker’s De-
light”, we generate various starting points for each optimization. This is accomplished by running
Stoke with a cost function where ωp = 0 in (1), and keeping only the correct programs. Duplicate
programs are filtered out. This allows us to create a larger dataset from which to learn. Examples of
these programs at different level of optimization can be found in Appendix D.

We divide this augmented Hacker’s Delight dataset into two sets. All the programs corresponding
to even-numbered tasks are assigned to the first set, which we use for training. The programs corre-
sponding to odd-numbered tasks are kept for separate evaluation, so as to evaluate the generalisation
of our learnt proposal distribution.

The optimization process is visible in Figure 2, which shows a clear decrease of the training loss
and testing loss for both models. While simply using stochastic super-optimization allows to dis-
cover programs 40% more efficient on average, using a tuned proposal distribution yield even larger
improvements, bringing the improvements up to 60%, as can be seen in Table2. Due to the similar-
ity between the different tasks, conditioning on the program features does not bring any significant
improvements.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

A
v
e

ra
g

e
 N

o
rm

a
lis

e
d

 s
c
o

re

Nb epochs

Training
Testing

(a) Bias

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

A
v
e

ra
g

e
 N

o
rm

a
lis

e
d

 s
c
o

re

Nb epochs

Training
Testing

(b) Multi-layer Perceptron

Figure 2: Proposal distribution training. All models learn to improve the performance of the stochas-
tic optimization. Because the tasks are different between the training and testing dataset, the values
between datasets can’t directly be compared as some tasks have more opportunity for optimization.
It can however be noted that improvements on the training dataset generalise to the unseen tasks.

In addition, to clearly demonstrate the practical consequences of our learning, we present in Figure 3
a superposition of score traces, sampled from the optimization of a program of the test set. Figure 3a
corresponds to our initialisation, an uniform distribution as was used in the work of Schkufza et al.
(2013). Figure 3d corresponds to our optimized version. It can be observed that, while the uniform
proposal distribution was successfully decreasing the cost of the program, our learnt proposal distri-
bution manages to achieve lower scores in a more robust manner and in less iterations. Even using
only 100 iterations (Figure 3e), the learned model outperforms the uniform proposal distribution
with 400 iterations (Figure 3c).

7

Published as a conference paper at ICLR 2017

(a) With Uniform proposal
Optimization Traces (b) Scores after 200 iterations (c) Scores after 400 iterations

(d) With Learned Bias
Optimization Traces (e) Scores after 100 iterations (f) Scores after 200 iterations

Figure 3: Distribution of the improvement achieved when optimising a training sample from the
Hacker’s Delight dataset. The first column represent the evolution of the score during the optimiza-
tion. The other columns represent the distribution of scores after a given number of iterations.
(a) to (c) correspond to the uniform proposal distribution, (d) to (f) correspond to the learned bias.

4.3 AUTOMATICALLY GENERATED PROGRAMS

While the previous experiments shows promising results on a set of programs of interest, the limited
diversity of programs might have made the task too simple, as evidenced by the good performance
of a blind model. Indeed, despite the data augmentation, only 25 different tasks were present, all
variations of the same programs task having the same optimum.

To evaluate our performance on a more challenging problem, we automatically synthesize a larger
dataset of programs. Our methods to do so consists in running Stoke repeatedly with a constant
cost function, for a large number of iterations. This leads to a fully random walk as every proposed
programs will have the same cost, leading to a 50% chance of acceptance. We generate 600 of these
programs, 300 that we use as a training set for the optimizer to learn over and 300 that we keep as a
test set.

The performance achieved on this more complex dataset is shown in Figure 4 and Table 4.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

A
v
e

ra
g

e
 N

o
rm

a
lis

e
d

 s
c
o

re

Nb epochs

Training
Testing

(a) Bias

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

A
v
e

ra
g

e
 N

o
rm

a
lis

e
d

 s
c
o

re

Nb epochs

Training
Testing

(b) Multi-layer Perceptron

Figure 4: Training of the proposal distribution on the automatically generated benchmark.

8

Published as a conference paper at ICLR 2017

Proposal
distribution

MCMC iterations
throughput

Uniform 60 000 /second
Categorical 20 000 /second

Table 3: Throughput of the pro-
posal distribution estimated by timing
MCMC for 10000 iterations

Model Training Test

Uniform 76.63% 78.15 %
Bias 61.81% 63.56%
MLP 60.13% 62.27%

Table 4: Final average relative score. The MLP con-
ditioning on the features of the program perform bet-
ter than the simple bias. Even the unconditioned bias
performs significantly better than the Uniform proposal
distribution.

5 CONCLUSION

Within this paper, we have formulated the problem of optimizing the performance of a stochas-
tic super-optimizer as a Machine Learning problem. We demonstrated that learning the proposal
distribution of a MCMC sampler was feasible and lead to faster and higher quality improvements.
Our approach is not limited to stochastic superoptimization and could be applied to other stochastic
search problems.

It is interesting to compare our method to the synthesis-style approaches that have been appearing
recently in the Deep Learning community (Graves et al., 2014) that aim at learning algorithms
directly using differentiable representations of programs. We find that the stochastic search-based
approach yields a significant advantage compared to those types of approaches, as the resulting
program can be run independently from the Neural Network that was used to discover them.

Several improvements are possible to the presented methods. In mature domains such as Com-
puter Vision, the representations of objects of interests have been widely studied and as a result are
successful at capturing the information of each sample. In the domains of programs, obtaining in-
formative representations remains a challenge. Our proposed approach ignores part of the structure
of the program, notably temporal, due to the limited amount of existing data. The synthetic data
having no structure, it wouldn’t be suitable to learn those representations from it. Gathering a larger
dataset of frequently used programs so as to measure more accurately the practical performance of
those methods seems the evident next step for the task of program synthesis.

9

Published as a conference paper at ICLR 2017

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, and Nando
de Freitas. Learning to learn by gradient descent by gradient descent. In NIPS, 2016.

Rudy Bunel, Alban Desmaison, Pushmeet Kohli, Philip HS Torr, and M Pawan Kumar. Adaptive neural com-
pilation. In NIPS. 2016.

Berkeley Churchill, Eric Schkufza, and Stefan Heule. Stoke. https://github.com/StanfordPL/
stoke, 2016.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for machine
learning. In NIPS, 2011.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Hc-search: A learning framework for search-based
structured prediction. JAIR, 2014.

Michael C. Fu. Gradient estimation. Handbooks in Operations Research and Management Science. 2006.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM,
1990.

Torbjörn Granlund and Richard Kenner. Eliminating branches using a superoptimizer and the GNU C compiler.
ACM SIGPLAN Notices, 1992.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, 2014.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of loop-free programs.
In PLDI, 2011.

Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V Gehler. The informed sampler: A discrim-
inative approach to bayesian inference in generative computer vision models. Computer Vision and Image
Understanding, 2015.

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided component-based program
synthesis. In International Conference on Software Engineering, 2010.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture: A probabilistic
programming language for scene perception. In CVPR, 2015.

Ke Li and Jitendra Malik. Learning to optimize. CoRR, 2016.

Henry Massalin. Superoptimizer: A look at the smallest program. In ACM SIGPLAN Notices, 1987.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward Teller.
Equation of state calculations by fast computing machines. The journal of chemical physics, 1953.

Brookes Paige and Frank Wood. Inference networks for sequential Monte Carlo in graphical models. In ICML,
2016.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. Scaling up super-
optimization. In ACM SIGPLAN Notices, 2016.

Tim Salimans, Diederik P Kingma, Max Welling, et al. Markov chain monte carlo and variational inference:
Bridging the gap. In ICML, 2015.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. SIGPLAN, 2013.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using stochastic
computation graphs. In NIPS, 2015.

Henry S Warren. Hacker’s delight. 2002.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 1992.

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient mathematical identities. In
NIPS. 2014.

Song-Chun Zhu, Rong Zhang, and Zhuowen Tu. Integrating bottom-up/top-down for object recognition by
data driven markov chain monte carlo. In CVPR, 2000.

10

https://github.com/StanfordPL/stoke
https://github.com/StanfordPL/stoke

Published as a conference paper at ICLR 2017

A HYPERPARAMETERS

A.1 ARCHITECTURES

The output size of 9 corresponds to the types of move. The output size of 2903 correspond to the
number of possible instructions that Stoke can use during a rewrite. This is smaller that the 3874
that are possible to find in an original program.

Outputs Bias (9) Bias (2903)
SoftMax SoftMax

Table 5: Architecture of the Bias

Embedding
Linear (3874→ 100) + ReLU
Linear (100→ 300) + ReLU
Linear (300→ 300) + ReLU

Outputs Linear (300→ 9) Linear (300→ 2903)
SoftMax SoftMax

Table 6: Architecture of the Multi Layer Perceptron

A.2 TRAINING PARAMETERS

All of our models are trained using the Adam (Kingma & Ba, 2015) optimizer, with its default
hyper-parameters β1 = 0.9, β2 = 0.999, ε = 10−8. We use minibatches of size 32.

The learning rate were tuned by observing the evolution of the loss on the training datasets for the
first iterations. The picked values are given in Table 7. Those learning rates are divided by the size
of the minibatches.

Hacker’s Delight Synthetic
Bias 1 10
MLP 0.01 0.1

Table 7: Values of the Learning rate used.

B STRUCTURE OF THE PROPOSAL DISTRIBUTION

The sampling process of a move is a hierarchy of sampling step. The easiest way to represent it is as
a generative model for the program transformations. Depending on what type of move is sampled,
different series of sampling steps have to be performed. For a given move, all the probabilities are
sampled independently so the probability of proposing the move is the product of the probability of
picking each of the sampling steps. The generative model is defined in Figure 5. It is going to be
parameterized by the the parameters of each specific probability distribution it samples from. The
default Stoke version uses uniform probabilities over all of those elementary distributions.

11

Published as a conference paper at ICLR 2017

1 def proposal(current_program):
2 move_type = sample(categorical(all_move_type))
3 if move_type == 1: % Add empty Instruction
4 pos = sample(categorical(all_positions(current_program)))
5 return (ADD_NOP, pos)
6

7 if move_type == 2: % Delete an Instruction
8 pos = sample(categorical(all_positions(current_program)))
9 return (DELETE, pos)

10

11 if move_type == 3: % Instruction Transform
12 pos = sample(categorical(all_positions(current_program)))
13 instr = sample(categorical(set_of_all_instructions))
14 arity = nb_args(instr)
15 for i = 1, arity:
16 possible_args = possible_arguments(instr, i)
17 % get one of the arguments that can be used as i-th
18 % argument for the instruction ’instr’.
19 operands[i] = sample(categorical(possible_args))
20 return (TRANSFORM, pos, instr, operands)
21

22 if move_type == 4: % Opcode Transform
23 pos = sample(categorical(all_positions(current_program)))
24 args = arguments_at(current_program, pos)
25 instr = sample(categorical(possible_instruction(args)))
26 % get an instruction compatible with the arguments
27 % that are in the program at line pos.
28 return(OPCODE_TRANSFORM, pos, instr)
29

30 if move_type == 5: % Opcode Width Transform
31 pos = sample(categorical(all_positions(current_program))
32 curr_instr = instruction_at(current_program, pos)
33 instr = sample(categorical(same_memonic_instr(curr_instr))
34 % get one instruction with the same memonic that the
35 % instruction ’curr_instr’.
36 return (OPCODE_TRANSFORM, pos, instr)
37

38 if move_type == 6: % Operand transform
39 pos = sample(categorical(all_positions(current-program))
40 curr_instr = instruction_at(current_program, pos)
41 arg_to_mod = sample(categorical(args(curr_instr)))
42 possible_args = possible_arguments(curr_instr, arg_to_mod)
43 new_operand = sample(categorical(possible_args))
44 return (OPERAND_TRANSFORM, pos, arg_to_mod, new_operand)
45

46 if move_type == 7: % Local swap transform
47 block_idx = sample(categorical(all_blocks(current_program)))
48 possible_pos = pos_in_block(current_program, block_idx)
49 pos_1 = sample(categorical(possible_pos))
50 pos_2 = sample(categorical(possible_pos))
51 return (SWAP, pos_1, pos_2)
52

53 if move_type == 8: % Global swap transform
54 pos_1 = sample(categorical(all_positions(current_program)))
55 pos_2 = sample(categorical(all_positions(current_program)))
56 return (SWAP, pos_1, pos_2)
57

58 if move_type == 9: % Rotate transform
59 pos_1 = sample(categorical(all_positions(current_program)))
60 pos_2 = sample(categorical(all_positions(current_program)))
61 return (ROTATE, pos_1, pos_2)

Figure 5: Generative Model of a Transformation.

12

Published as a conference paper at ICLR 2017

C HACKER’S DELIGHT TASKS

The 25 tasks of the Hacker’s delight Warren (2002) datasets are the following:

1. Turn off the right-most one bit

2. Test whether an unsigned integer is of the form 2(n− 1)

3. Isolate the right-most one bit
4. Form a mask that identifies right-most one bit and trailing zeros
5. Right propagate right-most one bit
6. Turn on the right-most zero bit in a word
7. Isolate the right-most zero bit
8. Form a mask that identifies trailing zeros
9. Absolute value function

10. Test if the number of leading zeros of two words are the same
11. Test if the number of leading zeros of a word is strictly less than of another work
12. Test if the number of leading zeros of a word is less than of another work
13. Sign Function
14. Floor of average of two integers without overflowing
15. Ceil of average of two integers without overflowing
16. Compute max of two integers
17. Turn off the right-most contiguous string of one bits
18. Determine if an integer is a power of two
19. Exchanging two fields of the same integer according to some input
20. Next higher unsigned number with same number of one bits
21. Cycling through 3 values
22. Compute parity
23. Counting number of bits
24. Round up to next highest power of two
25. Compute higher order half of product of x and y

Reference implementation of those programs were obtained from the examples directory of the stoke
repository (Churchill et al., 2016).

13

Published as a conference paper at ICLR 2017

D EXAMPLES OF HACKER’S DELIGHT OPTIMISATION

The first task of the Hacker’s Delight corpus consists in turning off the right-most one bit of a
register.

When compiling the code in Listing 6a, llvm generates the code shown in Listing 6b. A typical
example of an equivalent version of the same program obtained by the data-augmentation procedure
is shown in Listing 6c. Listing 6d contains the optimal version of this program.

Note that such optimization are already feasible using the stoke system of Schkufza et al. (2013).

1 # i n c l u d e < s t d i n t . h>
2
3 i n t 3 2 t p01 (i n t 3 2 t x) {
4 i n t 3 2 t o1 = x − 1 ;
5 re turn x & o1 ;
6 }

(a) Source.

1 pushq %rbp
2 movq %rsp , %rbp
3 movl %edi , −0x4(% rbp)
4 movl −0x4(% rbp) , %e d i
5 s u b l $0x1 , %e d i
6 movl %edi , −0x8(% rbp)
7 movl −0x4(% rbp) , %e d i
8 a n d l −0x8(% rbp) , %e d i
9 movl %edi , %eax

10 popq %rbp
11 r e t q
12 nop
13 nop
14 nop

(b) Optimization starting point.

1 b l s r l %edi , %e s i
2 s e t s %ch
3 xorq %rax , %r a x
4 s a r b $0x2 , %ch
5 rorw $0x1 , %di
6 subb $0x3 , %d i l
7 mul l %ebp
8 subb %ch , %dh
9 r c r b $0x1 , %d i l

10 cmovbel %e s i , %eax
11 r e t q

(c) Alternative equivalent program.

1 b l s r l %edi , %eax
2 r e t q

(d) Optimal solution.

Figure 6: Program at different stage of the optimization.

14

	Introduction
	Related Works
	Learning Stochastic Super-optimization
	Stochastic search as a program optimization procedure
	Learning to search
	Objective function
	Parameterization of the Move Proposal Distribution
	Learning the Proposal Distribution

	Experiments
	Setup
	Existing Programs
	Automatically Generated Programs

	Conclusion
	Hyperparameters
	Architectures
	Training parameters

	Structure of the proposal distribution
	Hacker's Delight Tasks
	Examples of Hacker's delight optimisation

