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Abstract

Fair supervised learning algorithms assigning la-
bels with little dependence on a sensitive attribute
have attracted great attention in the machine learn-
ing community. While the demographic parity
(DP) notion has been frequently used to measure
a model’s fairness in training fair classifiers, sev-
eral studies in the literature suggest potential im-
pacts of enforcing DP in fair learning algorithms.
In this work, we analytically study the effect of
standard DP-based regularization methods on the
conditional distribution of the predicted label given
the sensitive attribute. Our analysis shows that an
imbalanced training dataset with a non-uniform
distribution of the sensitive attribute could lead to
a classification rule biased toward the sensitive at-
tribute outcome holding the majority of training
data. To control such inductive biases in DP-based
fair learning, we propose a sensitive attribute-based
distributionally robust optimization (SA-DRO)
method improving robustness against the marginal
distribution of the sensitive attribute. Finally, we
present several numerical results on the application
of DP-based learning methods to standard central-
ized and distributed learning problems. The em-
pirical findings support our theoretical results on
the inductive biases in DP-based fair learning al-
gorithms and the debiasing effects of the proposed
SA-DRO method. The project code is available at
github.com/lh218/Fairness-IB.git.

1 INTRODUCTION

A responsible deployment of modern machine learning
frameworks in high-stake decision-making tasks requires
mechanisms for controlling the dependence of their out-
put on sensitive attributes such as gender and ethnicity. A

supervised learning framework with no control on the de-
pendence of the prediction on the input features could lead
to discriminatory decisions that significantly correlate with
the sensitive attributes. Due to the critical importance of the
fairness factor in several machine learning applications, the
study and development of fair statistical learning algorithms
have received great attention in the literature.

A widely-used approach to fair supervised learning is to
include a fairness regularization penalty term in the learn-
ing objective that quantifies the level of fairness violation
according to a fairness notion. A standard fairness notion is
the demographic parity (DP) aiming toward a statistically
independent prediction variable Ŷ of a sensitive attribute S.
Therefore, a DP-based fairness regularization metric should
be a measure of the dependence of the prediction Ŷ on the
sensitive attribute S. In the literature, several dependence
measures from statistics and information theory have been
attempted to develop DP-based fair learning methodologies
[Zafar et al., 2017, Mary et al., 2019, Baharlouei et al., 2019,
Rezaei et al., 2020, Cho et al., 2020a,b, Lowy et al., 2022].

In practice, the applications of standard DP-based fair clas-
sification methods usually succeed in significantly reducing
the DP fairness violation, while the model’s original accu-
racy on test data can be mostly preserved. Therefore, an
accuracy-based evaluation of the DP-based trained models
often suggests that the improvement in the DP fairness met-
ric can be significantly higher than the loss in the model’s
prediction accuracy. On the other hand, well-known studies
including [Dwork et al., 2012] and [Hardt et al., 2016] have
raised concerns about the potential impacts of DP-based
fairness evaluation, which can disproportionately increase
the inaccuracy rate among minority subgroups. To address
the concerns, Hardt et al. [2016] propose and promote a dif-
ferent fairness notion, equalized odds (EO), where the goal
is a prediction variable Ŷ that is conditionally independent
of the sensitive attribute S given the true label Y .

In this work, we study and analyze the inductive biases
of DP-based fair learning algorithms. We aim to theoreti-
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cally and empirically demonstrate the biases induced by a
DP-based learning framework toward the majority sensitive
attribute outcome under an imbalanced distribution of the
sensitive attribute over the target population. To this end, we
provide theoretical results indicating the biases of DP-based
fair decision rules toward the label distribution conditioned
to the sensitive attribute-based majority subgroup with an
occurrence probability greater than 1

2 . We show the exis-
tence of such a prediction distribution in a DP-based fair
learning algorithm formulated by constraining the difference
of demographic parity (DDP).

To reduce the biases of DP-based learning algorithms, we
propose a sensitive attribute-based distributionally robust
optimization (SA-DRO) method where the fair learner mini-
mizes the worst-case DP-regularized loss over a set of sen-
sitive attribute marginal distributions centered around the
data-based marginal distribution. As a result, the SA-DRO
approach can account for different frequencies of the sensi-
tive attribute outcomes and thus offer a robust behavior to
the changes in the sensitive attribute’s majority outcome.

We present the results of several numerical experiments on
the potential biases of DP-based fair classification method-
ologies to the sensitive attribute possessing the majority in
the dataset. Our empirical findings are consistent with the
theoretical results, suggesting the inductive biases of DP-
based fair classification rules toward the sensitive attribute-
based majority group. On the other hand, our results indicate
that the SA-DRO-based fair learning method results in fair
classification rules with a lower bias toward the label distri-
bution under the majority sensitive attribute. The following
is a summary of this work’s main contributions:

• Analytically studying the biases of DP-based fair learning
toward the majority sensitive attribute,

• Proposing a distributionally robust optimization method
to lower the biases of DP-based fair classification,

• Providing numerical results on the biases of DP-based fair
learning in centralized and federated learning scenarios.

2 RELATED WORKS

Fairness Violation Metrics. In this work, we focus on
the learning frameworks aiming toward demographic parity
(DP). Since enforcing DP to strictly hold could be costly and
damaging to the learner’s performance, the machine learning
literature has proposed applying several metrics assessing
the dependence between random variables, including: the
mutual information: [Kamishima et al., 2011, Rezaei et al.,
2020, Zhang et al., 2018, Cho et al., 2020a, Roh et al.,
2020], Pearson correlation [Zafar et al., 2017, Beutel et al.,
2019], kernel-based maximum mean discrepancy: [Prost
et al., 2019], kernel density estimation of the difference of
demographic parity (DDP) measures [Cho et al., 2020b], the
maximal correlation [Mary et al., 2019, Baharlouei et al.,

2019, Grari et al., 2019, 2021], and the exponential Renyi
mutual information [Lowy et al., 2022]. In our analysis,
we mostly focus on a DP-based fair regularization scheme,
while we show only weaker versions of the inductive biases
could further hold in the case of mutual information and
maximal correlation-based fair learning algorithms.

In addition to DP, the notions of equalized odds and equal
opportunity [Hardt et al., 2016] are standard fairness notions
in the literature, where the learner aims for a conditionally
independent decision variable Ŷ of sensitive attribute S
given label Y . We note that the mentioned frameworks based
on dependence measures can be aimed at equalized odds,
where the dependence measure should be conditioned to
label Y . Hence, our findings do not apply to the equalized
odds fairness notion and the extension of the dependence
measure-based learning algorithms aiming equalized odds.

Fair Classification Algorithms. Fair machine learning
algorithms can be classified into three main categories:
pre-processing, post-processing, and in-processing. Pre-
processing algorithms [Feldman et al., 2015, Zemel et al.,
2013, Calmon et al., 2017] transform biased data features
into a new space where labels and sensitive attributes are
statistically independent. Post-processing methods such as
[Hardt et al., 2016, Pleiss et al., 2017] aim to alleviate the
discriminatory impact of a classifier by modifying its ul-
timate decision. The focus of our work focus is only on
in-processing approaches regularizing the training process
toward DP-based fair models. Also, [Hashimoto et al., 2018,
Wang et al., 2020, Lahoti et al., 2020] propose distribu-
tionally robust optimization (DRO) for fair classification;
however, unlike our method, these works do not apply DRO
on the sensitive attribute distribution to reduce the biases.

Fairness-aware Imbalanced Learning. To address the chal-
lenges of generalization in machine learning models, partic-
ularly when handling highly imbalanced classes and limited
samples within each class, some well-known imbalanced
learning methods like [Lin et al., 2017] and [Cao et al.,
2019] have been proposed. More specifically, several arti-
cles [Iosifidis and Ntoutsi, 2020], [Subramanian et al., 2021],
[Deng et al., 2022] and [Tarzanagh et al., 2023] extended
to fairness-aware imbalanced learning dealing with imbal-
anced subgroups based on sensitive attributes. Compared to
those methods, our SA-DRO method has more flexibility in
exploring the accuracy-inductive bias trade-off controlled
by varying the coefficient of the regularization term.

3 PRELIMINARIES

3.1 FAIR SUPERVISED LEARNING

To achieve fairness in supervised learning, the decision mak-
ing process should not unfairly advantage or disadvantage
any particular group of people based on their demographic



characteristics such as race, gender, or age, which we re-
fer to as the sensitive attribute in this paper. In this setting,
we suppose the learner has access to labeled training data
(xi, yi, si)

n
i=1 independently drawn from the underlying dis-

tribution PX,Y,S . Here, X ∈ X ⊆ Rd is the d-dimensional
feature vector, Y ∈ Y denotes the label variable, and s ∈ S
denotes the sensitive attribute, which we suppose are pro-
vided for the training data.

In the supervised learning problem, the learner selects a
function f ∈ F where F is the set of prediction functions
mapping the observed (X, S) to the label space Y . We use
loss function ℓ : Y × Y → R to quantify the loss ℓ(y, ŷ)
when predicting ŷ under a true label y. Specifically, we
consider the 0/1 loss ℓ0/1(ŷ, y) = 1(ŷ ̸= y), where 1(·) de-
notes the indicator function. The primary goal of the fair su-
pervised learner is to find prediction rules f ∈ F achieving
smaller values of risk function E(X,Y,S)∼P

[
ℓ(f(X, S), Y )

]
while having little dependence on S according to the factors
explained in the next subsections.

3.2 FAIRNESS CRITERIA

In a fair supervised learning algorithm, the learned predic-
tion rule is expected to meet a fairness criterion. Here, we
review two standard fairness criteria in the literature:

• Demographic parity (DP) is a fairness condition that
requires the prediction Ŷ to be statistically independent
of the sensitive attribute, S, i.e., for every ŷ ∈ Y, s ∈ S

P
(
Ŷ = ŷ

∣∣S = s
)
= P

(
Ŷ = ŷ

)
where Ŷ = f(X, S) represents the predicted label. A
standard quantification of the violation of DP is the Dif-
ference of Demographic Parity (DDP):

DDP(Ŷ , S) =
∑

y∈Y,s∈S

∣∣∣P (Ŷ = y|S = s)− P (Ŷ = y)
∣∣∣

• Equalized Odds (EO) [Hardt et al., 2016] is a fairness
condition requiring the predicted label Y to be condition-
ally independent from sensitive attribute S given actual
label Y , i.e. for every s ∈ S, y, ŷ ∈ Y

P
(
Ŷ = ŷ

∣∣Y = y, S = s
)
= P

(
Ŷ = ŷ

∣∣Y = y
)
.

A sensible measurement of the lack of EO is the Differ-
ence of Equalized Odds (DEO):

DEO(Ŷ , S|Y ) =
∑

s∈S,y,ŷ∈Y

∣∣∣P (Ŷ = ŷ
∣∣Y = y, S = s)

− P
(
Ŷ = ŷ

∣∣Y = y
)∣∣∣

3.3 DEPENDENCE MEASURES FOR FAIR
SUPERVISED LEARNING

To measure the DP-based fairness violation, the machine
learning literature has proposed the application of several
dependence measures which we analyze in the paper. In
the following, we review some of the applied dependence
metrics:

• Mutual Information (MI): Mutual information I(Y ;S)
is a standard measure of the dependence between random
variables Y and S used for developing fair learning meth-
ods [Cho et al., 2020a]. The mutual information I(Y ;S)
is defined as

I(Y ;S) :=
∑

y∈Y,s∈S
PY,S(y, s) log

PY,S(y, s)

PY (y)PS(s)

It can be seen that I(Y ;S) = DKL(PY,S ;PY PS) is
the KL-divergence between joint distribution PY,S and
product of marginal distributions PY × PS , implying
I(Y ;S) = 0 if and only if Y and S are statistically inde-
pendent, i.e., Y⊥S. Note that KL-divergence is a special
case of f -divergence df (P,Q) = EP [f(P (x)/Q(x))]
with f(t) = t log t.

• Maximal Correlation (MC): The maximal correla-
tion ρm(Y, S) is the maximum Pearson correlation
ρP

(
f(Y ), g(S)

)
= Cov(f(Y ),g(S))√

Var(f(Y ))Var(g(S))
between f(Y )

and g(S) over all functions f, g. The maximal correlation
can be simplified to the optimal value of the following
optimization:

ρm(Y, S) := sup
f,g: E[f(Y )]=E[g(S)]=0

E[f2(Y )]=E[g2(S)]=1

E
[
f(Y )g(S)

]
Maximal correlation has been utilized as a measure of
demographic parity in the literature on fair learning algo-
rithms [Mary et al., 2019, Baharlouei et al., 2019].

• Exponential Rényi Mutual Information (ERMI): The
ERMI between random variables Y and S, which is con-
sidered by Lowy et al. [2022] as the dependence measure
of fairness penalty, is

ρE(Y, S) := χ2(PY,S ;PY × PS),

i.e, the χ2-divergence between the joint distribution PY,S

and the product of marginal distributions PY × PS . Simi-
lar to KL-divergence, χ2-divergence is an f -divergence
df (P,Q) with f(t) = (t − 1)2. Similar to the previous
two dependence measures, ρE(Y, S) = 0 if and only if
Y, S are independent.

4 INDUCTIVE BIASES OF DP-BASED
FAIR SUPERVISED LEARNING

As discussed earlier, fair learning based on the demographic
parity (DP) notion requires a bounded dependence between



the classifier’s output Ŷ and sensitive attribute S. A stan-
dard approach widely-used in the literature to DP-based fair
classification is to target the following optimization problem
for a dependence measure ρ(Ŷ , S) between S and predicted
variable Ŷ = f(X, S) given a randomized prediction rule
f ∈ F where F is a set of functions mapping x ∈ X , s ∈ S
to a random Ŷ ∈ Y with a conditional distribution PŶ |X,S :

min
f∈F

EpX,Y,S

[
ℓ0/1

(
Ŷ , Y

)]
(1)

subject to ρ
(
Ŷ , S

)
≤ ϵ

Our first theorem shows that if one chooses DDP as the
dependence measure ρ and that Y can be deterministi-
cally determined by X, S, then for the optimal solution
Ŷ = f∗(X, S) to the above problem, the conditional distri-
bution PŶ |S=s for every s will be close to the conditional
distribution PY |S=smax

of Y conditioned on the majority
sensitive attribute smax = argmaxs∈S PS(s). In the the-
orem, we use TV to denote the total variation distance
between distributions PY and QY defined as

TV (PY , QY ) :=
1

2

∑
y∈Y

∣∣PY (y)−QY (y)
∣∣

Theorem 1. Consider fair learning problem (1) where ρ is
the DDP function andF is the space of all randomized maps
generating all conditional distribution PŶ |X,S’s. Suppose
that Y = h(X, S) is a deterministic function h of X, S.
Then, if the majority sensitive attribute smax satisfies P (S =
smax) =

1
2+δ for a positive δ > 0, then the following bound

holds for the optimal predicted variable Ŷ = f∗(X, S)
where f∗ is the optimal solution to (1)

∀s ∈ S : TV
(
P Ŷ |S=s, PY |S=smax

)
≤

(1
2
+

1

4δ

)
ϵ

Proof. We defer the proof to the Appendix.

Corollary 1. In the setting of Theorem 1, if ϵ = 0, i.e., Ŷ
and S are constrained to be statistically independent, then
P (S = smax) >

1
2 results in the following for the optimal

predicted variable Ŷ = f∗(X, S):

∀s ∈ S : PŶ |S=s = PY |S=smax

The above results show that given a sensitive attribute smax

holding more than half of the training data, the optimal DDP-
fair prediction Ŷ will possess a conditional distribution
PŶ |S=s which for every s is at a bounded TV-distance from
the majority smax-based conditional distribution PY |S=smax

.
Therefore, the results indicate the inductive bias of a DDP-
based fair learning toward the majority sensitive attribute.
Next, we show that a weaker version of the DDP-based
bias could also hold for the mutual information, ERMI, and
maximal correlation-based fair learning.

Theorem 2. Consider the fair learning setting in Theorem 1
with a different selection of dependence measure ρ. Then,

• assuming ρ(Ŷ , S) is the mutual information I(Ŷ ;S):

Es∼PS

[
TV

(
PŶ |S=s, PY |S=smax

)]
≤

(1
2
+

1

4δ

)√ 2ϵ

log e

• assuming ρ(Ŷ , S) is the ERMI ρE(Ŷ , S) and defining
u(ϵ) = max

{
ϵ,
√
ϵ
}

:

Es∼PS

[
TV

(
PŶ |S=s, PY |S=smax

)]
≤

(1
2
+

1

4δ

)
u(ϵ)

• assuming ρ(Ŷ , S) is maximal correlation ρm(Ŷ , S) and
r = min

{
|S|, |Y|

}
− 1 (| · | denotes a set’s cardinality):

Es∼PS

[
TV

(
PŶ |S=s, PY |S=smax

)]
≤

(1
2
+

1

4δ

)
u(rϵ)

Proof. We defer the proof to the Appendix.

We remark the difference between the bias levels shown
for the DDP case in Theorem 1 and the other dependence
metrics in Theorem 2. The bias level for a DDP-based fair
learner could be considerably stronger than that of mutual in-
formation, ERMI, and maximal correlation-based fair learn-
ers, as the wort-case of total variations in Theorem 1 is
replaced by their expectation according to PS in Theorem 2.

4.1 EXTENDING THE THEORETICAL RESULTS
TO RANDOMIZED PREDICTION RULES

Here, we consider the possibility of a randomized mapping
from (X, S) to Y . Such a possibility needs to be consid-
ered when the actual label Y may not be deterministically
determined by X, S. Therefore, we formulate and analyze
the following generalization of the problem formulation in
(1) where we attempt to find the conditional distribution
PY |X,S :

min
QŶ |X,S∈Q

EPX,S

[
ℓTV

(
QŶ |X=x,S=s, PY |X=x,S=s

)]
(2)

subject to ρ
(
Ŷ , S

)
≤ ϵ

In this formulation, we aim to find an accurate estimation of
the conditional distribution QŶ |X,S from a feasible set Q
which corresponds to the function set F in (1). We measure
the learning performance under every outcome x, s ∼ PX,S

using the total variation loss ℓTV (P,Q) = TV(P,Q). Note
that the total variation loss generalizes the 0/1 loss to the
space of probability measures, since it is the minimum ex-
pected 0/1 loss under the optimal coupling between the
marginal distributions:

ℓTV(P,Q) = min
MŶ ,Y : MŶ =P

MY =Q

EM

[
ℓ0/1

(
Ŷ , Y

)]
.



Therefore, if under both Q and P , Y is determined deter-
ministically by X, S, the above TV-loss will be the same
as the expected 0/1 loss of the deterministic classification
rule following such QŶ |X,S . In the following theorem, we
attempt to relax the assumptions in Theorems 1-2 to apply
them to learning settings where Y may not be completely
determined by X, S.

Theorem 3. Consider the settings in Theorem 1 and The-
orem 2 where we instead consider the generalized formu-
lation (2) and do not require that Y is a function of X, S.
Suppose a function ϕ : X × Y → R exists such that the un-
derlying distribution PX,Y,S satisfies the following property
on the ratio between conditional distributions PX|Y,S and
PX|S:

∀x ∈ X , y ∈ Y, s ∈ S :
P
(
x
∣∣ y, s)

P
(
x
∣∣ s) = ϕ

(
x, y

)
. (3)

Then, the conclusions in Theorems 1,2 will remain valid.

Proof. We defer the proof to the Appendix.

Remark 1. Note that the assumption in the above theorem
is equivalent to a s-independent ratio P (x|y,s)

P (x|s) . In particu-
lar, this assumption will hold if the random vector X can
be decomposed to

[
g(S), X̃

]
, where g is a deterministic

function, and under the true distribution pX,Y,S , X̃ satisfies
X̃⊥S, i.e., is independent from S, and X̃⊥S

∣∣Y , i.e, X̃ is
conditionally independent from S given Y .

Finally, we attempt to further relax the assumption in The-
orem 3 when the distribution ratio P (x|y, s)/P (x|s) may
not be completely independent of the outcome S = s. The
next theorem shows a quantification of the deviation from
the assumption and how much it can impact the result.

Theorem 4. Consider the setting of Theorem 3 and the
formulation (2). We consider the TV-based dependence
ρTV (Y, S) := Es∼PS

[
TV(PY |S=s, PY )

]
in the problem.

Suppose for functions ϕL, ϕU : X ×Y → R, the following
holds for every x ∈ X , y ∈ Y, s ∈ S:

ϕL(x, y) ≤
p
(
x|y, s

)
p
(
x|s

) ≤ ϕU (x, y).

Define ∆(x, y) = ϕU (x, y) − ϕL(x, y). Then, if
ϵ
2 ≥ EPXPY |S=smax

[
∆(x, y)

]
, for the optimal Q∗

Ŷ |X,S
,

PŶ ,X,S = Q∗
Ŷ |X,S

· PX,S satisfies

Es∼PS

[
TV

(
PŶ |S=s, PY |S=smax

)]
≤ 2ϵ

(
1 +

1

2δ

)
Proof. We defer the proof to the Appendix.

Algorithm 1 Sensitive Attribute-based Distributionally Ro-
bust Optimization (SA-DRO) Fair Learning Algorithm

1: Input: Training data {(xi, yi, si)
n
i=1}, parameters

λ, δ ≥ 0, divergence d, dependence measure ρ, step-
sizes αw, αq > 0, running iterations T > 0

2: Initialize classifier weight w and distribution q = ps

3: for t ∈ {1, . . . , T} do
4: Compute weight gradient of the classifier fw:

gw =

n∑
i=1

[qsi
n
∇wℓ

(
fw(xi), yi

)]
+λ∇wρ

(
fw(X), S

)
5: Update w with gradient descent: w← w − αwgw

6: Compute the gradient of qs for every s ∈ S:

gqs =
1

n

∑
i:si=s

[
ℓ
(
fw(xi), yi

)]
+λ

∂ρ
(
fw(x1:n), s1:n

)
∂qs

7: Update q with projected gradient ascent:
q← Π{q: d(q,ps))≤δ}

(
q+ αqgq

)
8: end for

5 A DISTRIBUTIONALLY ROBUST
OPTIMIZATION APPROACH TO
DP-BASED FAIR LEARNING

In this section, we propose a distributionally robust optimiza-
tion method to reduce the biases of DP-based fair learning
algorithms toward the majority sensitive attribute. As dis-
cussed before, the optimization of the original risk function
under the true distribution pX,Y,S would lead to biases if
a sensitive attribute smax occurs considerably more than
half of the times. To shield the learning algorithm against
such biases, we propose applying distributionally robust
optimization (DRO) and consider the worst-case expected
0/1 loss over a distribution ball around the sensitive attribute
distribution pS as the target in the learning problem. This
approach leads to the sensitive attribute-based distribution-
ally robust optimization (SA-DRO) algorithm solving the
following formulation of the fair learning problem with
dependence metric ρ(Ŷ , S):

min
f∈F

max
QS :d(QS ,PS)≤δ

EPX,Y |S ·QS

[
ℓ0/1

(
Ŷ , Y

)]
+ λρ

(
Ŷ , S

)
(4)

According to this formulation, we solve the Lagrangian
version of optimization problem (1) when S’s marginal
distribution qS leads to the worst-case fair-regularized risk
function in a distribution ball

{
qS : d(qS , pS) ≤ δ

}
where

d is a distance measure between probability distributions.
In this formulation, we consider assigning different weights
to samples with different sensitive attributes, which may
result in different majority sensitive attributes. Since we are
optimizing the worst-case performance over the distribution



ball with a δ radius, the inductive biases discussed in the
previous would become less effective under a greater δ.

The proposed SA-DRO formulation results in Algorithm 1
which applies projected gradient descent ascent (GDA) to
solve the minimax optimization problem in (4). Here, we
use a parameterized classifier fw to apply a gradient-based
training algorithm. Also, the distance d can be chosen as any
standard f -divergence. In our experiments, we attempted the
χ2-divergence divergence, which has been well-explored
in the literature [Namkoong and Duchi, 2016, Bertsimas
et al., 2019, Rahimian and Mehrotra, 2019]. Furthermore, a
Lagrangian form of the SA-DRO problem (4) can be con-
sidered where the DRO constraint on QS is transferred to
the inner maximization objective function as −ζd(QS , PS)
for a Lagrangian coefficient ζ > 0.

6 NUMERICAL RESULTS

6.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we attempted the following
standard datasets in the machine learning literature:

1. COMPAS dataset with 12 features and a binary label on
whether a subject has recidivism in two years, where the
sensitive attribute is the binary race feature1. To simulate
a setting with imbalanced sensitive attribute distribution,
we considered 2500 training and 750 test samples, in
both of which 80% are from S = 0 "non-Caucasian" and
20% of the samples are from S = 1 "Caucasian".

2. Adult dataset with 64 binary features and a binary label
indicating whether a person has more than 50K annual
income. In this case, gender is considered as the sensi-
tive attribute2. In our experiments, we used 15k training
and 5k test samples, where, to simulate an imbalanced
distribution on the sensitive attribute, 80% of the data
have male gender and 20% of the samples are females.

3. CelebA Proposed by [Liu et al., 2018], containing the pic-
tures of celebrities with 40 attribute annotations, where
we considered "gender" as a binary label, and the sensi-
tive attribute is the binary variable on blond/non-blond
hair. In the experiments, we used 5k training samples
and 2k test samples. To simulate an imbalanced sensitive
attribute distribution, 80% of both training and test sam-
ples are marked with Blond hair and 20% samples are
marked with non-blond hair.

DP-based Learning Methods: We performed the exper-
iments using the following DP-based fair classification
methods: 1) DDP-based KDE method [Cho et al., 2020a]
and FACL [Mary et al., 2019], 2) the mutual information-
based fair classifier [Cho et al., 2020b], 3) the maximal

1https://github.com/propublica/compas-analysis
2https://archive.ics.uci.edu/dataset/2/adult

Correlation-based RFI classifier [Baharlouei et al., 2019], to
learn binary classification models on COMPAS and Adult
datasets. For CelebA experiments, we used the following
two DP-based fair classification methods: KDE method
[Cho et al., 2020a], and mutual information (MI) fair classi-
fier [Cho et al., 2020b].

In the experiments, we attempted both a logistic regression
classifier with a linear prediction model and a neural net
classifier. The neural net architecture was 1) for the COM-
PAS case, a multi-layer perceptron (MLP) with 2 hidden
layers with 128 neurons per layer, 2) for the Adult case,
an MLP with 4 hidden layers with 512 neurons per layer,
3) for the CelebA case, the ResNet-18 [He et al., 2016]
architecture suited for the image input in the experiments.

Evaluation criteria: To evaluate the trained models, we
used the averaged accuracy rate (Acc) as the classification
performance metric and the Difference of Demographic
Parity (DDP) as the fairness metric. Moreover, to quantify
the bias effects of fair learners, we measured the negative
rate (NR) conditioned to a sensitive attribute defined as
NR(s) := P

(
Ŷ = 0 | S = s

)
. This metric is defined

to quantify the variations in prediction outcomes across
subgroups with different sensitive attribute values.

6.2 INDUCTIVE BIASES OF MODELS TRAINED
IN DP-BASED FAIR LEARNING

To numerically analyze the effects of DP-based fair clas-
sification algorithms, we varied the regularization penalty
coefficient λ over the range [0, 1]. Note that λ = 0 means
an ERM setting with no fairness constraint, while λ = 1
is the strongest fairness regularization coefficient over the
range [0, 1].

As the evaluated accuracy and DDP values in Figures 1 in-
dicate, the DP-based fair learning algorithms managed to
significantly reduce the DDP fairness violation while com-
promising less than 2% in accuracy. On the other hand, the
negative rate (Ŷ = 0 prediction rate) across the two out-
comes S = 0, S = 1 of the sensitive attribute tend toward
the majority sensitive attribute as the DP-based fairness
regularization became stronger, suggesting the conditional
distribution of the prediction Ŷ given different sensitive
attribute outcome S = s’s moved closer to that of the major-
ity sensitive attribute. The observed behavior held similarly
using both the linear logistic regression model in Figure 2
and Figure 3, and Figure 4 shows how the inductive biases
lead to misclassification on CelebA dataset.

DRO-based Fair Learning. We tested Algorithm 1 utiliz-
ing a sensitive attribute-based distributional robust optimiza-
tion (SA-DRO) to DP-based fair learning algorithms. In
our experiments, we applied the SA-DRO algorithm to the
DDP-based KDE fair learning algorithm proposed by Cho
et al. [2020b], and RFI proposed by Baharlouei et al. [2019].



Figure 1: The first two columns show the trade-off between accuracy and DDP on the COMPAS and Adult dataset by
applying NN-based fair classification methods, while the third column shows that the NR(s) for each subgroup s ∈ {0, 1}
will converge to near the majority sensitive attribute.

Figure 2: The first two columns show the trade-off between accuracy and DDP on the COMPAS and Adult dataset by
applying LR-based fair classification methods, while the third column shows that the NR(s) for each subgroup s ∈ {0, 1}
will converge to near the majority sensitive attribute.



Figure 3: Both (a) and (b) show the trade-off between accuracy and DDP on the imbalanced CelebA dataset by applying MI
fair classification method, while (c) shows that the NR(s) for each subgroup will converge to the majority, thus causing
more discrimination on the minority group.

(a) ERM Classifier for CelebA (b) Fair Classifier for CelebA

Figure 4: Blond hair samples (Majority, Upper) and Non-blond hair samples (Minority, Lower) in CelebA Dataset predicted
by ERM(NN) and MI respectively. The results show that the model has 57.3% and 98.8% negative rates, i.e. prefers to
predict all samples being female in Minority, even maintaining almost the same level of accuracy in the whole group.

Figure 5: Accuracy, DDP, and NR(s) values attained by SA-DRO while varying the Lagrangian coefficient of the DRO
regularization term on COMPAS (upper) and Adult (lower) datasets.



Table 1: Numerical Results on COMPAS and Adult, non-
DRO vs SA-DRO implementations.

Method Acc(↑) DDP ↓ NR(s = 0) NR(s = 1)

C
O

M
PA

S

ERM(NN) 68.0% 0.287 46.0% 74.7%
KDE 66.8% 0.027 46.3% 49.0%
KDE (SA-DRO) 66.0% 0.009 61.6% 62.5%

ERM(LR) 67.5% 0.287 47.0% 74.5%
RFI 66.4% 0.021 48.1% 50.2%
RFI (SA-DRO) 65.4% 0.017 59.3% 61.0%

A
du

lt

ERM(NN) 85.1% 0.183 92.3% 74.0%
KDE 83.2% 0.023 77.3% 75.0%
KDE (SA-DRO) 82.5% 0.012 84.6% 83.4%

ERM(LR) 82.0% 0.189 88.1% 67.5%
RFI 80.6% 0.019 69.8% 67.9%
RFI (SA-DRO) 80.1% 0.021 78.3% 76.2%

We kept the fairness regularization penalty coefficient to be
λ = 0.9. Following the commonly-used implementation of
DRO, we used a Lagrangian penalty term −ζd(PS , QS) in
the inner maximization problem to perform DRO. Therefore,
the DRO regularization coefficient, also the Lagrangian mul-
tiplier ζ, can take over the range [0,+∞], in the table 1,
we set ζ = 0.9 for SA-DRO case. The visualized results
for various DRO regularization coefficients can be found in
Appendix.

As Table 1 shows, we observed that the proposed SA-DRO
reduces the tendency of the fair learning algorithm toward
the majority sensitive attribute, and the resulting negative
prediction rates conditioned to sensitive attribute outcomes
became closer to the midpoint between the majority and
minority conditional accuracies. On the other hand, the SA-
DRO-based algorithms still achieve a low DDP value while
the accuracy drop is less than 1%.

In Figure 5, we visualized the results of applying SA-DRO
algorithm to the DP-based KDE by Cho et al. [2020b], and
RFI by Baharlouei et al. [2019] for various DRO coefficients.
We kept the fairness regularization penalty coefficient to be
λ = 0.9, and the DRO regularization coefficient took over
the range [0, 1]. This Figure 5 shows that the accuracy and
DDP among the whole groups or different subgroups are
slightly affected, while the NR(s) for different subgroups
will shift from the majority group to the midpoint between
the minority group and the majority group to effectively
reduce the inductive biases.

6.3 DP-BASED FAIR CLASSIFICATION IN
HETEROGENEOUS FEDERATED LEARNING

To numerically show the implications of the inductive bi-
ases of DP-based fair learning algorithms, we simulated
a heterogeneous federated learning setting with multiple

clients where the sensitive attribute has different distribu-
tions across clients. To do this, we split the Adult dataset into
4 subsets of 3k samples to be distributed among 4 clients
in the federated learning. While 80% of the training data
in Client 1 (minority subgroup in the network) had Female
as sensitive attribute, only 20% of Clients 2-4 were female
samples. We used the same male/female data proportion to
assign 750 test samples to the clients.

For the baseline federated learning method with no fairness
regularization, we utilized the FedAvg algorithm [McMa-
han et al., 2017]. For the DP-based fair federated learning
algorithms, we attempted the DDP-based KDE and FACL
algorithms which result in single-level optimization problem
and hence can be optimized in a distributed learning prob-
lem by averaging as in FedAvg. We refer to the extended
federated learning version of these algorithms as FedKDE
and FedFACL. We also tested our SA-DRO implementations
of FedKDE and FedFACL, as well as the localized ERM,
KDE, FACL models where each client trained a separate
model only on her own data.

To show the impacts of such inductive biases in practice, we
focused on a setting with heterogeneous sensitive attribute
distributions across clients where the clients’ majority sen-
sitive attribute outcome may not agree. Figure 6 illustrates
such a federated learning scenario over the Adult dataset,
where Client 1’s majority sensitive attribute (female sam-
ples) is different from the network’s majority group (male
samples). In the experiment, Client 1’s test accuracy with
a DP-based fair federated learning was significantly lower
than the test accuracy of a locally-trained fair model learned
only on Client 1’s data. Such numerical results suggest the
possibility of the minority clients’ lack of incentive to par-
ticipate in the fair federated learning process.

To test our proposed DRO approach, we applied the SA-
DRO method. As our numerical results in Table 2 indicate,
the inductive biases of DP-based federated learning could
considerably lower the accuracy of Client 1 with a different
majority sensitive attribute compared to the other clients.
The accuracy drop led to a lower accuracy compared to
Client 1’s locally fair trained model without any collabo-
ration with the other clients, which may affect the client’s
incentive to participate in the federated learning process. On
the other hand, the SA-DRO implementations of the KDE
and FACL methods achieved a better accuracy than Client
1’s local model while preserving the accuracy for the major-
ity clients and maintaining the same level of DDP no more
than 0.05. We found similar results in the CelebA federated
learning experiments, as in Table 3 in the Appendix.

7 CONCLUSION

In this work, we attempted to demonstrate the inductive
biases of in-processing fair learning algorithms aiming to



Figure 6: Biases of DP-based learning algorithms in federated learning with heterogeneous sensitive attribute distributions:
80% of the training data in Client 1 comes from the minority subgroup (female) of the entire network, while the other
clients have 20% of their data from the minority subgroup. The DP-based KDE fair federated learning algorithm led to a
significantly lower accuracy for Client 1 compared to the test accuracy of Client 1’s locally (non-federated) trained model.

Table 2: Accuracy and DDP on Adult dataset

Client 1 (Minority) Client 2-4 (Majority)

Acc(↑) DDP(↓) Acc(↑) DDP(↓)

FedAvg 82.5% 0.208 90.3% 0.206
ERM(Local) 81.6% 0.203 89.0% 0.246

FedKDE 74.8% 0.022 89.9% 0.029
FedFACL 74.5% 0.014 89.7% 0.031

SA-DRO-FedKDE 79.3% 0.041 89.6% 0.042
SA-DRO-FedFACL 79.0% 0.049 89.1% 0.036

KDE(Local) 79.0% 0.032 88.2% 0.014
FACL(Local) 79.1% 0.025 88.6% 0.017

achieve demographic parity (DP). We also proposed a distri-
butionally robust optimization scheme to reduce the biases
toward the majority sensitive attribute. An interesting future
direction to our work is to search for similar biases in pre-
processing and post-processing fair learning methods. Also,
the theoretical comparison between different dependence
measures such as mutual information, Pearson correlation,
and the maximal correlation on the inductive bias levels will
be an interesting topic for future exploration. Finally, char-
acterizing the trade-off between accuracy, fairness violation,
and biases toward the majority subgroups will help to better
understand the costs of DP-based fair learning.

LIMITATIONS AND BROADER IMPACT

Our theoretical analysis focuses on the total variation loss,
which can limit its application to other popular loss func-
tions in statistical learning, e.g. the cross entropy loss. Ex-
tending the analytical findings on the inductive biases of fair
learning algorithms to other loss functions will be a future
direction. Also, we clarify that due to the relatively high

dimensions of the datasets in our numerical experiments,
we were unable to validate the assumption in Theorems 3, 4
in the experiments. However, we empirically observed the
inductive bias effects as explained in the text.

Finally, in our numerical analysis of fair learning algorithms,
we utilized well-known datasets in the fairness literature,
including Adult, COMPAS, and CelebA. We note that our
numerical analysis only concerned the characteristics of fair
learning algorithms and did not attempt to draw any conclu-
sions about the nature of data distribution in these datasets.
The COMPAS dataset has been critically analyzed in the
machine learning literature [Washington, 2018, Bao et al.,
2021], and the connections between the specific dataset and
inductive biases of fair learning algorithms will be interest-
ing for future studies.
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8 APPENDIX

8.1 PROOFS

8.1.1 Proof of Theorem 1

First, we note the following optimal transport-based formulation of the total variation distance between PY and QY :

TV(P,Q) = inf
MŶ ,Y : MŶ =P

MY =Q

EM

[
ℓ0/1

(
Ŷ , Y

)]
.

Therefore, for the objective function in Equation (1), we can write the following:

EP
X,Y,S,Ŷ

[
ℓ0/1

(
Ŷ , Y

)] (a)
= EPS

[
EPŶ ,Y,X|S

[
ℓ0/1

(
Ŷ , Y

)
|S = s

]]
= EPS

[
EPŶ ,Y |S

[
ℓ0/1

(
Ŷ , Y

)
|S = s

]]
(b)

≥ EPS

[
TV

(
PŶ |S=s, PY |S=s

)]
.

Here, (a) follows from the tower property of expectation. Also, (b) is a corollary of the optimal transport formulation of the
TV-distance. On the other hand, the constraint in (1) states that DDP(Ŷ , S) ≤ ϵ, implying

EPS

[
TV

(
PŶ |S=s, PŶ

)]
=

∑
s∈S

PS(s)TV
(
PŶ |S=s, PŶ

)
≤

∑
s∈S

TV
(
PŶ |S=s, PŶ

)
=

1

2
DDP(Ŷ , S)

≤ ϵ

2
.

Knowing that TV is a metric distance satisfying the triangle inequality, the above equations show that

EP
X,Y,S,Ŷ

[
ℓ0/1

(
Ŷ , Y

)]
≥ EPS

[
TV

(
PŶ |S=s, PY |S=s

)]
(c)

≥ EPS

[
TV

(
PY |S=s, PŶ

)
− TV

(
PŶ |S=s, PŶ

)]
= EPS

[
TV

(
PY |S=s, PŶ

)]
− EPS

[
TV

(
PŶ |S=s, PŶ

)]
≥ EPS

[
TV

(
PY |S=s, PŶ

)]
− ϵ

2
,

where (c) follows from the triangle inequality for TV-distance. Considering the above inequality which holds for every
feasible distribution PŶ |Y,S satisfying the DDP constraint, we focus on the following specific selection of QŶ |X,Y,S . Here
we suppose QŶ |S=s = PY |S=smax

for every s ∈ S . To find the joint distribution Q∗
Ŷ ,Y |S=s

we consider the optimal solution
to the following TV-based optimal transport problem for every s ∈ S

Q∗
Ŷ ,Y |S=s

:= argmin
MŶ ,Y : MŶ =PY |S=smax

MY =PY |S=s

EM

[
ℓ0/1

(
Ŷ , Y

)]
.

Note that given the above selection of Q∗
Ŷ ,Y |S

and Q∗
Ŷ |Y,S

= Q∗
Ŷ ,Y |S

/PY |S , we can define the joint distribution

QX,Y,S,Ŷ := PY,S · PX|Y,SQ
∗
Ŷ |Y,S

under which X⊥Ŷ |Y, S. Also, under the defined distribution Q, Ŷ and S are in-
dependent, and we have

EQŶ ,Y,S

[
ℓ0/1

(
Ŷ , Y

)]
= EPS

[
TV

(
PY |S=s, PY |S=smax

)]
.



Therefore, since X⊥Ŷ |Y, S and Y = h(X, S) is supposed to be a function of (X, S), we will further have

EQŶ ,X,S

[
ℓ0/1

(
Ŷ , Y

)]
= EPS

[
TV

(
PY |S=s, PY |S=smax

)]
.

Since QŶ |X,S is a feasible conditional distribution in the optimization problem 1, we will have

EPS

[
TV

(
PY |S=s, PŶ

)]
− ϵ

2
≤ EQŶ ,X,S
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ℓ0/1

(
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)]
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PY |S=s, PY |S=smax

)]
.

Therefore,

ϵ
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In the above, (d) comes from the triangle inequality for TV-distance, and (e) holds because
∑

s̸=smax
PS(s) = 1 −

PS(smax) =
1
2 − δ. The above inequality shows that TV

(
PY |S=smax

, PŶ

)
≤ ϵ

4δ . We combine this inequality with the DDP
constraint, which shows for every s ∈ S

TV
(
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≤ TV
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1
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In the above, note that (f) holds because TV
(
PŶ , PŶ |S=s

)
≤ 1

2DDP(Ŷ ;S) ≤ ϵ
2 according to the optimization constraint.

Therefore, the proof is complete.

8.1.2 Proof of Theorem 2

We first review the implications of Pinsker’s inequality in the cases of mutual information and χ2-divergence.

Lemma 1 (Pinsker’s inequality for mutual information). For every pair of random variables Y, S, we have

I(Y ;S) ≥ 2 log(e)ES

[
TV

(
PY |S=s, PY

)]2
.

Proof. Note that Pinsker’s inequality implies that for every outcome s ∈ S, we have

2 log(e) TV
(
PY |S=s, PY

)2 ≤ DKL

(
PY |S=s, PY

)



Since g(t) = 2 log(e) t2 is a convex function, Jensen’s inequality implies that

2 log(e)ES

[
TV

(
PY |S=s, PY

)]2
≤ ES

[
2 log(e)TV2

(
PY |S=s, PY

)]
≤ ES

[
DKL

(
PY |S=s, PY

)]
= I(Y ;S).

Therefore, the proof is complete.

Lemma 2 (Pinsker’s inequality for χ2-divergence-based f -mutual-information). For every pair of random variables Y, S,
we have the following for function h(t) = t2 where |t| ≤ 1 and h(t) = 2t− 1 where t ≥ 1.

χ2
(
PY,S , PY × PS

)
≥ h

(
2ES

[
TV

(
PY |S=s, PY

)])
Proof. Note that Pinsker’s inequality for the χ2-divergence [Gilardoni, 2006] implies that for every outcome s ∈ S , we have

h
(
2TV

(
PY |S=s, PY

))
≤ DKL

(
PY |S=s, PY

)
Since h is a convex function, Jensen’s inequality implies that

h
(
2ES

[
TV

(
PY |S=s, PY

)])
≤ ES

[
h
(
2TV

(
PY |S=s, PY

))]
≤ ES

[
χ2

(
PY |S=s, PY

)]
= χ2

(
PY,S , PY × PS

)
.

Hence, the proof is complete.

Lemma 3. For every pair of random variables Y, S, we have the following for function h(t) = t2 where |t| ≤ 1 and
h(t) = 2t− 1 where t ≥ 1, and constant r = min{|S|, |Y|} − 1:

rρm
(
Y, S

)
≥ h

(
2ES

[
TV

(
PY |S=s, PY

)])
Proof. The proof follows directly from Lemma 2, noting the following relationship between the maximal correlation
ρm

(
Y, S

)
and the Pearson χ2-divergence-based f -mutual information [Asoodeh et al., 2015]:

rρm
(
Y, S

)
≥ χ2

(
PY,S , PY × PS

)
.

Proof for the mutual information case. Given the mutual information constraint I(Ŷ , S) ≤ ϵ in (1), we can apply Lemma 1
which shows

2 log(e)ES

[
TV

(
PY |S=s, PY

)]2
≤ ϵ

⇒ ES

[
TV

(
PY |S=s, PY

)]
≤

√
ϵ

2 log(e)
.

Note that we can follow the same proof of Theorem 1, which holds if we change DDP(Ŷ , S) to ρTV (Y, S) :=
ES

[
TV

(
PŶ |S=s, PŶ

)]
, to prove the following statement:

ES

[
TV

(
PY |S=smax

, PŶ |S=s

)]
≤

√
ϵ

2 log(e)

(
1 +

1

2δ

)
=

√
2ϵ

log(e)

(1
2
+

1

4δ

)
.

Proof for the ERMI case ρE . Given the constraint ρE(Ŷ , S) ≤ ϵ in (1), we can apply Lemma 2 that shows

h
(
2ES

[
TV

(
PY |S=s, PY

)])
≤ ϵ



⇒ 2ES

[
TV

(
PY |S=s, PY

)]
≤ max{ϵ,

√
ϵ}.

In the above, we use the fact that the inverse function of h(t) over t ≥ 0 satisfies h−1(t) ≤ max{t,
√
t} which is a strictly

increasing function. As a result, we can follow the same proof of Theorem 1, which remains valid if we change DDP(Ŷ , S)

to ρTV (Ŷ , S) := ES

[
TV

(
PŶ |S=s, PŶ

)]
, to show the following:

ES

[
TV

(
PY |S=smax

, PŶ |S=s

)]
≤ max{ϵ,

√
ϵ}
(1
2
+

1

4δ

)
.

Proof for the maximal correlation case ρm. Assuming the constraint ρm(Ŷ , S) ≤ ϵ in (1), we can apply Lemma 3 showing
that

h
(
2ES

[
TV

(
PY |S=s, PY

)])
≤ rϵ

⇒ 2ES

[
TV

(
PY |S=s, PY

)]
≤ max{rϵ,

√
rϵ}.

As a result, we use the same proof of Theorem 1, that remains valid if we change DDP(Ŷ , S) to ρTV (Ŷ , S) :=
ES

[
TV

(
PŶ |S=s, PŶ

)]
, to show

ES

[
TV

(
PY |S=smax

, PŶ |S=s

)]
≤ max{rϵ,

√
rϵ}

(1
2
+

1

4δ

)
.

The proof is therefore complete.

8.1.3 Proof of Theorem 3

First, we note that under the assumption in Remark 1, there exists a function ϕ : X × Y → R for which PX,Y,S satisfies the
following equation on the ratio PX|Y,S/PX|S :

∀x ∈ X , y ∈ Y, s ∈ S :
P
(
x
∣∣ y, s)

P
(
x
∣∣ s) = ϕ

(
x, y

)
.

The above holds, since given the assumption in Remark 1 we can decompose X = [X0 = g(S), X̃] such that X̃⊥S and
X̃⊥S|Y , implying that

P
(
x
∣∣ y, s)

P
(
x
∣∣ s) =

P
(
[x0, x̃]

∣∣ y, s)
P
(
[x0, x̃]

∣∣ s)
=

P
(
x0

∣∣ y, s)P (
x̃
∣∣ y, s)

P
(
x0

∣∣ s)P (
x̃
∣∣ s)

=
P
(
x0

∣∣ s)P (
x̃
∣∣ y)

P
(
x0

∣∣ s)P (
x̃
)

=
P
(
x̃
∣∣ y)

P
(
x̃
) .

To prove Theorem 3, we can follow the initial steps of Theorem 1’s proof, which did not use the assumption Y = h(X, S),
to show the following holds for every feasible distribution QŶ |X,S satisfying the constraint in (2)

EPX,S

[
ℓTV

(
QŶ |X=x,S=s, PY |X=x,S=s

)]
≥ EPS

[
TV

(
PY |S=s, PŶ

)]
− ϵ

2
.

Next, we consider the following conditional distribution Q̃Ŷ |X,S(y,x, s) = PY |S=smax
(y|smax)ϕ(x, ŷ). We note that

Q̃Ŷ |X,S is a valid conditional distribution under joint distribution PX,S because for every s ∈ S, ŷ ∈ Y:∑
x∈X

PX|S(x|S = s)Q̃Ŷ |X,S(ŷ|x, s) =
∑
x∈X

PX|S(x|S = s)PY |S=smax
(ŷ|smax)ϕ(x, ŷ)



= PY |S=smax
(ŷ|smax)

∑
x∈X

PX|S(x|S = s)ϕ(x, ŷ)

= PY |S=smax
(ŷ|smax)

∑
x∈X

PX|Y,S(x|Y = ŷ, S = s)

= PY |S=smax
(ŷ|smax),

which is a valid conditional distribution, implying Ŷ and S are independent under the valid joint distribution Q̃Ŷ |X,S×PX,S .

Therefore Q̃Ŷ |X,S is a feasible conditional distribution in optimization problem (2), implying that under the optimal solution
Q∗

Y |X,Z we will have

EPS

[
TV

(
PY |S=s, PŶ

)]
− ϵ

2
≤ EPX,S

[
ℓTV

(
Q̃Ŷ |X=x,S=s, PY |X=x,S=s

)]
= TV

(
Q̃Ŷ |X,S × PX,S , PY,X,S

)
= TV

(
PY |S=smax

× ϕ(X, Y )PX,S , PY |S × ϕ(X, Y )PX,S

)
= TV

(
PY |S=smax

× PSPX|Y,S , PY |S × PSPX|Y,S
)

= TV
(
PY |S=smax

× PS , PY |S × PS

)
= ES

[
TV

(
PY |S=smax

, PY |S
)]

As a result, we have the following inequality for the optimal solution Q∗
Ŷ |X,S

and the constructed Q̃Ŷ |X,S resulting in an

independent Ŷ of S, with the marginal distribution Q̃Ŷ = PY |S=smax
:

EPS

[
TV

(
PY |S=s, PŶ

)]
− ES

[
TV

(
PY |S=smax

, PY |S
)]
≤ ϵ

2
.

Therefore, we can follow the proof of Theorems 1,2 which shows the above inequality leads to the bounds claimed in the
theorems.

8.1.4 Proof of Theorem 4

We define the function ϕs(x, y) :=
p
(
x|y,s

)
p
(
x|s

) for the true distribution PX,Y,S . Then, in particular,

ϕsmax
(x, y) =

p
(
x|y, smax

)
p
(
x|smax

)
Note that we can follow the initial steps of the proof of Theorem 1 which does not use the assumption Y = h(X, S), to
show the following holds for every PŶ ,X,S = QŶ |X,S · PX,S corresponding to a feasible distribution QŶ |X,S satisfying the
constraint in (2)

EPX,S

[
ℓTV

(
QŶ |X=x,S=s, PY |X=x,S=s

)]
≥ EPS

[
TV

(
PY |S=s, PŶ

)]
− EPS

[
TV

(
PŶ |S=s, PŶ

)]
≥ EPS

[
TV

(
PY |S=s, PŶ

)]
− ϵ.

Next, we consider the following conditional distribution

Q̃Ŷ |X,S(y|x, s) = PY |X,S(y|x, smax) = PY |S=smax
(y|smax)ϕsmax(x, y).

Clearly, Q̃Ŷ |X,S is a valid conditional distribution. Considering the resulting joint distribution Q̃Ŷ ,X,S := PX,SQ̃Ŷ |X,S , for
every s ∈ S, ŷ ∈ Y:

Q̃Ŷ |S(ŷ|s) =
∑
x∈X

PX|S(x|S = s)Q̃Ŷ |X,S(ŷ|x, s)



=
∑
x∈X

PX|S(x|S = s)PY |S=smax
(ŷ|smax)ϕsmax

(x, ŷ)

= PY |S=smax
(ŷ|smax)

∑
x∈X

PX|S(x|S = s)ϕsmax
(x, ŷ).

According to the triangle inequality for the TV-distance, we have

Es∼PS

[
TV

(
Q̃Ŷ |S=s, Q̃Y

)]
≤ Es∼PS

[
TV

(
Q̃Ŷ |S=s, PY |S=smax

)]
+ TV

(
PY |S=smax

, Q̃Y

)
Thus, to show that Q̃Ŷ |X,S is a feasible conditional distribution in optimization problem (2) with the TV-based measure
ρTV , it suffices to show that

Es∼PS

[
TV

(
Q̃Ŷ |S=s, PY |S=smax

)]
≤ ϵ

2
and TV

(
PY |S=smax

, Q̃Y

)
≤ ϵ

2
.

To show the former, we can write the following inequalities:∣∣∣Q̃Ŷ |S(ŷ|s)− PY |S(ŷ|smax)
∣∣∣ = PY |S=smax

(ŷ|smax)
∣∣∣1−∑

x∈X
PX|S(x|S = s)ϕsmax

(x, ŷ)
∣∣∣

= PY |S=smax
(ŷ|smax)

∣∣∣∑
x∈X

PX|S(x|S = s)
(
ϕsmax(x, ŷ)− ϕs(x, ŷ)

)∣∣∣
≤

∣∣∣∑
x∈X

PY |S=smax
(ŷ|smax)PX|S(x|S = s)

(
ϕU (x, ŷ)− ϕL(x, ŷ)

)∣∣∣
=

∑
x∈X

PY |S=smax
(ŷ|smax)PX|S(x|S = s)∆(x, ŷ).

As a result,

Es∼PS

[
TV

(
Q̃Ŷ |S=s, PY |S=smax

)]
≤

∑
s

PS(s)
∑

x∈X ,ŷ∈Y

PY |S=smax
(ŷ|smax)PX|S(x|S = s)∆(x, ŷ)

=
∑

x∈X ,ŷ∈Y

PY |S=smax
(ŷ|smax)PX(x)∆(x, ŷ)

= EY∼PY |S=smax ,X∼PX

[
∆(X, Y )

]
≤ ϵ

2
,

where the last line follows from the theorem’s assumption. Next, we have

TV
(
PY |S=smax

, Q̃Y

)
=

∑
ŷ

PY |S=smax
(ŷ|smax)

∣∣∣∑
s

∑
x∈X

PS(s)PX|S(x|S = s)ϕsmax
(x, ŷ)− 1

∣∣∣
=

∑
ŷ

PY |S=smax
(ŷ|smax)

∣∣∣∑
s

∑
x∈X

PS(s)PX|S(x|S = s)(ϕsmax(x, ŷ)− ϕs(x, ŷ))
∣∣∣

≤
∑
ŷ

PY |S=smax
(ŷ|smax)

∣∣∣∑
s

∑
x∈X

PS(s)PX|S(x|S = s)∆(x, ŷ)
∣∣∣

= EY∼PY |S=smax ,X∼PX

[
∆(X, Y )

]
≤ ϵ

2
.

Therefore, Q̃Ŷ |X,S is a feasible conditional distribution in optimization problem (2) with a DDP measure ρTV . This fact
implies that under the optimal solution Q∗

Y |X,Z we will have

EPS

[
TV

(
PY |S=s, PŶ

)]
− ϵ ≤ EPX,S

[
ℓTV

(
Q̃Ŷ |X=x,S=s, PY |X=x,S=s

)]



= TV
(
Q̃Ŷ |X,S × PX,S , PY,X,S

)
= TV

(
PY |S=smax

× ϕsmax
(X, Y )PX,S , PY |S × ϕS(X, Y )PX,S

)
≤ TV

(
PY |S=smax

× ϕsmax
(X, Y )PX,S , PY |S=smax

× ϕS(X, Y )PX,S

)
+ TV

(
PY |S=smax

× ϕS(X, Y )PX,S , PY |S × ϕS(X, Y )PX,S

)
≤ EPXPY |S=smax

[
ϕU (X, Y )− ϕL(X, Y )

]
+ TV

(
PY |S=smax

× PSPX|Y,S , PY |S × PSPX|Y,S
)

= EPXPY |S=smax

[
ϕU (X, Y )− ϕL(X, Y )

]
+ ES

[
TV

(
PY |S=smax

, PY |S
)]

As a result, we have the following inequality for the optimal solution Q∗
Ŷ |X,S

and the constructed Q̃Ŷ |X,S resulting in an

independent Ŷ of S, with the marginal distribution TV(Q̃Ŷ , PY |S=smax
) ≤ EPXPY |S=smax

[
∆(X, Y )

]
:

EPS

[
TV

(
PY |S=s, Q̃Ŷ

)]
− EPS

[
TV

(
PY |S=smax

, PY |S
)]
≤ ϵ+ EPXPY |S=smax

[
∆(X, Y )

]
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[
TV
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)]
− EPS

[
TV

(
PY |S=smax

, PY |S
)]
≤ ϵ+ 2EPXPY |S=smax

[
∆(X, Y )

]
Therefore, we can repeat the final step of Theorem 1 which shows the above inequality results in the following bound
claimed in the theorem:
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TV
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PŶ |S=s, PY |S=smax

)]
≤
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)(
ϵ+ 2EPX ·PY |S=smax

[
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≤

(
1 +

1

2δ

)
2ϵ

8.2 ADDITIONAL NUMERICAL RESULTS

8.2.1 Inductive biases for multi-class sensitive attributes

We perform fair learning experiments on the COMPAS and Adult datasets where instead of a binary S, thus we consider a
4-ary sensitive attribute by merging the binary gender and race variables to form a 4-ary sensitive attribute with two different
distributions in Figure 7 and Figure 8.

8.2.2 Comparison between SA-DRO and imbalanced learning method

We show that one particular advantage of the proposed SA-DRO approach is the method’s flexibility in tuning the level
of bias reduction, because by varying the DRO coefficient over [0,∞), the learner can explore the spectrum between the
original imbalanced distribution and the fully balanced (uniform) distribution on the sensitive attribute S. Please note that
the learner will pay the price of addressing the imbalanced distribution by a lower accuracy, and the trade-off between
accuracy and bias-reduction could be controlled by varying the coefficient of the DRO regularization term in Figure 9.

8.2.3 SA-DRO for distributed image classification

By applying SA-DRO methods on CelebA dataset in federated learning settings, we found that SA-DRO methods achieved
a similar accuracy with Client 1’s local model while preserving the accuracy for the majority clients and maintaining the
same level of DDP, as in Table 3.



Figure 7: Application of KDE method [Cho et al., 2020b] on COMPAS dataset with multiple sensitive subgroups in two
different proportions.

Figure 8: Application of KDE method [Cho et al., 2020b] on Adult dataset with multiple sensitive subgroups in two different
proportions.



Figure 9: Application of fairness-aware LDAM [Cao et al., 2019] targeting to balance sensitive attributes and compare with
SA-DRO.

Table 3: Accuracy and DDP on distributed CelebA dataset

Client 1 (Minority) Client 2-5 (Majority)

Acc(↑) DDP(↓) Acc(↑) DDP(↓)

FedAvg 94.8% 0.380 94.3% 0.419
ERM(Local) 91.8% 0.374 90.3% 0.396

FedKDE 65.6% 0.088 88.8% 0.060
FedFACL 67.0% 0.068 88.5% 0.054

SA-DRO-KDE 69.0% 0.063 88.1% 0.062
SA-DRO-FACL 68.5% 0.057 87.7% 0.069

KDE(Local) 69.7% 0.055 87.6% 0.043
FACL(Local) 69.1% 0.067 87.5% 0.050
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