
Under review as a conference paper at ICLR 2018

THE SET AUTOENCODER: UNSUPERVISED REPRESEN-
TATION LEARNING FOR SETS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose the set autoencoder, a model for unsupervised representation learning
for sets of elements. It is closely related to sequence-to-sequence models, which
learn fixed-sized latent representations for sequences, and have been applied to
a number of challenging supervised sequence tasks such as machine translation,
as well as unsupervised representation learning for sequences. In contrast to
sequences, sets are permutation invariant. The proposed set autoencoder considers
this fact, both with respect to the input as well as the output of the model. On the
input side, we adapt a recently-introduced recurrent neural architecture using a
content-based attention mechanism. On the output side, we use a stable marriage
algorithm to align predictions to labels in the learning phase. We train the model
on synthetic data sets of point clouds and show that the learned representations
change smoothly with translations in the inputs, preserve distances in the inputs,
and that the set size is represented directly. We apply the model to supervised tasks
on the point clouds using the fixed-size latent representation. For a number of
difficult classification problems, the results are better than those of a model that
does not consider the permutation invariance. Especially for small training sets,
the set-aware model benefits from unsupervised pretraining.

1 INTRODUCTION

Autoencoders are a class of machine learning models that have been used for various purposes
such as dimensionality reduction, representation learning, or unsupervised pretraining (see, e.g.,
Hinton & Salakhutdinov (2006); Bengio (2009); Erhan et al. (2010); Goodfellow et al. (2016)). In
a nutshell, autoencoders are feed-forward neural networks which encode the given data in a latent,
fixed-size representation, and subsequently try to reconstruct the input data in their output variables
using a decoder function. This basic mechanism of encoding and decoding is applicable to a wide
variety of input distributions. Recently, researchers have proposed a sequence autoencoder (Dai
& Le, 2015), a model that is able to handle sequences of inputs by using a recurrent encoder and
decoder. Furthermore, there has been growing interest to tackle sets of elements with similar recurrent
architectures (Vinyals et al., 2015a; 2016; Xu et al., 2016).
In this paper, we propose the set autoencoder – a model that learns to embed a set of elements
in a permutation-invariant, fixed-size representation using unlabeled training data only. The basic
architecture of our model corresponds to that of current sequence-to-sequence models (Sutskever
et al., 2014; Chan et al., 2016; Vinyals et al., 2015c): It consists of a recurrent encoder that takes
a set of inputs and creates a fixed-length embedding, and a recurrent decoder that uses the fixed-
length embedding and outputs another set. As encoder, we use an LSTM network with an attention
mechanism as in (Vinyals et al., 2015a). This ensures that the embedding is permutation-invariant in
the input. Since we want the loss of the model to be permutation-invariant in the decoder output, we
re-order the output and align it to the input elements, using a stable matching algorithm that calculates
a permutation matrix. This approach yields a loss which is differentiable with respect to the model’s
parameters. The proposed model can be trained in an unsupervised fashion, i.e., without having a
labeled data set for a specific task.
In a series of experiments, we analyze the properties of the embedding. For example, we show that
the learned embedding is to some extent distance-preserving, i.e., the distance between two sets of
elements correlates with the distances of their embeddings. Also, the embedding is smooth, i.e., small
changes in the input set lead to small changes of the respective embedding. Furthermore, we show

1

Under review as a conference paper at ICLR 2018

g o <start> a l l

a l l e

e

r

encoder decoder
Figure 1: Example of a sequence-to-sequence
translation model. The encoder receives the in-
put characters ["g","o"]. Its internal state is passed
to the decoder, which outputs the translation, i.e.,
the characters of the word "aller".

that pretraining in an unsupervised fashion can help to increase the performance on supervised tasks
when using the fixed-size embedding as input to a classification or regression model, especially if
training data is limited.
The rest of the paper is organized as follows. Section 2 introduces the preliminaries and briefly
discusses related work. In Section 3, we present the details of the set autoencoder. Section 4 presents
experimental setup and results. We discuss the results and conclude the paper in Section 5.

2 RELATED WORK

2.1 SEQUENCE-TO-SEQUENCE MODELS

Sequence-to-sequence models have been applied very successfully in various domains such as
automatic translation (Sutskever et al., 2014), speech recognition (Chan et al., 2016), or image
captioning (Vinyals et al., 2015c). In all these domains, the task is to model P (Y |X), i.e., to predict
an output sequence Y = (y1, y2, . . . , ym) given an input sequence X = (x1, x2, . . . , xn). Figure 1
shows the basic architecture of a sequence-to-sequence model. It consists of an encoder and a decoder,
both of which are usually recurrent neural networks (RNNs). In the figure, the sequence-to-sequence
model translates the input sequence X = (g, o) to the output sequence Y = (a, l, l, e, r). One by one,
the elements of the input sequence are passed to the encoder as inputs. The encoder always updates
its internal state given the previous state and the new input. Now, the last internal state of the encoder
represents a fixed-size embedding of the input sequence (and is sometimes referred to as the thought
vector). The decoder network’s internal state is now initialized with the thought vector, and a special
"start" token is passed as the input. One by one, the decoder will now output the tokens of the output
sequence, each of which is used as input in the next decoder step. By calculating a loss on the output
sequence, the complete sequence-to-sequence model can be trained using backpropagation. A special
case of a sequence-to-sequence model is the sequence autoencoder (Dai & Le, 2015), where the
task is to reconstruct the input in the output. For a more formal description of sequence-to-sequence
models, please refer to (Sutskever et al., 2014).

2.2 SETS INSTEAD OF SEQUENCES IN INPUT OR OUTPUT

Researchers have tackled sets of elements directly with neural networks, without using explicit but
lossy set representations such as the popular bag-of-words-model (Harris, 1954). Vinyals et al. raise
the question of how the sequence-to-sequence architecture can be adapted to handle sets. They
propose an encoder that achieves the required permutation-invariance to the input elements by using
a content-based attention mechanism. Using a pointer network (Vinyals et al., 2015b) as decoder, the
model can then be trained to sort input sets and outperforms a model without a permutation-invariant
encoder. The proposed attention-based encoder has been used successfully in other tasks such as
one-shot or few-shot learning (Vinyals et al., 2016; Xu et al., 2016). Another approach (Ravanbakhsh
et al., 2016) tackles sets of fixed size by introducing a permutation-equivariant1 layer in standard
neural networks. For sets containing more than a few elements, the proposed layer helps to solve
problems like point cloud classification, calculating sums of images depicting numbers, or set anomaly
detection. The proposed models can fulfill complex supervised tasks and operate on sets of elements
by exploiting permutation equi- or invariance. However, they do not make use of unlabeled data.

3 THE SET AUTOENCODER

The objective of the set autoencoder is very similar to that of the sequence autoencoder (Dai
& Le, 2015): to create a fixed-size, permutation-invariant embedding for an input set X =

1A function g is permutation equivariant, if π(g(x)) = g(π(x)), for all permutations π. However, we are
more interested in permutation invariant functions g, such that g(x) = g(π(x)), ∀π

2

Under review as a conference paper at ICLR 2018

{x1, x2, . . . , xn}, xi ∈ Rd by using unsupervised learning, i.e., unlabeled data. The motivation
is that unlabeled data is much easier to come by, and can be used to pretrain representations, which
facilitate subsequent supervised learning on a specific task (Erhan et al., 2010). In contrast to the
sequence autoencoder, the set autoencoder needs to be permutation invariant, both in the input and
the output set. The first can be achieved directly by employing a recurrent encoder architecture using
content-based attention similar to the one proposed by (Vinyals et al., 2015a) (see Section 3.1).
Achieving permutation invariance in the output set is not straightforward. When training a set
autoencoder, we need to provide the desired outputs Y in some order. By definition, all possible
orders should be equally good, as long as all elements of the input set and no surplus elements are
present. In theory, the order in which the outputs are presented to the model (or, more specifically: to
the loss function) should be irrelevant: by using a chain rule-based model, the RNN can, in principle,
model any joint probability distribution, and we could simply enlarge the data set by including all
permutations. Since the number of permutations grows exponentially in the number of elements, this
is not a feasible way: The data set quickly becomes huge, and the model has to learn to create every
possible permutation of output sets. Therefore, we need to tackle the problem of random permutations
in the outputs differently, while maintaining a differentiable architecture (see Section 3.2).2

3.1 ENCODER: INPUT SET TO EMBEDDING

The encoder takes the input set and embeds it into the fixed-sized latent representation. This
representation should be permutation invariant to the order of the inputs. We use an architecture with
content-based attention mechanism similar to the one proposed in (Vinyals et al., 2015a) (see Figure
2):

mi = f inp(xi) (1)
ct, ht = LSTM(ct−1, ht−1, rt−1) (2)

ei,t = f dot(mi, ht) (3)

ai,t =
exp (ei,t)∑
j exp (ej,t)

(4)

rt =
∑
i

ai,tmi (5)

LSTM

finp

m1, m2, ... , mn

x1, x2, ... , xn

memory

embedding

content-based

attention

rt

ct, h t

h t

Figure 2: Encoder model

First, each element xi of the input set X is mapped to a memory slot mi ∈ Rl using a mapping
function f inp (Eq. 1). We use a linear mapping as f inp, the same for all i3 . Then, an LSTM
network (Hochreiter & Schmidhuber, 1997; Gers & Schmidhuber, 2000) with l cells performs n
steps of calculation. In each step, it calculates its new cell state ct ∈ Rl and hidden state ht ∈ Rl

using the previous cell- and hidden state ct−1 and ht−1, as well as the previous read vector rt−1,
all of which are initialized to zero in the first step. The new read vector rt is then calculated as
weighted combination of all memory locations, using the attention mechanism (Eq. 5). For each
memory location i, the attention mechanism calculates a scalar value ei,t which increases based on
the similarity between the memory value mi and the hidden state ht, which is interpreted as a query
to the memory (Eq. 3). We set f dot to be a dot product. Then, the normalized weighting ai for all
memory locations is calculated using a softmax (Eq. 4). After n steps, the concatenation of cn,hn
and rn can be seen as a fixed-size embedding of X4. Note that permuting the elements of X has no
effect on the embedding, since the memory locations mi are weighted by content, and the sum in Eq.
5 is commutative.

2Note that, like the encoder, the decoder is implemented as a recurrent architecture. This is to accommodate
for the fact that the set size is not specified – using a simple feed-forward architecture is not straight forward in
this case.

3(Vinyals et al., 2015a) used a "small neural network" for this task
4Preliminary experiments showed that the quality of the embedding (based on decoder performance) was

relatively robust to the usage of different combinations of cn, hn, and rn. We chose to include all three values,
since it is not our goal to create the most compact embedding possible.

3

Under review as a conference paper at ICLR 2018

3.2 DECODER: EMBEDDING TO OUTPUT SET

Section 3.1 defined the forward propagation from the input set X to the fixed-size embedding
[ct, ht, rt]. We now define the output of the set autoencoder that allows us to train the model using
a loss function L. Like in the original sequence-to-sequence model, the core of the decoder is an
LSTM network (see Figure 3):

ĉt, ĥt = LSTM(ĉt−1, ĥt−1, r̂t−1) (6)
ĉ0 = cn (7)

ĥ0 = hn (8)
r̂0 = rn, r̂t>0 = 0 (9)

ot = f out(ĥt) (10)

ωt = f eos(ĥt) (11)

LSTM

r̂t

ĉt, ĥt
ĥt

f eosf out
ot ωt

Figure 3: Decoder model

In each step, the decoder LSTM calculates its internal cell state ĉt and its hidden state ĥt (Eq. 6). The
cell- and hidden state are initialized with the cell- and hidden state from the embedding, produced
by the encoder (Eq. 7 and Eq. 8). In the first step, the decoder also gets an additional input r̂0,
which is set to be the last read vector of the encoder (Eq. 9). In all following steps, r̂t is a vector of
all zeros. We calculate the decoder’s output ot at step t by using the linear function f out (Eq. 10).
Each output element ot is of the same dimensionality as the input elements xi. The underlying idea
is that f out is the “reverse” operation to f inp, such that encoder and decoder LSTM can operate on
similar representations. Furthermore, in each step, the function f eos calculates ωt (Eq. 11), which we
interpret as the probability that ot is an element of the set. In other words, if ωt = 0, we can stop
sampling.
In principle, we could use the LSTM’s output sequence O = (o1, o2, . . . , om) directly as elements
of the output set. However, this does not take into account the following issues: First, the number
m of outputs produced by the decoder should be equal to the size n of the input set X . This can
be achieved by learning to output the correct ωt (see Eq. 12 below). Second, the order of the set
elements should be irrelevant, i.e., the loss function should be permutation-invariant in the outputs.
To address the latter point, we introduce an additional mapping layer D = (d0, d1, . . . , dn) between
the decoder output and the loss function. The mapping rearranges the first n decoder outputs in the
order of the inputs X . That is, it should make sure that the distance between di and xi is small for all
i. The mapping is defined as: di =

∑n
j=1 ojwij Here, wij are the elements of a permutation matrix

W of size n× n with the properties

wij ∈ {0, 1} ∀i, j ∈ 1 . . . n
∑
i

wij = 1 ∀j
∑
j

wij = 1 ∀i

In other words, each output oi is mapped to exactly one dj , and vice versa. For now, we assume that
W has been parametrized such that the re-ordered elements in D match the elements in input set X
well (see Section 3.3). Then, the set autoencoder loss function can be calculated as

L =

n∑
i=1

L(xi, di) +

m∑
i=1

Leos(ωi, ω
∗
i) (12)

The function L(xi, di) is small if xi and di are similar, and large if xi and di are dissimilar. In other
words, for each element in the input set, the distance to a matching output element (as mapped by W)
will be decreased by minimizing L. For discrete elements, L can be calculated as the cross entropy
loss L(x, d) = −

∑
i xi log di. For elements that are vectors of real numbers, L is a norm of these

vectors, e.g., L(x, d) = ||x− d||. The function Leos calculates the cross-entropy loss between ωi and
ω∗
t , where ω∗

i indicates if an ith element should be present in the output, i.e., ω∗
i = 1 if i <= n, 0 else

(recall that the decoder can produce m outputs, and m is not necessarily equal to n). Since the whole
set autoencoder is differentiable, we train all weights except W using gradient descent.

3.3 PARAMETRIZATION OF W : A STABLE MARRIAGE

Re-ordering the decoder outputs resembles a point cloud correspondence problem from the domain of
computer vision (Jahne, 2000; Sonka et al., 2014). Methods like the iterative closest points algorithm

4

Under review as a conference paper at ICLR 2018

Algorithm 1 Gale-Shapely algorithm for stable matching
Initialize all m ∈ M and w ∈ W to free
while ∃ free man m who still has a woman w to propose to do

w = first woman on m’s list to whom m has not yet proposed
if w is free then

(m, w) become engaged
else

if w prefers m to m*, to whom she is engaged then
m* becomes free
(m, w) become engaged

−0.5 0.5

−0.5

0.5

−0.5 0.5

−0.5

0.5

−0.5 0.5

−0.5

0.5

−0.5 0.5

−0.5

0.5

Figure 4: Examples of sets in
shapes data set

(Besl & McKay, 1992) find closest points between two sets, and find a transformation that aligns
the second set to the first. Since we are only interested in the correspondence step, we notice its
similarity to the stable marriage problem (Gusfield & Irving, 1989): We want to find matching
pairs P i = {mani,womani} of two sets of men and women, such that there are no two pairs P i,
P j where element mani prefers womanj over womani, and, at the same time, womanj prefers
mani over manj .5 To solve this problem greedily, we can use the Gale-Shapely algorithm (Gale &
Shapley, 1962), which has a run time complexity of O(n2) (see Algorithm 1)6. Since its solution is
permutation invariant in the set that proposes first (Gusfield & Irving, 1989)(p. 10), we consider the
input elements xi to be the men, and let them propose first. After the stable marriage step, wij = 1 if
xi is “engaged” to oj .

4 EXPERIMENTS

4.1 UNSUPERVISED LEARNING OF EMBEDDING

We use a number of synthetic data sets of point clouds for the unsupervised experiments. Each data
set consists of sets of up to k items with d dimensions. In the random data sets, the k values of each
element are randomly drawn from a uniform distribution between -0.5 and 0.5. In the following
experiments, we set k = 16 and d ∈ {1, 2, 3}. In other words, we consider sets of up to 16 elements
that are randomly distributed along a zero-centered 1d-line, 2d-plane, or 3-d cube with side length 1.
We choose random distributions to evaluate the architecture’s capability of reconstructing elements
from sets, rather than learning common structure within those sets. In the shapes data set, we create
point clouds with up to k = 32 elements of d = 2 dimensions. In each set, the points form either a
circle, a square, or a cross (see Figure 4). The shapes can occur in different positions and vary in size.
To convey enough information, each set consists of at least 10 points. Each data set contains 500k
examples in the training set, 100k examples in the validation set, and another 500k examples in the
test set.
For each of the data sets we train a set autoencoder to minimize the reconstruction error of the sets,
i.e., to minimize Eq. 12 (please refer to the appendix for details of the training procedure, including
all hyperparameters). Figure 5 shows the mean euclidean distance of the reconstructed elements for
the three random data sets (left-hand side) and the shapes data set (right-hand side), for different set
sizes. For the random data sets, the mean error increases with the number of dimensions d of the
elements, and with the number of elements within a set. This is to be expected, since all values are
completely uncorrelated. For the shapes data set, the average error is lower than the errors for the
2d-random data set with more than two elements. Furthermore, the error decreases with the number
of elements in the set. We hypothesize that with a growing number of points, the points become
more evenly distributed along the outlines of the shapes, and it is therefore easier for the model to
reconstruct them (visual inspection of the reconstructions suggests that the model tends to distribute
points more uniformly on the shapes’ outlines).
We now take a closer look at the embeddings of the set autoencoder (i.e., the vector [ct, ht, rt])

5Note that this is a relaxation of the correspondence problem, since the concept of preference in the stable
marriage problem is ordinal rather than cardinal, i.e., we do not consider the exact distances between elements,
but ranks.

6This complexity could restrict the applicability of the proposed algorithm to smaller sets. However, there is
a range of problems where small set sizes are relevant, e.g. when an agent interacts with an environment where
one or multiple instances of an object can be present (as opposed to point cloud representations of objects).

5

Under review as a conference paper at ICLR 2018

1 3 5 7 9 11 13 15
Number of elements

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
u
cl
id
e
a
n
 d
is
ta
n
ce 1d elements

2d elements

3d elements

(a) Random data sets with d ∈ {1, 2, 3}

11 13 15 17 19 21 23 25 27 29 31
Number of elements

0.031

0.032

0.033

0.034

0.035

0.036

0.037

E
u
cl
id
e
a
n
 d
is
ta
n
ce 2d elements

(b) Shapes data set (d = 2)

Figure 5: Mean
reconstruction error
of reconstructed ele-
ments in sets of dif-
ferent size.

−0.5

0.0

0.5
Position of element in 2d-plane

−0.5 0.0 0.5
−1

0

1

2

3
Corresponding embedding

Figure 6: Smoothness of embeddings for sets with a sin-
gle 2d-element. Each vertical slice through both graphs
represents data for a single set. The top shows different
positions of the element in in a 1× 1 plane, the bottom
the corresponding embeddings. E.g., the first point from
the left in the top diagram represents a set of size 1, with
a single element at the coordinates [0,−0.5]. The points
directly below visualize the values of the embedding
corresponding to this set. Best viewed in color.

for random sets. Some of the embedding variables have a very strong correlation with the set size
(Pearson correlation coefficients of > 0.97 and <-0.985, respectively). In other words, the size of the
set is encoded almost explicitly in the embedding.
The embeddings seem to be reasonably smooth (see Figure 6). We take a set with a single 2d-element
and calculate its embeddings (leftmost points in Figure 6). We then move this element smoothly in the
2d-plane and observe the resulting embeddings. Most of the time, the embeddings change smoothly
as well. The discontinuities occur when the element crosses the center region of the 2d plane. Apart
from this center region, the embedding preserves a notion of distance of two item sets. This becomes
apparent when looking at the correlations between the euclidean distances of two sets X1 and X2

and their corresponding embeddings enc(X1) and enc(X2).7 The correlation coefficients for random
sets of size one to four are 0.81, 0.71, 0.67, and 0.64. In other words, similar sets tend to yield similar
embeddings.
Vinyals et al. show that order matters for sequence-to-sequence and set-to-set models. This is the case
both for the order of input sequences – specific orders improve the performance of the model’s task –
as well as for the order of the output sets, i.e., the order in which the elements of the set are processed
to calculate the loss function. Recall that the proposed set autoencoder is invariant to the order of
the elements both in the input set (using the attention mechanism) and the target set (by reordering
the outputs before calculating the loss). Nevertheless, we observe that the decoder learns to output
elements in a particular order: We now consider sets with exactly 8 random 2-dimensional elements.
We use a pretrained set autoencoder from above, encode over 6,000 sets, and subsequently reconstruct
the sets using the decoder. Figure 7 shows heat maps of the 2d-coordinates of the i’th reconstructed
element. The first reconstructed element tends to be in the center right area. Accordingly, the second
element tends to be in the lower-right region, the third element in the center-bottom region, and so on.
The decoder therefore has learned to output the elements within a set in a particular order. Note that
most of the distributions put some mass in every area, since the decoder must be able to reproduce
sets where the items are not distributed equally in all areas (e.g., in a set where all elements are in
the top right corner, the first element must be in the top right corner as well). Figure 8 shows the
effect of the set size n on the distribution of the first element. If there is only one element (n = 1), it
can be anywhere in the 2d plane. The more elements there are, the more likely it is that at least one
of them will be in the center right region, so the distribution of the first element gets more peaked.
We speculate that the roughly circular arrangement of the element distributions (which occurs for
other set sizes as well) could be an implicit result of using the cosine similarity f dot in the attention
mechanism of the encoder. Also, this behavior is likely to be the reason for the discontinuity in Figure
6 around [0, 0].

7We align the elements of X1 and X2 using the Gale-Shapely algorithm before calculating distances.

6

Under review as a conference paper at ICLR 2018

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

Figure 7: Heat maps of the location of the ith element in sets of size 8 with 2d-elements (decoder
output). Darker shadings indicate more points at these coordinates.

n=1 n=6 n=11 n=16 Figure 8: Heat maps of the location of the
first element in sets of various sizes n with 2d-
elements (decoder output). Darker shadings
indicate more points at these coordinates.

4.2 SUPERVISED LEARNING: CLASSIFICATION AND REGRESSION TASKS

We derive a number of classification and regression tasks based on the data sets in Section 4.1. On
the random data sets, we define a number of binary classification tasks. The 1d-, 2d- or 3d- area is
partitioned into two, four, or eight areas of equal sizes. Then, two classes of sets are defined: A set is
of class 1, if all of its elements are within i of the j defined areas. All other sets are of class two. For
example, if d = 2, i = 2, and j = 4, a set is of class 1 if all its elements are in the top left or bottom
left area, or any other combination of two areas.8 Furthermore, we define two regression tasks on the
random data sets: The target for the first one is the maximum distance between any two elements
in the set, the second one is the volume of the d-dimensional bounding box of all elements. On the
shapes data set, the three-class classification problem is to infer the prototypical shape represented by
the elements in the set.
In the following, we use a set autoencoder as defined above, add a standard two-layer neural network
f supervised(enc(X)) on top of the embedding, and use an appropriate loss function for the task (for
implementation details see supplementary material). We compare the results of the set autoencoder
(referred to as set-AE) to those of two vanilla sequence autoencoders, which ignore the fact that the
elements form a set. The first autoencoder (seq-AE) gets the same input as the set model, the input
for the second autoencoder has been ordered along the first element dimensions (seq-AE (ordered)).
Furthermore, we consider three training fashions: For direct training, we train the respective model
in a purely supervised fashion on the available training data (in other words: the models are not
trained as autoencoders). In the pretrained fashion (pre), we initialize the encoder weights using
unsupervised pretraining on the respective (unlabeled) 500k training set, and subsequently train
the parameters of f supervised, holding the encoder weights fixed. In the fine tuning setting (fine), we
continue training from the pretrained model, and fine-tune all weights.
Tables 1(a) and (b) show the accuracy on the test set for the i-of-j-areas classification tasks, for
1,000 and 10,000 training examples.The plain sequence autoencoder is only competitive for the
most simple task (first row). For the simple and moderately complex tasks (first three rows), the
ordered sequence autoencoder and the set autoencoder reach high accuracies close to 100%, both

Seq-AE Seq-AE (ordered) Set-AE
areas d direct pre fine direct pre fine direct pre fine
1 of 2 1 0.978 0.909 0.996 0.984 0.994 0.998 0.995 0.998 0.999

2 0.971 0.915 0.952 0.979 0.971 0.996 0.990 0.981 0.983
1 of 4 1 0.948 0.752 0.968 0.949 0.973 0.986 0.962 0.974 0.980

2 0.963 0.908 0.953 0.962 0.931 0.963 0.986 0.985 0.988
1 of 8 3 0.955 0.887 0.939 0.964 0.935 0.950 0.973 0.973 0.978
2 of 4 1 0.754 0.554 0.661 0.847 0.884 0.940 0.883 0.944 0.954

2 0.777 0.660 0.704 0.872 0.766 0.800 0.935 0.941 0.949
2 of 8 3 0.772 0.541 0.638 0.853 0.738 0.827 0.869 0.908 0.908
4 of 8 3 0.656 0.537 0.527 0.672 0.543 0.597 0.689 0.752 0.764

(a) 1,000 training examples

Seq-AE Seq-AE (ordered) Set-AE
direct pre fine direct pre fine direct pre fine
0.990 0.912 0.998 0.998 0.997 1.000 0.999 0.998 0.999
0.983 0.909 0.978 0.995 0.980 0.998 0.998 0.985 0.991
0.987 0.783 0.990 0.993 0.985 0.997 0.990 0.978 0.995
0.984 0.918 0.985 0.991 0.956 0.990 0.997 0.991 0.995
0.983 0.857 0.982 0.986 0.950 0.984 0.995 0.987 0.993
0.933 0.594 0.864 0.970 0.925 0.985 0.992 0.969 0.985
0.919 0.545 0.796 0.950 0.815 0.946 0.986 0.969 0.980
0.924 0.535 0.820 0.938 0.800 0.918 0.962 0.960 0.971
0.720 0.535 0.631 0.758 0.562 0.716 0.810 0.860 0.888

(b) 10,000 training examples, same rows as (a)

Table 1: Accuracy for area classification tasks, higher is better. Averaged over 10 runs.

8We create new labeled data sets with the same number of examples per class

7

Under review as a conference paper at ICLR 2018

Seq-AE Seq-AE (ordered) Set-AE
task d direct pre fine direct pre fine direct pre fine
boun-
ding
box

1 0.079 0.140 0.084 0.043 0.058 0.021 0.054 0.059 0.038
2 0.085 0.133 0.124 0.075 0.110 0.088 0.049 0.073 0.062
3 0.083 0.119 0.120 0.082 0.110 0.095 0.074 0.090 0.087

max
dis-
tance

1 0.080 0.140 0.083 0.043 0.057 0.018 0.042 0.059 0.039
2 0.099 0.142 0.121 0.089 0.123 0.104 0.059 0.076 0.061
3 0.114 0.141 0.140 0.111 0.132 0.124 0.083 0.107 0.100

(a) 1,000 training examples

Seq-AE Seq-AE (ordered) Set-AE
direct pre fine direct pre fine direct pre fine
0.024 0.140 0.020 0.015 0.052 0.007 0.017 0.054 0.016
0.032 0.133 0.048 0.023 0.106 0.020 0.019 0.067 0.017
0.067 0.119 0.095 0.046 0.109 0.056 0.022 0.088 0.047
0.023 0.140 0.023 0.011 0.052 0.007 0.016 0.055 0.015
0.042 0.140 0.071 0.031 0.117 0.034 0.017 0.069 0.022
0.065 0.140 0.096 0.055 0.131 0.072 0.022 0.103 0.049

(b) 10,000 training examples, same rows as (a)

Table 2: RMSE on Regression tasks, lower is better . Averaged over 10 runs.

Seq-AE Seq-AE (ordered) Set-AE
direct pre fine direct pre fine direct pre fine
0.531 0.402 0.428 0.667 0.779 0.809 0.602 0.634 0.641

(a) 1,000 training examples

Seq-AE Seq-AE (ordered) Set-AE
direct pre fine direct pre fine direct pre fine
0.580 0.384 0.548 0.849 0.838 0.911 0.697 0.699 0.732

(b) 10,000 training examples, same rows as (a)

Table 3: Accuracy for object shape classification task, higher is better. Averaged over 10 runs.

for the small and the large training set. When the task gets more difficult (higher i, j, or d), the
set autoencoder clearly outperforms both other models. For the small training set, the pre and fine
training modes of the set autoencoder usually lead to better results than direct training. In other
words, the unsupervised pretraining of the encoder weights leads to a representation which can be
used to master the classification tasks with a low number of labeled examples. For the larger training
set, unsupervised pretraining is still very useful for the more complicated classification tasks. On the
other hand, unsupervised pretraining only helps in a few rare cases if the elements are treated as a
sequence – the representation learned by the sequence autoencoders does not seem to be useful for
the particular classification tasks.9
The results or the regression task are shown in Tables 2 (a) and (b). Again, the ordered sequence
autoencoder shows good results for small d (recall that the first element dimension is the one that
has been ordered), but fails to compete with the set-aware model in the higher dimensions. However,
unsupervised pretraining helps the set model in the regression task only for small d.
Tables 3 (a) and (b) show the results for the shapes classification task. Here, the ordered sequence
autoencoder with fine tuning clearly dominates both other models. The set model is unable to
capitalize on the proper handling of permutation invariance.
In sum, the results show that unsupervised pretraining of the set autoencoder creates representations
that can be useful for subsequent supervised tasks. This is primarily the case, if the supervised task
requires knowledge of the individual locations of the elements, as in the i-of-j-areas classification
task. If the precise locations of a subset of the elements are required (as in the bounding box or
maximum distance regression tasks), direct training yields better results. We hypothesize that failure
of the set-aware model on the shapes classification is due to the linear mapping functions f inp and
f out: They might be too simple to capture the strong, but non-linear structures in the data.

5 CONCLUSION

We presented the set autoencoder, a model that can be trained to reconstruct sets of elements using a
fixed-size latent representation. The model achieves permutation invariance in the inputs by using
a content-based attention mechanism, and permutation invariance in the outputs, by reordering the
outputs using a stable marriage algorithm during training. The fixed-size representation possesses
a number of interesting attributes, such as distance preservation. We show that, despite the output
permutation invariance, the model learns to output elements in a particular order. A series of
experiments show that the set autoencoder learns representations that can be useful for tasks that
require information about each set element, especially if the tasks are more difficult, and few labeled
training examples are present. There are a number of directions for future research. The most obvious
is to use non-linear functions for f inp and f out to enable the set autoencoder to capture non-linear
structures in the input set, and test the performance on point clouds of 3d data sets such as ShapeNet
(Chang et al., 2015). Also, changes to the structure of the encoder/decoder (e.g., which variables are

9This is despite the fact that the reconstruction error after the unsupervised training is much lower for the
sequence autoencoders than for the set autoencoder (not in the results tables).

8

Under review as a conference paper at ICLR 2018

interpreted as query or embedding) and alternative methods for aligning the decoder outputs to the
inputs can be investigated. Furthermore, more research is necessary to get a better understanding
for which tasks the permutation invariance property is helpful, and unsupervised pretraining can be
advantageous.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, and others. Tensorflow - Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Yoshua Bengio. Learning deep architectures for AI. Foundations and trends in Machine Learning, 2(1):1–127,
2009.

Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D shapes. In Robotics-DL Tentative, pp.
586–606. International Society for Optics and Photonics, 1992.

W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen, attend and spell: A neural network for large vocabulary
conversational speech recognition. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4960–4964, 2016. doi: 10.1109/ICASSP.2016.7472621.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, and others. Shapenet : An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012, 2015.

Andrew M Dai and Quoc V Le. Semi-supervised Sequence Learning. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (eds.), Proceedings of the 28th International Conference on Neural Information
Processing Systems, pp. 3079–3087. Curran Associates, 2015.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio.
Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research, 11(Feb):
625–660, 2010. ISSN ISSN 1533-7928.

D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. The American Mathematical
Monthly, 69(1):9–15, 1962. ISSN 0002-9890. doi: 10.2307/2312726.

F. A. Gers and J. Schmidhuber. Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks, 2000. IJCNN 2000, volume 3, pp. 189–194, 2000. doi:
10.1109/IJCNN.2000.861302.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Aistats, volume 9, pp. 249–256, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA, USA, 2016.
Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press,

Cambridge, MA, USA, 1989. ISBN 978-0-262-07118-5.
Zellig S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313

(5786):504–507, July 2006. ISSN 1095-9203. doi: 10.1126/science.1127647.
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,

1997.
Bernd Jahne. Computer Vision and Applications: A Guide for Students and Practitioners,Concise Edition.

Academic Press, May 2000. ISBN 978-0-08-050262-5. Google-Books-ID: lcSccjdqmpkC.
Diederik Kingma and Jimmy Ba. Adam - A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings

of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814, 2010.
Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep Learning with Sets and Point Clouds. arXiv

preprint arXiv:1611.04500, November 2016.
Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and Machine Vision. Cengage

Learning, 2014.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks. In

Proceedings of the 27th International Conference on Neural Information Processing Systems, pp. 3104–3112.
Curran Associates, 2014.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06391, 2015a.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems, pp. 2692–2700, 2015b.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and Tell: A Neural Image Caption
Generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–
3164, 2015c.

9

Under review as a conference paper at ICLR 2018

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching Networks
for One Shot Learning. arXiv preprint arXiv:1606.04080, June 2016.

Zhongwen Xu, Linchao Zhu, and Yi Yang. Few-Shot Object Recognition from Machine-Labeled Web Images.
arXiv preprint arXiv:1612.06152, December 2016.

APPENDIX

MODEL DETAILS AND TRAINING PROCEDURE

ARCHITECTURE AND SIZING

We use Tensorflow v0.12 (Abadi et al., 2016) to implement all models. For the implementation and
experiments, we made the following design choices:

Model Architecture

• Both the encoder and the decoder LSTMs are have peephole connections (Gers & Schmid-
huber, 2000). We use the LSTM implementation of Tensorflow 10

• The input mapping f inp and output mapping f out functions are simple linear functions. Note
that we can not re-use f inp on the decoder side to transform the supervised labels in a
“backwards” fashion: In this case, learning could parametrize f inp such that all set elements
are mapped to a the same value, and the decoder learns to output this element only.
• For the supervised experiments (classification and regression), we add a simple two-layer

neural network f supervised on top of the embedding. The hidden layer of this network has
the same number of units as the embedding, and uses ReLu activations (Nair & Hinton,
2010). For the two-class problems (i of j areas), we use a single output neuron and a
cross-entropy loss, for the multi-class problems (object shapes) we use three output neurons
and a cross-entropy loss. For the regression problems (bounding box and maximum distance),
we optimize the mean squared error.
• All parameters are initialized using Xavier initialization (Glorot & Bengio, 2010)
• Batch handling: For efficiency, we use minibatches. Therefore, within a batch, there can

be different set sizes ni for each example i in the set. For simplicity, the encoder keeps
processing all sets in a batch, i.e., it always performs n = k steps, where k is the maximum
set size. Preliminary experiments showed only minor variations in the performance when
processing is stopped after ni steps, where ni corresponds to the actual size of set i in the
minibatch.

Dimensionality of layers

• The number l of LSTM cells is automatically determined by the dimensionality d and
maximum set size k of the input. We set l = k ∗ d, therefore ct, ht, ĉt, ĥt ∈ Rl. As
a consequence, the embedding for all models (set- and sequence autoencoder) could, in
principle, comprise the complete information of the set (recall that the goal was not to find
the most compact or efficient embedding)
• For simplicity, the dimensionality of each the memory cell mi and the read vector ri is equal

to the number of LSTM cells, i.e., mi, ri ∈ Rl (in principle, the memory could have any
other dimensionality, but this would require an additional mapping step, since the query
needs to be of the same dimensionality as the memory).

TRAINING

We use Adam (Kingma & Ba, 2014) to optimize all parameters. We keep Adam’s hyperparameters
(except for the learning rate) at Tensorflow ’s default values (β1 = 0.9, β2 = 0.999, ε = 1e−08). We
use minibatch training with a batch size of 100. We keep track of the optimization objective during

10https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/python/
ops/rnn_cell.py#L363

10

https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/python/ops/rnn_cell.py#L363
https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/python/ops/rnn_cell.py#L363

Under review as a conference paper at ICLR 2018

Training mode initial α stalled epochs be-
fore decreasing α

stalled epochs
before stopping

Weight decay δ

Unsup. pretraining 0.002 20 40 0.0 for all params
Supervised, direct 0.0002 20011 400 0.001 for all params
Supervised, pre 0.002 200 400 0.001 for f supervised

Supervised, fine 0.0002 200 400 0.001 for f supervised

Table 4: Training hyperparameters.

training and reduce the learning rate by 33% / stop training once there has been no improvement for
a defined number of epochs, depending on the training mode (see Table 4). For the classification
tasks, we couple the learning rate decrease/early stopping mechanism to the missclassification error
(1− accuracy) rather than the loss function.

Remarks

• The values of stalled-epochs-before-X are much higher for the supervised learning scenarios,
since the training sets are much smaller (e.g., when using 1,000 examples and a batch size
of 100, a single epoch only results in 10 gradient update steps).
• It is possible that the results for supervised training with fine tuning improve if the encoder

weights are regularized as well (the weights are prone to overfitting, since we use a low
number of training examples).

11

	Introduction
	Related work
	Sequence-to-sequence models
	Sets instead of sequences in input or output

	The set autoencoder
	Encoder: input set to embedding
	Decoder: embedding to output set
	Parametrization of W: A stable marriage

	Experiments
	Unsupervised learning of embedding
	Supervised learning: classification and regression tasks

	Conclusion

