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ABSTRACT

This paper proposes dynamic chunk reader (DCR), an end-to-end neural reading
comprehension (RC) model that is able to extract and rank a set of answer candi-
dates from a given document to answer questions. DCR is able to predict answers
of variable lengths, whereas previous neural RC models primarily focused on pre-
dicting single tokens or entities. DCR encodes a document and an input question
with recurrent neural networks, and then applies a word-by-word attention mech-
anism to acquire question-aware representations for the document, followed by
the generation of chunk representations and a ranking module to propose the top-
ranked chunk as the answer. Experimental results show that DCR could achieve
a 66.3% Exact match and 74.7% F1 score on the Stanford Question Answering
Dataset (Rajpurkar et al., 2016).

1 INTRODUCTION

Reading comprehension-based question answering (RCQA) is the task of answering a question with
a chunk of text taken from related document(s). A variety of neural models have been proposed re-
cently either for extracting a single entity or a single token as an answer from a given text (Hermann
et al., 2015; Kadlec et al., 2016; Trischler et al., 2016b; Dhingra et al., 2016; Chen et al., 2016;
Sordoni et al., 2016; Cui et al., 2016a); or for selecting the correct answer by ranking a small set
of human-provided candidates (Yin et al., 2016; Trischler et al., 2016a). In both cases, an answer
boundary is either easy to determine or already given.

Different from the above two assumptions for RCQA, in the real-world QA scenario, people may
ask questions about both entities (factoid) and non-entities such as explanations and reasons (non-
factoid) (see Table 1 for examples).

In this regard, RCQA has the potential to complement other QA approaches that leverage structured
data (e.g., knowledge bases) for both the above question types. This is because RCQA can exploit
the textual evidences to ensure increased answer coverage, which is particularly helpful for non-
factoid answers. However, it is also challenging for RCQA to identify answer in arbitrary position
in the passage with arbitrary length, especially for non-factoid answers which might be clauses or
sentences.

As a result, apart from a few exceptions (Rajpurkar et al., 2016; Wang & Jiang, 2016), this research
direction has not been fully explored yet.

Compared to the relatively easier RC task of predicting single tokens/entities1, predicting answers
of arbitrary lengths and positions significantly increase the search space complexity:

the number of possible candidates to consider is in the order of O(n2), where n is the number of
passage words. In contrast, for previous works in which answers are single tokens/entities or from
candidate lists, the complexity is in O(n) or the size of candidate lists l (usually l ≤5), respectively.
To address the above complexity, Rajpurkar et al. (Rajpurkar et al., 2016) used a two-step chunk-
and-rank approach that employs a rule-based algorithm to extract answer candidates from a passage,

∗Both authors contribute equally
1State-of-the-art RC models have a decent accuracy of ∼70% on the widely used CNN/DailyMail dataset

(Hermann et al., 2015).
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Table 1: Example of questions (with answers) which can be potentially answered with RC on a
Wikipedia passage. The first question is factoid, asking for an entity. The second and third are
non-factoid.

The United Kingdom (UK) intends to withdraw from the European Union (EU),
a process commonly known as Brexit, as a result of a June 2016 referendum in
which 51.9% voted to leave the EU. The separation process is complex, causing
political and economic changes for the UK and other countries. As of September
2016, neither the timetable nor the terms for withdrawal have been established: in
the meantime, the UK remains a full member of the European Union. The term
”Brexit” is a portmanteau of the words ”British” and ”exit”.
Q1. Which country withdrew from EU in 2016?
A1. United Kingdom
Q2. How did UK decide to leave the European Union?
A2. as a result of a June 2016 referendum in which 51.9% voted to leave the EU
Q3. What has not been finalized for Brexit as of September 2016?
A3. neither the timetable nor the terms for withdrawal

followed by a ranking approach with hand-crafted features to select the best answer. The rule-based
chunking approach suffered from low coverage (≈ 70% recall of answer chunks) that cannot be
improved during training; and candidate ranking performance depends greatly on the quality of the
hand-crafted features. More recently, Wang and Jiang (Wang & Jiang, 2016) proposed two end-to-
end neural network models, one of which chunks a candidate answer by predicting the answer’s two
boundary indices and the other classifies each passage word into answer/not-answer. Both models
improved significantly over the method proposed by Rajpurkar et al. (Rajpurkar et al., 2016).

Our proposed model, called dynamic chunk reader (DCR), not only significantly differs from both
the above systems in the way that answer candidates are generated and ranked, but also shares
merits with both works. First, our model uses deep networks to learn better representations for
candidate answer chunks, instead of using fixed feature representations as in (Rajpurkar et al., 2016).
Second, it represents answer candidates as chunks, as in (Rajpurkar et al., 2016), instead of word-
level representations (Wang & Jiang, 2016), to make the model aware of the subtle differences
among candidates (importantly, overlapping candidates).

The contributions of this paper are three-fold. (1) We propose a novel neural network model for
joint candidate answer chunking and ranking, where the candidate answer chunks are dynamically
constructed and ranked in an end-to-end manner. (2) we propose a new question-attention mecha-
nism to enhance passage word representation, which is subsequently used to construct chunk rep-
resentations. (3) We also propose several simple but effective features to strengthen the attention
mechanism, which fundamentally improves candidate ranking, with the by-product of higher exact
boundary match accuracy.

The experiments on the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016),
which contains a variety of human-generated factoid and non-factoid questions, have shown the
effectiveness of above three contributions.

Our paper is organized as follows. We formally define the RCQA problem first. Next, we describe
our baseline with a neural network component. We present the end-to-end dynamic chunk reader
model next. Finally, we analyze our experimental results and discuss the related work. In appendix,
we show formal equations and details of the model.

2 PROBLEM DEFINITION

Table 1 shows an example of our RC setting where the goal is to answer a question Qi, factoid (Q1)
or non-factoid (Q2 and Q3), based on a supporting passage Pi, by selecting a continuous sequence
of text Ai ⊆ Pi as answer. Qi, Pi, and Ai are all word sequences, where each word is drawn from
a vocabulary, V . The i-th instance in the training set is a triple in the form of (Pi, Qi, Ai), where
Pi = (pi1, . . . , pi|Pi|), Qi = (qi1, . . . , qi|Qi|), and Ai = (ai1, . . . , ai|Ai|) (pi·, qi·, ai· ∈ V ). Owing
to the disagreement among annotators, there could be more than one correct answer for the same
question; and the k-th answer to Qi is denoted by Ak

i = {aki1, . . . , aki|Ak
i |
}. An answer candidate for

the i-th training example is defined as cm,n
i , a sub-sequence in Pi, that spans from position m to n

(1 ≤ m ≤ n ≤ |Pi|). The ground truth answer Ai could be included in the set of all candidates
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Ci = {cm,n
i |∀m,n ∈ N+, subj(m,n, Pi) and 1 ≤ m ≤ n ≤ |Pi|}, where subj(m,n, Pi) is

the constraint put on the candidate chunk for Pi, such as, “cm,n
i can have at most 10 tokens”, or

“cm,n
i must have a pre-defined POS pattern”. To evaluate a system’s performance, its top answer to

a question is matched against the corresponding gold standard answer(s).

Remark: Categories of RC Tasks Other simpler variants of the aforementioned RC task were
explored in the past. For example, quiz-style datasets (e.g., MCTest (Richardson et al., 2013),
MovieQA (Tapaswi et al., 2015)) have multiple-choice questions with answer options. Cloze-style
datesets(Hermann et al., 2015; Hill et al., 2015; Onishi et al., 2016), usually automatically generated,
have factoid “question”s created by replacing the answer in a sentence from the text with blank. For
the answer selection task this paper focuses on, several datasets exist, e.g. TREC-QA for factoid
answer extraction from multiple given passages, bAbI (Weston et al., 2014) designed for inference
purpose, and the SQuAD dataset (Rajpurkar et al., 2016) used in this paper. To the best of our
knowledge, the SQuAD dataset is the only one for both factoid and non-factoid answer extraction
with a question distribution more close to real-world applications.

3 BASELINE: CHUNK-AND-RANK PIPELINE WITH NEURAL RC

In this section we modified a state-of-the-art RC system for cloze-style tasks for our answer extrac-
tion purpose, to see how much gap we have for the two type of tasks, and to inspire our end-to-end
system in the next section. In order to make the cloze-style RC system to make chunk-level deci-
sion, we use the RC model to generate features for chunks, which are further used in a feature-based
ranker like in (Rajpurkar et al., 2016). As a result, this baseline can be viewed as a deep learning
based counterpart of the system in (Rajpurkar et al., 2016). It has two main components: 1) a stand-
alone answer chunker, which is trained to produce overlapping candidate chunks, and 2) a neural
RC model, which is used to score each word in a given passage to be used thereafter for generating
chunk scores.

Answer Chunking To reduce the errors generated by the rule-based chunker in (Rajpurkar et al.,
2016), first, we capture the part-of-speech (POS) pattern of all answer sub-sequences in the training
dataset to form a POS pattern trie tree, and then apply the answer POS patterns to passage Pi to
acquire a collection of all subsequences (chunk candidates) Ci whose POS patterns can be matched
to the POS pattern trie. This is equivalent to putting an constraint subj(m,n, Pi) to candidate
answer chunk generation process that only choose the chunk with a POS pattern seen for answers
in the training data. Then the sub-sequences Ci are used as answer candidates for Pi. Note that
overlapping chunks could be generated for a passage, and we rely on the ranker to choose the best
candidate based on features from the cloze-style RC system. Experiments showed that for > 90%
of the questions on the development set, the ground truth answer is included in the candidate set
constructed in such manner.

Feature Extraction and Ranking For chunk ranking, we (1) use neural RCQA model to annotate
each pij in passage Pi to get score sij , then (2) for every chunk cm,n

i in passage i, collect scores
(sim, . . . , sin) for all the (pim, ..., pin) contained within cm,n

i , and (3) extract features on the se-
quence of scores (sim, . . . , sin) to characterize its scale and distribution information, which serves
as the feature representation of cm,n

i . In step (1) to acquire sij we train and apply a word-level
single-layer Gated Attention Reader 2 (Dhingra et al., 2016), which has state-of-the-art performance
on CNN/DailyMail cloze-style RC task. In step (3) for chunk cm,n

i , we designed 5 features, includ-
ing 4 statistics on (sim, . . . , sin): maximum, minimum, average and sum; as well as the count of
matched POS pattern within the chunk, which serves as an answer prior. We use these 5 features in
a state-of-the-art ranker (Ganjisaffar et al., 2011).

4 DYNAMIC CHUNK READER

The dynamic chunk reader (DCR) model is presented in Figure 1. Inspired by the baseline we built,
DCR is deemed to be superior to the baseline for 3 reasons. First, each chunk has a representation
constructed dynamically, instead of having a set of pre-defined feature values. Second, each passage

2We tried using more than one layers in Gated Attention Reader, but no improvement was observed.

3



Under review as a conference paper at ICLR 2017

Figure 1: The main components in dynamic chunk reader model (from bottom to top) are bi-GRU
encoders for passage and question, a word-by-word attention bi-GRU for passage, dynamic chunk
representations that are transformed from pooled dynamic chunks of hidden states, the question
attention on every chunk representation and final answer chunk prediction.

word’s representation is enhanced by word-by-word attention that evaluates the relevance of the
passage word to the question. Third, these components are all within a single, end-to-end model that
can be trained in a joint manner.

DCR works in four steps. First, the encoder layer encodes passage and question separately, by using
bidirectional recurrent neural networks (RNN).

Second, the attention layer calculates the relevance of each passage word to the question.

Third, the convolution layer generates unigram, bigram and trigram representation for each word.
bigram and trigram of a word ends with the same word, and proper padding is applied on the first
word to make sure the output is the same length as input to CNN layer.

Fourth, the chunk representation layer dynamically extracts the candidate chunks from the given
passage, and create chunk representation that encodes the contextual information of each chunk.

Fifth, the ranker layer scores the relevance between the representations of a chunk and the given
question, and ranks all candidate chunks using a softmax layer.

We describe each step below.

Encoder Layer We use bi-directional RNN encoder to encode Pi and Qi of example i, and get
hidden state for each word position pij and qik.3 As RNN input, a word is represented by a row
vector x ∈ Rn. x can be the concatenation of word embedding and word features (see Fig. 1). The
word vector for the t-th word is xt. A word sequence is processed using an RNN encoder with gated
recurrent units (GRU) (Cho et al., 2014), which was proved to be effective in RC and neural machine
translation tasks (Bahdanau et al., 2015; Kadlec et al., 2016; Dhingra et al., 2016). For each position
t, GRU computes ht with input xt and previous state ht−1, as:

3We can have separated parameters for question and passage encoders but a single shared encoder for both
works better in the experiments.
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rt = σ(Wrxt + Urht−1) (1)
ut = σ(Wuxt + Uuht−1) (2)
h̄t = tanh(Wxt + U(rt � ht−1)) (3)
ht = (1− ut) · ht−1 + ut · h̄t (4)

where ht, rt, and ut ∈ Rd are d-dimensional hidden state, reset gate, and update gate, respectively;
W{r,u}, W ∈ Rn×d and U{r,u}, U ∈ Rd×d are the parameters of the GRU; σ is the sigmoid
function, and � denotes element-wise production. For a word at t, we use the hidden state −→h t from
the forward RNN as a representation of the preceding context, and the←−h t from a backward RNN
that encodes text reversely, to incorporate the context after t. Next, ht = [

−→
ht ;
←−
ht ], the bi-directional

contextual encoding of xt, is formed. [·; ·] is the concatenation operator. To distinguish hidden states
from different sources, we denote the hj of j-th word in P and the hk of k-th word in Q as hpj and
hqk respectively.

Attention Layer Attention mechanism in previous RC tasks (Kadlec et al., 2016; Hermann et al.,
2015; Sordoni et al., 2016; Dhingra et al., 2016; Cui et al., 2016a;b) enables question-aware passage
representations. We propose a novel attention mechanism inspired by word-by-word style attention
methods (Rocktäschel et al., 2015; Wang & Jiang, 2015; Santos et al., 2016). For each pj , a question-
attended representation vj is computed as follows (example index i is omitted for simplicity):

αjk = hpj · h
q
k, (5)

βj =

|Q|∑
k=1

αjkh
q
k (6)

vj = [hpj ;βj ] (7)

where hpj and hqk are hidden states from the bi-directional RNN encoders (see Figure 1). An inner
product, αjk, is calculated between hpj and every question word hqk. It indicates how well the
passage word pj matches with every question word qk. βj is a weighted pooling of |Q| question
hidden states, which serves as a pj-aware question representation. The concatenation of hpj and βj
leads to a passage-question joint representation, vj ∈ R4d.4 Next, we apply a second bi-GRU layer
taking the vjs as inputs, and obtain forward and backward representations −→γj and←−γj ∈ Rd, and in
turn their concatenation, γj = [−→γj ;←−γj ].

Convolution Layer Every word is encoded with complete passage context through attention layer
RNN. We would like to model more complex representation of the words, by introducing unigram,
bigram and trigram representations. There are two benefits for this enhanced representation: 1)
each word could be enhanced with local context information to help identify the boundary of the
answer chunk. Using previous words has been a common feature used in POS tagging and Named
entity recognition; and 2) The information brought in by the ngram into the word representation
could enhance the semantic match between the answer chunk internal and the question. Imagine
scenario of a three word candidate, where the last word representation includes the two previous
words through the convolution layer. Matching to the last word could also lead to the match to
the semantics of the internal of the chunk. Specifically, we create for every word position j three
representations, by using ngrams ending with the hidden state j:

γ̃j1 = γj ·Wc1 (8)
γ̃j2 = [γj−1; γj ] ·Wc2 (9)
γ̃j3 = [γj−2; γj−1; γj ] ·Wc3 (10)

4We tried another word-by-word attention methods as in (Santos et al., 2016), which has similar passage
representation input to question side. However, this does not lead to improvement due to the confusion caused
by long passages in RC. Consequently, we used the proposed simplified version of word-by-word attention on
passage side only.
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The details shown in equations above. We used three different convolution kernels for different
n-grams.

Chunk Representation Layer A candidate answer chunk representation is dynamically created
given convolution layer output. We first decide the text boundary for the candidate chunk, and then
form a chunk representation using all or part of those γj outputs inside the chunk. To decide a
candidate chunk (boundary): we tried two ways: (1) adopt the POS trie-based approach used in
our baseline, and (2) enumerate all possible chunks up to a maximum number of tokens. For (2),
we create up to N (max chunk length) chunks starting from any position j in Pj . Approach (1) can
generate candidates with arbitrary lengths, but fails to recall candidates whose POS pattern is unseen
in training set; whereas approach (2) considers all possible candidates within a window and is more
flexible, but over-generates invalid candidates.

For a candidate answer chunk cm,n spanning from position m to n inclusively, we construct chunk
representation γlm,n ∈ R2d using every γ̃jl within range [m,n], with a function g(·), and l ∈
{1, 2, 3}. Formally,

γlm,n = g(γ̃ml, . . . , γ̃nl)

Each γ̃jl is a convolution output over concatenated forward and backward RNN hidden states from
attention layer. So the first half in γ̃jl encodes information in forward RNN hidden states and the
second half encodes information in backward RNN hidden states. We experimented with several
pooling functions (e.g., max, average) for g(·), and found out that, instead of pooling, the best g(·)
function is to concatenate the first half of convolution output of the chunk’s first word and the second
half of convolution output of the chunk’s last word. Formally,

γlm,n = g(γ̃ml, . . . , γ̃nl) = [
−→
γ̃ml;
←−
γ̃nl] (11)

where −→γ̃ml is half of the hidden state for l-gram word representation corresponding to forward at-
tention RNN output. We hypothesize that the hidden states at that two ends can better represent the
chunk’s contexts, which is critical for this task, than the states within the chunk. This observation
also agrees with (Kobayashi et al., 2016).

Ranker Layer A score slm,n for each l-gram chunk representation γlm,n denoting the probability
of that chunk to be the true answer is calculated by dot product with question representation. The
question representation is the concatenation of the last hidden state in forward RNN and the first
hidden state in backward RNN. Formally for the chunk cm,n

i we have

sl(cm,n
i |Pi, Qi) = γlm,n · [

−−→
hQi

|Qi|;
←−−
hQi

1 ] (12)

where sl denotes the score generated from l-gram representation.
−−→
hQi

k or
←−−
hQi

k is the k-th hidden state
output from question Qi’s forward and backward RNN encoder, respectively.

After that, the final score for cm,n
i is evaluated as the linear combination of three scores, followed

by a softmax:

s(cm,n
i |Pi, Qi) = softmax(W · [s1; s2; s3]) (13)

where sl is the shorthand notation for sl(cm,n
i |Pi, Qi); W ∈ R3. In runtime, the chunk with the

highest probability is taken as the answer. In training, the following negative log likelihood is
minimized:

L = −
N∑
i=1

logP(Ai|Pi, Qi) (14)

Note that the i-th training instance is only used when Ai is included in the corresponding candidate
chunk set Ci, i.e. ∃m,nAi = cm,n

i . The softmax in the final layer serves as the list-wise ranking
module similar in spirit to (Cao et al., 2007).

5 EXPERIMENTS

Dataset We used the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016)
for the experiment. SQuAD came into our sight because it is a mix of factoid and non-factoid
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Table 2: Results on the SQuAD dataset.

Dev Test
Models EM F1 EM F1
Rajpurkar 2016 39.8% 51.0% 40.4% 51.0%
Wang 2016 59.1% 70.0% 59.5% 70.3%
DCR w/o Conv. 62.5% 71.2% 62.5% 71.0%
DCR 63.4% 72.3% - -
DCR Ensemble 66.3% 74.7% - -

questions, a real-world data (crowd-sourced), and of large scale (over 100K question-answer pairs
collected from 536 Wikipedia articles). Answers range from single words to long, variable-length
phrase/clauses. It is a relaxation of assumptions by the cloze-style and quiz-style RC datasets in the
Problem Definition section.

Features The input vector representation of each word w to encoder RNNs has six parts including a
pre-trained 300-dimensional GloVe embedding (Pennington et al., 2014) and five features (see Fig-
ure 1): (1) a one-hot encoding (46 dimensions) for the part-of-speech (POS) tag of w; (2) a one-hot
encoding (14 dimensions) for named entity (NE) tag of w; (3) a binary value indicating whether w’s
surface form is the same to any word in the quesiton; (4) if the lemma form of w is the same to any
word in the question; and (5) if w is caplitalized. Feature (3) and (4) are designed to help the model
align the passage text with question. Note that some types of questions (e.g., “who”, “when” ques-
tions) have answers that have a specific POS/NE tag pattern. For instance, “who” questions mostly
have proper nouns/persons as answers and “when” questions may frequently have numbers/dates
(e.g., a year) as answers. Thus, we believe that the model could exploit the co-relation between
question types and answer POS/NE patterns easier with POS and NE tag features. Implementa-
tion Details We pre-processed the SQuAD dataset using Stanford CoreNLP tool5 (Manning et al.,
2014) with its default setting to tokenize the text and obtain the POS and NE annotations. To train
our model, we used stochastic gradient descent with the ADAM optimizer (Kingma & Ba, 2014),
with an initial learning rate of 0.001. All GRU weights were initialized from a uniform distribu-
tion between (-0.01, 0.01). The hidden state size, d, was set to 300 for all GRUs. The question
bi-GRU shared parameters with the passage bi-GRU, while the attention-based passage bi-GRU had
its own parameters. We shuffled all training examples at the beginning of each epoch and adopted a
curriculum learning approach (Bengio et al., 2009), by sorting training instances by length in every
10 batches, to enable the model start learning from relatively easier instances and to harder ones.
We also applied dropout of rate 0.2 to the embedding layer of input bi-GRU encoder, and gradient
clipping when the norm of gradients exceeded 10. We trained in mini-batch style (mini-batch size
is 180) and applied zero-padding to the passage and question inputs in each batch. We also set the
maximum passage length to be 300 tokens, and pruned all the tokens after the 300-th token in the
training set to save memory and speed up the training process. This step reduced the training set
size by about 1.6%. During test, we test on the full length of passage, so that we don’t prune out the
potential candidates. We trained the model for at most 30 epochs, and in case the accuracy did not
improve for 10 epochs, we stopped training.

For the feature ranking-based system, we used jforest ranker (Ganjisaffar et al., 2011) with
LambdaMART-RegressionTree algorithm and the ranking metric was NDCG@10. For the Gated
Attention Reader in baseline system, we replicated the method and use the same configurations as
in (Dhingra et al., 2016).

Results

Table 2 shows our main results on the SQuAD dataset. Compared to the scores reported in (Wang
& Jiang, 2016), our exact match (EM) and F1 on the development set and EM score on the test set
are better, and F1 on the test set is comparable. We also studied how each component in our model
contributes to the overall performance. Table 3 shows the details as well as the results of the baseline
ranker. As the first row of Table 3 shows, our baseline system improves 10% (EM) over Rajpurkar
et al. (Rajpurkar et al., 2016) (Table 2, row 1), the feature-based ranking system. However when
compared to our DCR model (Table 3, row 2), the baseline (row 1) is more than 12% (EM) behind

5 stanfordnlp.github.io/CoreNLP/
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Table 3: Detailed system experiments on the SQuAD development set.

Models EM F1
Chunk-and-Rank Pipeline Baseline 49.7% 64.9%
DCR w/o Convolution 62.5% 71.2%
DCR w/o Word-by-Word Attention 57.6% 68.7%
DCR w/o POS feature (1) 59.2% 68.8%
DCR w/o NE feature (2) 60.4% 70.2%
DCR w/o Question-word feature (3) 59.5% 69.0%
DCR w/o Question-lemma feature (4) 61.2% 69.9%
DCR w/o Capitalized feature (5) 61.5% 70.6%
DCR w/o Conv. w POS-trie 62.1% 70.8%

(a) (b)

Figure 2: (a) Variations of DCR performance on ground truth answer length (up to 10) in the devel-
opment set. The curve with diamond knots also shows the percentage of answers for each length in
the development set. (b) Performance comparisons for different question head word.
even though it is based on the state-of-the-art model for cloze-style RC tasks. This can be attributed
to the advanced model structure and end-to-end manner of DCR.

We also did ablation tests on our DCR model. First, replacing the word-by-word attention with
Attentive Reader style attention (Hermann et al., 2015) decreases the EM score by about 4.5%,
showing the strength of our proposed attention mechanism.

Second, we remove the features in input to see the contribution of each feature. The result shows
that POS feature (1) and question-word feature (3) are the two most important features.

Finally, combining the DCR model with the proposed POS-trie constraints yields a score similar to
the one obtained using the DCR model with all possible n-gram chunks. The result shows that (1)
our chunk representations are powerful enough to differentiate even a huge amount of chunks when
no constraints are applied; and (2) the proposed POS-trie reduces the search space at the cost of a
small drop in performance.

Analysis To better understand our system, we calculated the accuracy of the attention mechanism of
the gated attention reader used in our deep learning-based baseline. We found that it is 72% accurate
i.e., 72% of the times a word with the highest attention score is inside the correct answer span. This
means that, if we could accurately detect the boundary around the word with the highest attention
score to form the answer span, we could achieve an accuracy close to 72%. In addition, we checked
the answer recall of our candidate chunking approach. When we use a window size of 10, 92% of
the time, the ground truth answer will be included in the extracted Candidate chunk set. Thus the
upper bound of the exact match score of our baseline system is around 66% (92% (the answer recall)
× 72%). From the results, we see our DCR system’s exact match score is at 62%. This shows that
DCR is proficient at differentiating answer spans dynamically.

To further analyze the system’s performance while predicting answers of different lengths, we show
the exact match (EM) and F1 scores for answers with lengths up to 10 tokens in Figure 2(a). From
the graph, we can see that, with the increase of answer length, both EM and F1 drops, but in different
speed. The gap between F1 and exact match also widens as answer length increases. However, the
model still yields a decent accuracy when the answer is longer than a single word. Additionally,
Figure 2(b) shows that the system is better at “when” and “who” questions, but performs poorly
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Figure 3: Development set performance comparisons for different types of “what” questions (con-
sidering the types with more than 20 examples in the development set).

on “why” questions. The large gap between exact match and F1 on “why” questions means that
perfectly identifying the span is harder than locating the core of the answer span.

Since “what”, “which”, and “how” questions contain a broad range of question types, we split them
further based on the bigram a question starts with, and Figure 3 shows the breakdown for “what”
questions. We can see that “what” questions asking for explanations such as “what happens” and
“what happened” have lower EM and F1 scores. In contrast, “what” questions asking for year and
numbers have much higher scores and, for these questions, exact match scores are close to F1 scores,
which means chunking for these questions are easier for DCR.

6 RELATED WORK

Attentive Reader was the first neural model for factoid RCQA (Hermann et al., 2015). It uses Bidi-
rectional RNN (Cho et al., 2014; Chung et al.,2014) to encode document and query respectively,
and use query representation to match with every token from the document. Attention Sum Reader
(Kadlec et al., 2016) simplifies the model to just predicting positions of correct answer in the doc-
ument and the training speed and test accuracy are both greatly improved on the CNN/Daily Mail
dataset. (Chen et al., 2016) also simplified Attentive Reader and reported higher accuracy. Window-
based Memory Networks (MemN2N) is introduced along with the CBT dataset (Hill et al., 2015),
which does not use RNN encoders, but embeds contexts as memory and matches questions with
embedded contexts. Those models’ mechanism is to learn the match between answer context with
question/query representation. In contrast, memory enhanced neural networks like Neural Turing
Machines (Graves et al., 2014) and its variants (Zhang et al., 2015; Gulcehre et al., 2016; Zaremba
& Sutskever, 2015; Chandar et al., 2016; Grefenstette et al., 2015) were also potential candidates
for the task, and Gulcehre et al. (Gulcehre et al., 2016) reported results on the bAbI task, which is
worse than memory networks. Similarly, sequence-to-sequence models were also used (Yu et al.,
2015; Hermann et al., 2015), but they did not yield better results either.

Recently, several models have been proposed to enable more complex inference for RC task. For
instance, gated attention model (Dhingra et al., 2016) employs a multi-layer architecture, where
each layer encodes the same document, but the attention is updated from layer to layer. EpiReader
(Trischler et al., 2016b) adopted a joint training model for answer extractor and reasoner, where the
extractor proposes top candidates, and the reasoner weighs each candidate by examining entailment
relationship between question-answer representation and the document. An iterative alternating at-
tention mechanism and gating strategies were proposed in (Sordoni et al., 2016) to optimize the
attention through several hops. In contrast, Cui et al. (Cui et al., 2016a;b) introduced fine-grained
document attention from each question word and then aggregated those attentions from each ques-
tion token by summation with or without weights. This system achieved the state-of-the-art score on
the CNN dataset. Those different variations all result in roughly 3-5% improvement over attention
sum reader, but none of those could achieve higher than that. Other methods include using dynamic
entity representation with max-pooling (Kobayashi et al., 2016) that aims to change entity represen-
tation with context, and Weissenborn’s (Weissenborn, 2016) system, which tries to separate entity
from the context and then matches the question to context, scoring an accuracy around 70% on the
CNN dataset.
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However, all of those models assume that the answers are single tokens. This limits the type of
questions the models can answer. Wang and Jiang (Wang & Jiang, 2016) proposed a match-lstm and
achieved good results on SQuAD. However, this approach predicts a chunk boundary or whether a
word is part of a chunk or not. In contrast, our approach explicitly constructs the chunk representa-
tions and similar chunks are compared directly to determine correct answer boundaries.

7 CONCLUSION

In this paper we proposed a novel neural reading comprehension model for question answering.
Different from the previously proposed models for factoid RCQA, the proposed model, dynamic
chunk reader, is not restricted to predicting a single named entity as an answer or selecting an answer
from a small, pre-defined candidate list. Instead, it is capable of answering both factoid and non-
factoid questions as it learns to select answer chunks that are suitable for an input question. DCR
achieves this goal with a joint deep learning model enhanced with a novel attention mechanism
and five simple yet effective features. Error analysis shows that the DCR model achieves good
performance, but still needs to improve on predicting longer answers, which are usually non-factoid
in nature.
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