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ABSTRACT

An ensemble of neural networks is known to be more robust and accurate than an
individual network, however usually with linearly-increased cost in both training
and testing. In this work, we propose a two-stage method to learn Sparse Struc-
tured Ensembles (SSEs) for neural networks. In the first stage, we run SG-MCMC
with group sparse priors to draw an ensemble of samples from the posterior dis-
tribution of network parameters. In the second stage, we apply weight-pruning to
each sampled network and then perform retraining over the remained connections.
In this way of learning SSEs with SG-MCMC and pruning, we not only achieve
high prediction accuracy since SG-MCMC enhances exploration of the model-
parameter space, but also reduce memory and computation cost significantly in
both training and testing of NN ensembles. This is thoroughly evaluated in the
experiments of learning SSE ensembles of both FNNs and LSTMs. For example,
in LSTM based language modeling (LM), we obtain 21% relative reduction in
LM perplexity by learning a SSE of 4 large LSTM models, which has only 30%
of model parameters and 70% of computations in total, as compared to the base-
line large LSTM LM. To the best of our knowledge, this work represents the first
methodology and empirical study of integrating SG-MCMC, group sparse prior
and network pruning together for learning NN ensembles.

1 INTRODUCTION

Recently there are increasing interests in using ensembles of Deep Neural Networks (DNNs) (Ju
et al. (2017); Huang et al. (2017)), which are known to be more robust and accurate than individual
networks. An explanation stems from the fact that learning neural networks is an optimization prob-
lem with many local minima (Hansen & Salamon (1990)). Multiple models obtained from applying
stochastic optimization, e.g. the widely used Stochastic Gradient Descent (SGD) and its variants,
converge to different local minima and tend to make different errors. Due to this diversity, the col-
lective prediction produced by an ensemble is less likely to be in error than individual predictions.
The collective prediction is usually performed by averaging the predictions of the multiple neural
networks.

On the other hand, the improved prediction accuracy of such model averaging can be understood
from the principled perspective of Bayesian inference with Bayesian neural networks. Specifically,
for each test point x̃, we consider the predictive distribution P (ỹ|x̃,D) =

∫
P (ỹ|x̃, θ)P (θ|D)dθ,

by integrating the model distribution P (ỹ|x̃, θ) with the posterior distribution over the model pa-
rameters P (θ|D) given training data D. The predictive distribution is then approximated by Monte
Carlo integration P (ỹ|x̃,D) ≈ 1

M

∑M
m=1 P (ỹ|x̃, θ(m)) , where θ(m) ∼ P (θ|D),m = 1, · · · ,M ,

are posterior samples of model parameters. It is well known that such Bayesian model averaging
is more accurate in prediction and robust to over-fitting than point estimates of model parameters
(Balan et al. (2015); Li et al. (2016); Gan et al. (2016)).

Despite the obvious advantages as seen from both perspectives, a practical problem that hinders the
use of DNN ensembles in real-world tasks is that an ensemble requires too much computation in
both training and testing. Traditionally, multiple neural networks are trained, e.g. with different
random initialization of model parameters. Recent studies in (Loshchilov & Hutter (2016); Huang
et al. (2017)) propose to learn an ensemble which consists of multiple snapshot models along the op-
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Figure 1: Overview of our two-stage method for learning SSEs.

timization path within a single training process, by leveraging a special cyclic learning rate schedule.
This reduces the training cost, but the testing cost is still high.

In this paper we also aim at learning an ensemble within a single training process, but by leveraging
the recent progress in Bayesian posterior sampling, namely the Stochastic Gradient Markov Chain
Monte Carlo (SG-MCMC) algorithms. Moreover, we apply group sparse priors in training to enforce
group-level sparsity on the network’s connections. Subsequently we can further use model pruning
to compress the networks so that the testing cost is reduced with no loss of accuracy.

Figure 1 presents a high-level overview of our two-stage method to learn Sparse Structured Ensem-
bles (SSEs) for DNNs. Specifically, in the first stage, we run SG-MCMC with group sparse priors
to draw an ensemble of samples from the posterior distribution of network parameters. In the sec-
ond stage, we apply weight-pruning to each sampled network and then perform retraining over the
remained connections as fine-tuning. In this way of learning SSEs with SG-MCMC and pruning,
we reduce memory and computation cost significantly in both training and testing of NN ensem-
bles, while maintaining high prediction accuracy. This is empirically verified in our experiments of
learning SSE ensembles of both FNNs and LSTMs.

We evaluate the performance of the proposed method on two experiments with different types of
neural networks. The first is an image classification experiment, which uses Feed-forward Neural
Networks (FNNs) on the well-known MNIST dataset (Deng (2012)). Second, we experiment with
the more challenging task of Long Short-term Memory (LSTM, Hochreiter & Schmidhuber (1997))
based language modeling, which is conducted on the Penn Treebank dataset (Marcus et al. (1993)).
It is found that the proposed method works well across both tasks. For example, we obtain 12%
relative reduction (from 78.4 to 68.6) in LM perplexity by learning a SSE of 4 large LSTM models,
which has only 40% of model parameters and 90% of computations in total, as compared to the
large LSTM LM in Zaremba et al. (2014). Furthermore, when the embedding weights of input and
output are shared as in Inan et al. (2016), we obtain a perplexity of 62.1 (achieving 21% reduction
from 78.4) by 4 large LSTMs with only 30% of model parameters and 70% of computations in total.

2 RELATED WORK

This work draws inspiration from three recent research findings, namely running SG-MCMC for
efficient and scalable Bayesian posteriori sampling, applying group sparse priors to enforce network
sparsity, and network pruning. To the best of our knowledge, this work represents the first method-
ology and empirical study of integrating these three techniques and demonstrates its usefulness to
learning and using ensembles. In the following, more discussions are given on related studies.

SG-MCMC sampling: SG-MCMC represents a family of MCMC sampling algorithms developed
in recent years, e.g. Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh (2011), S-
tochastic Gradient Hamiltonian Monte Carlo (SGHMC) Chen et al. (2014), mainly for Bayesian
learning from large scale datasets. SG-MCMC has the following favorable properties for learn-
ing ensembles. (i) SG-MCMC works by adding a scaled gradient noise during training, and thus
enhances exploration of the model-parameter space. This is beneficial for finding diverse sample
models for ensembles. (ii) Scalable and simple: the basic SG-MCMC algorithm, e.g. SGLD, is just
a noisy Stochastic Gradient Descent (SGD), which means the same training cost as SGD on large
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datasets. The effectiveness of applying SG-MCMC to Bayesian learning of RNNs is shown in Gan
et al. (2016) but without considering model pruning to reduce the cost of model averaging.

Sparse structure learning: Group Lasso penalty (Yuan & Lin (2006)) has been widely used to
regularize likelihood function to learn sparse structures. It was applied with SGD in (Wen et al.
(2016); Alvarez & Salzmann (2016)) and in Wen et al. (2017) to learn structurally sparse DNNs
and LSTMs respectively. But all focus on point estimates and are not in the context of learning
ensembles. Group Lasso idea has been studied in Bayesian learning, which is known as applying
group sparse priors (Marlin et al. (2009); Babacan et al. (2014)); but these previous works use
variational method. Applying group sparse priors with SG-MCMC has not been explored.

Model compression: Model pruning and retraining (Han et al. (2015a), Hu et al. (2016)) has been
studied to compress CNNs. Recently, Han et al. (2017) and Narang et al. (2017) apply model
pruning to LSTM models for automatic speech recognition task. We use similar model pruning and
retraining method in the experiments. We find that model averaging can enable the ensemble with
heavily-pruned networks to be more robust in prediction.

Learning ensembles: Some efforts have been made to reduce the training and testing cost for en-
sembles. For reducing the training time cost of ensembles, a special cyclic learning rate schedule
is developed in (Loshchilov & Hutter (2016); Huang et al. (2017)), which restarts the learning rate
periodically to attempt to visit multiple local minima along its optimization path and saves snapshot
models. In contrast to relying on such empirical setting of the learning rate to explore model space,
theoretical consistency properties of SG-MCMC methods in posterior sampling have been estab-
lished (Teh et al. (2016)). For reducing the testing time cost of ensembles, Hinton et al. (2015) and
Balan et al. (2015) distill the knowledge of an ensemble into a single model, but still require large
training cost.

3 LEARNING ENSEMBLES WITH SG-MCMC AND NETWORK PRUNING

We consider the classification problem under Bayesian inference framework. Given training data
D , {(xi, yi)}Ni=1 with input feature xi ∈ RD and class label yi ∈ Y , where Y is the set of
classes. We view a neural network as a conditional probabilistic model P (yi|xi, θ). Denote the
network parameters by θ, with P (θ) a prior distribution. We compute the posterior distribution
over the model parameters, P (θ|D) ∝ P (θ)

∏N
i=1 P (yi|xi, θ). For testing, given a test input x̃,

the Bayesian predictive distribution for its label ỹ is given by P (ỹ|x̃,D) = EP (θ|D)[P (ỹ|x̃, θ)] ,
which can be viewed as model averaging across parameters with distribution P (θ|D). However, the
integration over the posterior is analytically intractable for deep neural networks (DNNs). Thus it is
approximated by Monte Carlo integration as in the following:

P (ỹ|x̃,D) ≈ 1

M

M∑
m=1

P (ỹ|x̃, θ(m)), θ(m) ∼ P (θ|D) (1)

where {θ(m)}Mm=1 is a set of posterior samples drawn from P (θ|D), e.g. by the popular Markov
Chain Monte Carlo (MCMC) methods. Traditional MCMC methods either have low-efficiency
for high dimensional sampling or scale poorly with dataset. Fortunately, the recently developed
SG-MCMC methods work on stochastic gradients over small mini-batches, which alleviate these
problems and can be applied for posterior sampling for DNNs.

3.1 SAMPLING VIA STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Specifically, we choose the simplest and most widely used SG-MCMC algorithm - Stochastic Gra-
dient Langevin Dynamics (SGLD) (Welling & Teh (2011)) as the sampling method in our first stage
of learning ensembles. Extension by using other high-order SG-MCMC algorithms is straightfor-
ward. SGLD calculates a stochastic gradient of negative log posterior based on St, small mini-batch
of training data:

g̃t , ∇θŨt(θ) = − N

|St|
∑
i∈St

∇θ logP (yi|xi, θ)−∇θ logP (θ) (2)
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where U(θ) , − logP (D|θ) − logP (θ) is known as the potential energy in SG-MCMC sampling
and Ũt(θ) is its approxmation over the t-th mini-batch. The updating rule of SGLD is as simple as
SGD with an additional Gaussian noise ξ ∼ N (0, ϵtI) as following:

θt+1 = θt −
ϵt
2
g̃t + ξ (3)

where ϵt is the learning rate or step size. By using gradient information and stochastic mini-batch
updating, SGLD overcomes the problems in traditional MCMC methods and thus leads to efficient
posterior sampling.

In the following, we provide three discussions about applying SGLD to learning ensembles. First,
note that SGLD is proposed with the use of annealing learning rates since SGLD does not have
a Metropolis-Hastings correction step; discretization error goes to zero only when learning rates
annealed to zero. In spite of that, some studies suggest to use constant learning rates in practice (Sato
& Nakagawa (2014), Chaudhari et al. (2016)), which is found to give better mixing rate and make
more extensive exploration of parameter space. This is also compatible with our aim of learning
a good ensemble, since we want to collect diverse models. We test both annealing and constant
learning rates in our experiments and find that using constant learning rates performs better, as
expected. Hence, we only report the results of using constants learning rate in this work.

Second, we need to consider how to sample θ from the parameter updating sequence {θt}Tt=1,
where T is the total number of iterations. Firstly, a burn-in process is desired. Secondly, a
thinned collection of samples {θ kT

M
}Mk=1 performs better than other strategies like backward col-

lection {θt}Tt=T−M+1, since there are lower correlations between samples. Our preliminary results
as well as the results from Gan et al. (2016) both hold for that, so we take thinned collection as the
default setting in this work.

Finally, we need to consider how long to run the sampling algorithm and how many models are
used for model averaging. The fixed-scale additional noise in SGLD generally reduces overfitting,
thus longer running can be allowed in order to better explore the parameter space. As shown by
the empirical result in Fig. 3(b), the SGLD learning method indeed can improve performance by
averaging more models than other traditional methods of learning ensembles.

3.2 PRUNING AND RETRAINING

After all the models are collected, we come to the second stage of learning DNN ensembles - net-
work pruning and retraining. We use a simple pruning rule, i.e. finding the network connections
whose weights are below certain threshold and removing them away, as did in (Han et al. (2015b)).
The threshold is determined by the configured overall sparsity or pruning ratio, e.g. 90%, after
sorting the weights by their absolute values.

Once the network is pruned, the posterior changes from P (θ|D) to the reduced posterior
Q(m)(ϕ(m)|D), where m is the index of the pruned network. Retraining is then performed for
each pruned network:

ϕ̂(m) = argmax
ϕ(m)

logQ(m)(ϕ(m)|D), m = 1, 2, . . . ,M (4)

We thus obtain an ensemble of networks {ϕ̂(m)}Mm=1, which are in fact maximum a posterior (MAP)
estimates under the reduced posteriors.

The effect of pruning is to reduce the model size as well as the computation cost. Interestingly,
it is found in our experiments that retraining of the sampled models, whether being pruned or not,
significantly improve the performance of the ensemble. There are two justifications for the retraining
phase. First, theoretically (namely with infinite samples), model averaging according to Equ. (1)
does not need retraining. However, the actual number of samples used in practice is rather small for
computational efficiency. So retraining essentially compensates for the limited size of samples for
model averaging. Second, if we denote by ϕ̄(m) the network obtained just after pruning but before
retraining, it can be seen that the MAP estimate ϕ̂(m) is more likely than ϕ̄(m) under the reduced
posterior. Note that the probability of ϕ̄(m) under the reduced posterior is close to the probability
of ϕ̄(m) under the original posterior, since we only prune small network weights. So retraining
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increases the posteriori probabilities of the networks in the ensemble and hopefully improves the
prediction performance of the networks in the ensemble.

4 SPARSE STRUCTURED ENSEMBLES

The main computation for training or testing a DNN is the large amount of matrix calculations,
which are commonly accelerated by using a GPU hardware. However, a randomly pruned network
is not friendly for GPUs to handle, since the randomly positioned zeros in the weight matrices
still require floating-point operations (FLOPs) without special treatment. In our Sparse Structured
Ensembles (SSEs), we take this into consideration and aim at learning structures for reducing FLOPs
in the sense of matrix calculations.

4.1 GROUP SPARSE PRIOR

In optimization, a regularization term is often used as a penalty to the objective function to do trade-
off between minimizing a loss function and choosing a desirable model with certain constraints.
The group Lasso regularization Yuan & Lin (2006) proposes to do feature selection in group level,
which means keeping or removing all the parameters in a group simultaneously to achieve structured
sparsity corresponding to grouping strategy. It can be formulated as:

R(θ) = λ
G∑

g=1

√
dim(θg)

∥∥θg∥∥2 (5)

where θg is a group of weights in θ, G is the number of groups, dim(θg) denotes the number
of weights in θg and ∥ · ∥2 denotes the l2 norm. The term

√
dim(θg) ensures that each group

gets regularized uniformly corresponding to its dimension. The coefficient λ, called GSP strength
coefficient, is a hyperparameter to do trade off between gaining group sparsity and minimizing the
loss function. While in training, the gradient of each component can be calculated by

∂
√

dim(θg)
∥∥θg∥∥2

∂θg
=

√
dim(θg)

θg
∥θg∥2

(6)

A small constant could be added to ∥θg∥2 in order to avoid the denominator being zero. In our
experiments, we find ∥θg∥2 fluctuate near zero and thus do not add the constant.

In Bayesian inference framework, the regularization term corresponds to the negative log prior term
− logP (θ) in the potential energy U(θ), thus the group Lasso regularization can be converted into
a specific prior as follows:

P (θ) =
1

Z
exp(−R(θ)) =

1

Z
exp(−λ

G∑
g=1

√
dim(θg)

∥∥θg∥∥2) (7)

where Z is a normalization constant. The gradient term −∇θ logP (θ) in Equ. (2) for SGLD
parameter updating can be directly calculated via Equ. (7), without the use of complex hierarchical
decomposition form for the prior as the variational methods do (Marlin et al. (2009); Babacan et al.
(2014)). We call it a Group Sparse Prior (GSP) as named in Marlin et al. (2009).

4.2 GROUPING STRATEGIES

To learn sparse structured networks for our SSE, it is necessary to specify grouping strategy accord-
ing to the characteristics of different types of neural networks. In this paper, we show how to learn
SSE for both FNN and LSTM. Their grouping strategies are described separately in the following.

Feed-forward Neural Network: For FNN, we group all the outgoing connections from a single
neuron (input or hidden) together following Scardapane et al. (2017). Since FNN’s simple hierar-
chical structure, if a neuron’s outputs are all zeros, it makes no contribution to the next layer and can
be removed. This leads to node pruning instead of random connection pruning, which reduces the
rows and columns of weight matrices between layers, thus leading to lower matrix-level FLOPs as
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Figure 2: Illustration of different grouping strategies for LSTMs. In figure (a) and (b), the black
lines in each weight matrix represent non-zero elements and the yellow areas are rows and columns
with all zeros, as a result of group selection enforced by GSP. The horizontal arrows indicate the
input and hidden units used in calculations, and the vertical arrows point to those dimensions of
a gate to be updated. Thus it is enough to do calculations by the reduced matrix formed by these
black rows and columns in the figure instead of the whole matrix. In figure (c), the dash white lines
separate each weight matrix of tied W matrix. Yellow lines indicate the weights associated with a
certain hidden unit in LSTM layer l, which are removed simultaneously to reduce the hidden size of
h(l).

expected. We can also group the incoming connections of a neuron, but the neurons with no incom-
ing weights are still required to shift their biases to the next layer, which is a bit more complex than
the above strategy we choose.

Long Short-term Memory: The case is not that simple for LSTM, since the input and hidden units
are used four times when calculating the input gate, forget gate, cell updates and output gate as
follows:

ft = σ([xt,ht−1]Wf + bf ) it = σ([xt,ht−1]Wi + bi)

ut = tanh([xt,ht−1]Wu + bc) ot = σ([xt,ht−1]Wo + bo)

ct = ft ⊙ ct−1 + it ⊙ ut ht = ot ⊙ tanh(ct)

(8)

where all the vectors are row vectors, σ(·) is the sigmoid function, [·, ·] denotes concatenating hor-
izontally and ⊙ is element-wise multiplication. Removing an input or hidden unit is difficult for
LSTM since every unit affects all the updating steps. However, note that the weight matrix between
units and each gate is fully-connected, it is still beneficial to reduce the matrix size by removing a
row or column. Specifically, we keep two index lists during pruning to record the remained rows
and columns for each weight matrix. When doing computations, we just use partial units to update
partial dimensions of the gates according to the index lists. This is flexible for different units to
provide updating for different gate dimensions.

Thus, our first grouping strategy is to group each row and each column for the four weight matrices
separately in Equ. (8). Note that the group sparse prior generally selects or removes a certain group,
it is allowed to make groups overlapped for reducing matrix size. We consider this untied strategy
since the most basic implementation of LSTM cell conducts calculation as in Equ. (8). Alternatively,
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the LSTM updating formulas can be written as in Gal & Ghahramani (2016): it
ut

ft

ot

 =

 σ
tanh
σ
σ

((
xt

ht−1

)
·W

)
(9)

where W is a matrix of dimension 2n by 4n (n being the unit number for a hidden state), which
is the horizontally concatenation of the four weight matrices in Equ. (8). Since acceleration has
been reported by concatenating matrix (Appleyard et al. (2016)), we also try to group each row and
column of W as a second grouping strategy. This strategy is simpler since only two index lists are
kept instead of eight, and we call it tied W strategy.

In a concurrent work of learning structurally sparse LSTMs Wen et al. (2017) using SGD, a grouping
strategy, called Intrinsic Sparse Structures (ISS), is proposed to reduce the hidden size by grouping
all the weights associated with a certain hidden unit together and removing them simultaneously.
LSTMs learned by ISS can be reconstructed easily with the pruned smaller hidden size, without the
need to keep original model size and index lists. However, the embedding size is not reduced in
(Wen et al. (2017)), which leads to high cost in computing the input for the 1st LSTM layer. To
overcome this, there are two schemes. (a) Each column of the input embedding matrix is grouped to
further reduce the input size of the 1st LSTM layer; (b) The weights from the embedding layer and
the softmax layer are shared, as proposed in Inan et al. (2016), thus the embedding size is the same
as hidden size of the last LSTM layer. An illustration of these strategies are shown in Fig. 2(c).

5 EXPERIMENTS

In our experiments, we implemented the proposed method in TensorFlow, and present the results
in two parts: (i) learn SSE of FNNs for image classification task on MNIST; (ii) learn SSE of
LSTM models, which is more challenging, for word-level language modeling task on Penn TreeBank
corpus.

The sparsity of a network in this paper means the percentage of the pruned weights from the total
parameters, FLOPs for a matrix W is calculated as the size of the smallest sub-matrix formed by
such rows and columns in W that contain all non-zero elements in W , and FLOPs for a network is
the sum of FLOPs for all its weight matrices. The parameters and FLOPs presented in the following
tables are the total size considering all the models in an ensemble, unless otherwise indicated. PR,
GSP and SSE denotes Pruning and Retraining, Group Sparse Prior and Sparse Structured Ensemble
respectively.

5.1 CLASSIFICATION ON MNIST

First we use our method on FNNs for classification on the well-known MNIST dataset. We choose a
commonly used network structure of 2 hidden layers with 300 and 100 hidden neurons respectively
and ReLU activations, denoted as FNN-784-300-100-10. We run our experiments without any ad-
ditional tricks such as dropout, batch normalization etc. Such basic setting allows easy reproduction
of the results. All the results reported in table 1 are averaged results from 10 independent runs. The
detailed model structure information for one arbitrary model taken is shown in table 2.

The baseline FNN-784-300-100-10 is trained by Stochastic Gradient Descent (SGD). Specifically it
is trained for 100 epochs with an annealing learning rate of 0.5 which decays by a factor of 2 every
10 epoch. The baseline obtains 1.66% test error rate, and an ensemble of 18 independently trained
FNN-784-300-100-10 networks decrease the error to 1.49%.

In the first group of experiments with SGLD learning, we use Laplace priors, similar to adding
L1 regularization. We train also for 100 epochs but with a constant learning rate of 0.5. Network
samples are collected every 5 epoch after a 10 epoch burn in. The ensemble learned by SGLD
gives 1.53% test error, which is slightly worse than the independently trained ensemble, since each
sample drawn by constant-step-size SGLD sampling is not as accurate as the sample trained through
SGD optimization. Adding L1 could enforce sparse structure learning and allows us to prune the
network weights. After pruning, we retrain each network in the ensemble for 20 epochs with a small
learning rate of 0.01 which decay by factor 1.15 every epoch. The resulting ensembles are denoted
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Table 1: MNIST results of various models based on FNN-784-300-100-10. The number of parame-
ters and FLOPs are shown as multiples of the baseline FNN trained by SGD, the specifics of which
are shown in parentheses. PR: Pruning and Retraining, GSP: Group Sparse Prior.

Method Model Parameters FLOPs Test Error (%)
SGD (baseline) 1 model 1 (266K) 1 (532K) 1.66
SGD 18 models 18× 18× 1.49

SGLD 18 models 18× 18× 1.53
SGLD+L1+PR 18 models, 90% sparsity 1.8× 3.4× 1.26
SGLD+L1+PR 18 models, 96% sparsity 0.7× 3.0× 1.39

SGLD+GSP+PR 18 models, 90% sparsity 1.8× 2.5× 1.26
SGLD+GSP+PR 18 models, 96% sparsity 0.7× 2.2× 1.29

Table 2: Detailed structure information of various FNN ensembles based on FNN-784-300-100-10
for MNIST.

Model Sparsity Parameters Network structure FLOPs
SGLD 18 models - 266K 784-300-100-10 532K

SGLD+GSP+PR 18 models 90% 27K 380-128-24-10 75K (14%)
SGLD+GSP+PR 18 models 96% 11K 364-82-22-10 64K (12%)

by SGLD+L1+PR in Table 1. For these ensembles, the highest sparsity without losing accuracy is
90%. When 96% of the parameters are pruned, the performance is worsened obviously.

In the second group of experiments with SGLD learning, our new method, SGLD with group sparse
prior (GSP) is applied. The resulting ensembles are denoted by SGLD+GSP+PR in Table 1. When
compared to SGLD+L1+PR, the new method achieves larger sparsity (up to 96%) and FLOP reduc-
tion without losing accuracy, presumably because applying GSP forces the pruned connections to be
aligned, thus removes more neurons. When compared to the baseline FNN, the SSE of 18 networks
learned by the new method decreases test error from 1.66% to 1.29% with 70% of parameters and
2.2× computational cost.

5.2 LANGUAGE MODELING

Next, we experiment with the more challenging task of learning ensembles of LSTMs, which repre-
sent a widely used type of recurrent neural networks (RNNs) for sequence learning tasks. Specifical-
ly, we study the task of LSTM-based language modeling (LM), which basically is to predict the next
word given previous words. The prediction performance is measured by perplexity (PPL), which
is defined as the exponential of negative log-probability per token. A popular LM benchmarking
dataset - Penn TreeBank (PTB) corpus (Marcus et al. (1993)) is used, with a vocabulary of 10K
words and 929K/73K/10K words in training, development and test sets respectively.

We use Zaremba et al. (2014) as the baseline and follow their LSTM architectures to make compara-
ble results. We test different methods on the medium (2 layers with 650 hidden units each) and large
(2 layers with 1500 hidden units each) LSTM models as used in Zaremba et al. (2014). The dimen-
sion of word embedding as input is the same as the size of hidden units. All the models are trained
with the dropout technique introduced in Zaremba et al. (2014). The experiments without GSP just
follow their dropout keep ratio which are 0.5 and 0.35 for medium and large model respectively. It
is found in our experiments that when applying GSP, a higher dropout keep ratio is desired, which
are 0.7 for medium and 0.5 for large model. This is presumably because that both GSP and dropout
are some form of regularization and regularizing too much will lead to underfitting. For both untied
and tied cases of LSTM weight matrices, the GSP strength coefficients are λ = 4.2 × 10−5 and
λ = 2.3× 10−5 respectively for medium and large model; for the ISS case, the GSP strength coeffi-
cients are λ = 3.0× 10−5 and λ = 1.5× 10−5 respectively. For both medium and large models, the
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Table 3: Model ablations for the new method SGLD+GSP+PR based on the medium LSTM LMs
over PTB. The column of single model denotes the lowest PPL obtained by a single model in the
ensemble. The number of parameters and FLOPs are shown as multiples of the baseline medium
LSTM trained by SGD, the specifics of which are shown in parentheses. The grouping strategy is
the untied weight strategy by default, unless specified in parentheses. Tied W denotes tied weight
strategy and ISS denotes Intrinsic Sparse Structures as in Wen et al. (2017)

Method Model Parameters FLOPs
Single model Ensemble

Dev. Test Dev. Test
SGD (Zaremba, 2014) 1 1 (19.8M) 1 (26.5M) 86.2 82.1 - -
SGD (Zaremba, 2014) 10 10× 10× - - 75.2 72.0

SGLD 10 10× 10× 87.0 83.7 80.5 78.9
SGLD+PR 10 1× 10× 103.8 100.2 91.1 89.4
SGLD+GSP 10 10× 10× 98.8 97.0 88.0 86.9
SGLD+GSP+R 10 10× 10× 80.0 76.3 70.8 69.1
SGLD+GSP+P 10 1× 4× 103.8 101.9 96.1 94.7
SGLD+GSP+PR 10 1× 4× 79.8 76.6 71.5 69.5
SGLD+GSP+PR (tied W) 10 1× 4× 79.7 76.6 70.9 69.2
SGLD+GSP+PR (ISS) 10 1× 3× 80.9 77.4 71.8 69.9
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Figure 3: (a) The PPL curves along the learning of LSTM ensemble by SGLD+GSP+PR over the
PTB development set. It is worthwhile to note that as the training proceeds, more models are aver-
aged, which consistently improves the PPLs. (b) The PPLs over development set v.s. the number of
models in the LSTM ensembles by SGLD+GSP+PR.

learning rates are fixed to 1.5 and 1.0 respectively for SGLD training, and decay by a factor of 1.25
for retraining by SGD. All the hyperparameter settings above are found empirically via grid search
on the validation set.

The results are organized into four parts. (1) For ablation analysis, we study the contribution of
each component in the new method SGLD+GSP+PR through a series of comparison experiments,
as shown in Table 3. (2) We show the effects of the number of model samples and sampling s-
trategies for the method SGLD+GSP+PR, as given in Fig. 3. (3) We display in Fig. 4 the sparse
structures, obtained from applying the method SGLD+GSP+PR. (4) Main results are summarized
and compared in Table 5.

Table 3 lists the model ablation results of SGLD training with different combinations of pruning,
retraining and GSP (untied grouping strategy as default). It is found that applying PR or GSP alone
lead to worse performance than vanilla SGLD for learning LSTM ensembles. When they are applied
together, GSP forces the network to learn group sparse structures which are highly robust to pruning,
thus leading to a better result. With GSP, applying pruning only leads to negligible loss of perfor-
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Figure 4: The sparse structure patterns of the weight matrices from a sample LSTM model trained
by applying SGLD with GSP. Yellow areas are all zeros while black dots stand for non-zero weights.
The patterns are plotted with a sub-sampling by a factor of 5.

Table 4: Detailed structure information for various large LSTMs. The FLOPs of LSTM layer 1, L-
STM layer 2 and softmax layer are shown in three columns respectively. The embedding layer is not
listed here since it is a table lookup process instead of matrix calculation. The results of our method
are the statistics from a single model sample from the ensemble trained by SGLD+GSP+PR. The
size of the reduced LSTM model learned by our method with ISS is 365, 311 and 420 for embedding
input, 1st LSTM layer and 2nd LSTM layer respectively. For shared embeddings (denoted as SE),
the layer sizes are 456, 352 and 456 respectively.

Method Sparsity Parameters
FLOPs

LSTM1 LSTM2 Softmax Total
SGD (Zaremba, 2014) - 66M 36M 36M 30M 102M
ISS (Wen, 2017) - 25.2M 5.7M 3.9M 10.7M 20.4M (20%)

SGLD+GSP+PR 90% 6.6M 4.3M 6.1M 12.2M 22.7M (22%)
SGLD+GSP+PR (tied W) 90% 6.6M 4.9M 6.1M 12.4M 23.5M (23%)
SGLD+GSP+PR (ISS) 90% 6.6M 1.7M 2.5M 8.4M 12.6M (12%)
SGLD+GSP+PR+SE (ISS) 90% 5.1M 2.3M 2.9M 9.1M 14.4M (14%)

mance but greatly reduces the model size, as can been seen from comparing SGLD+GSP+PR with
SGLD+GSP+R; pruning without retraining produces inferior result. The three grouping strategies
perform close to each other. Remarkably, compared to the medium LSTM ensemble obtained by
multiple training, the ensemble learned by the new method SGLD+GSP+PR reduces the PPL from
72.0 to 69.5, and with only 10% parameters and 40% FLOPs in total. SGLD indeed provides a good
approach to finding diverse sample models for ensembles.

Fig.3(a) presents the PPL curves along the learning of LSTM ensemble by the new method S-
GLD+GSP+PR over the development set. It clearly shows the performance gains brought by model
averaging and PR. The relationship between the performance of an ensemble and the number of
models in an ensemble is examined in Fig.3(b), together with a comparison between different sam-
pling strategies. We test the performances of different ensembles on the PTB development set, each
consisting of 2 to 35 medium LSTMs. The blue curve shows the result of running SGLD+GSP+PR
for 80 epochs and sampling uniformly after a 10-epoch burn in process, e.g. sampling every 2 epoch
to collect 35 models and sampling every 35 epoch to get 3 models. The orange curve is obtained by
sampling every 6 epochs, which means that the more model collected the longer run of SGLD. It can
be seen from comparing the two curves that it is better to sample with larger interval with relatively
small number of models. It is also clear from Fig.3(b) that the traditional ensemble learning method
by SGD training of multiple models is inferior to the SGLD learning method.
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Table 5: Comparison of various models based on LSTMs on PTB dataset. The number of parameters
and FLOPs are shown as multiples of the baseline medium LSTM trained by SGD, the specifics
of which are shown in parentheses. The bold line denotes the best result obtained with shared
embeddings (denote as SE).

Method Model Parameters FLOPs Dev. Test
SGD (Zaremba, 2014) 1 large 1(66M) 1(102M) 82.2 78.4
SGD (Zaremba, 2014) 38 large 38× 38× 71.9 68.7
VD (Gal, 2016) 10 large 10× - - 68.7
VD-LSTM+SE+AL (Inan, 2016) individual 51M - 71.1 68.5
AWD-LSTM (Merity, 2017) individual 24M - 60.0 57.3
AWD-LSTM-MoS (Yang, 2017) individual 22M - 56.5 54.4

SGD+GSP+PR 1 large 0.1× 0.2× 81.9 77.8
SGD+GSP+PR 4 large 0.4× 0.9× 69.9 66.7
SGLD+GSP+PR 20 large 2.0× 4.5× 68.6 66.4
SGLD+GSP+PR 4 large 0.4× 0.9× 70.9 68.7
SGLD+GSP+PR+SE (ISS) 4 large 0.3× (20.4M) 0.7 × 64.4 62.1

Fig. 4 shows the sparse structured patterns of the weight matrices from a single LSTM model
sample in the ensemble trained by applying SGLD with GSP, separately for three different grouping
strategies of weight matrices. Table 4 shows the FLOPs for each layer for these LSTM model
samples. Note that word embedding is not included for FLOP calculation, since it is a table lookup
process instead of matrix calculation in practice, but we still prune it to reduce model size. Models
learned by ISS have desirable homogeneously-sparse structures and thus fewer FLOPs.

Comparison of various models based on LSTMs on PTB dataset are summarized in Table 5. We
investigate to use small number of models to achieve trade off between cost and performance. An
attractive model is the SSE of 4 large LSTMs, which only requires 40% of parameters and 90% of
computational cost in total, compared to the baseline large LSTM Zaremba et al. (2014), but decrease
the perplexity from 78.4 to 68.7. This result is also better than those obtained by Zaremba et al.
(2014) (38 independently trained large LSTMs) and Gal & Ghahramani (2016) (10 independently
trained large LMs with costly MC dropout for testing), not only in terms of PPL reduction but also
in term of reducing memory and computing costs.

As suggested by a referee, we compare SGD (1 model)+GSP+PR with SGLD (ensemble)+GSP+PR.
SGD+GSP+PR represents the SGD training with group sparse prior and model pruning/retraining.
SGD (1 model)+GSP+PR can reduce the model size but the PPL is much worse than the ensemble,
which clearly shows the improvement provided by the ensemble. Additionally, we compare SGLD
(4 models)+GSP+PR with SGD (4 models)+GSP+PR, namely the classic ensemble training method
by multiple independent runs with different initializations. The two ensembles achieve close PPLs.
However, SGD ensemble learning requires 30 × 4 epochs training and 15 × 4 epochs retraining,
SGLD ensemble learning takes 80 epochs training plus 15 × 4 epochs retraining, which reduces
about 30%1 training time.

Note that a number of better model architectures (Inan et al. (2016); Merity et al. (2017); Yang
et al. (2017)) have emerged over the baseline large LSTM LM, which we used as a baseline. Our
SGLD+GSP+PR in principle can be applied to those new model architectures. As an example, we
apply SGLD+GSP+PR to models that share input and output embeddings Inan et al. (2016). With
shared embeddings, we further reduce the perplexity to 62.1 by using the SSE of 4 large LSTMs,
which can be regarded as an ensemble version of Inan et al. (2016) without variational dropout (VD)
and augmented loss (AL). As a side note, without shared embeddings, the lowest perplexity achieved
is 66.4 by the SSE of 20 large LSTMs, which is also among the top models obtained with standard
LSTMs to the best of our knowledge.

1Retraining operates on pruned models, and reduces the time cost by 50%. So the total reduction of training
time is about (80 + 15 ∗ 4 ∗ 0.5)/(30 ∗ 4 + 15 ∗ 4 ∗ 0.5) = 0.73.
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6 CONCLUSION AND FUTURE WORKS

In this work, we propose a novel method of learning NN ensembles efficiently and cost-friendly
by integrating three mutually enhanced techniques: SG-MCMC sampling, group sparse prior and
network pruning. The resulting SGLD+GSP+PR method is easy to implement, yet surprisingly
effective. This is thoroughly evaluated in the experiments of learning SSE ensembles of both FNNs
and LSTMs. The Sparse Structured Ensembles (SSEs) learned by our method gain better prediction
performance with reduced training and test cost when compared to traditional methods of learning
NN ensembles. Moreover, by proper controlling the number of models used in the ensemble, the
method can also be used to produce SSE, which outperforms baseline NN significantly without
increasing the model size and computation cost.

Some interesting future works: (1) interleaving model sampling and model pruning; (2) application
of this new method, as a new powerful tool of learning ensembles, to more tasks.
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